

Lecture 4: Thom–Porteous formula and engineering applications

Leonie Kayser
leokayser.github.io/agcrash

January 29, 2026

Exercample 1. Show that if M is a matrix of $e \times f$ indeterminates (so $n+1 = ef$), then $D_r(M) \subseteq \mathbb{P}^{ef-1}$ is an irreducible variety of expected dimension.

Exercample 2. Compute the number of intersection points in $\mathbb{P}^2 \times \mathbb{P}^1$ of (transversally intersecting) hypersurfaces of bi-degrees $(2, 0), (2, 6), (6, 7)$.

Exercample 3. Assume M has linear entries (for example ef distinct indeterminates). Show that $\deg D_{e-1}(M) = \binom{f}{e-1}$ by using the Kernel incidence

$$\mathcal{K} = \{ (x, [v]) \in \mathbb{P}^n \times \mathbb{P}^{e-1} \mid M(x) \cdot v = 0 \}.$$

Check that this agrees with the theorem below.

Exercample 4. Evaluate this in the case $e = 3, f = 3, r = 1$.

Exercample 5. If $H = \frac{d}{c}, \hat{H} = \frac{b}{a}$, derive from this the *Walsh polynomial system*: \hat{H} is a critical point if and only if there exists $g \in \mathbb{R}[z]_{\leq N-n-1}$ such that

$$a \cdot d - b \cdot c = \tilde{a}^2 \cdot g.$$

Exercample 6. Show that for almost all (c, d) , the critical points (a, b) satisfy that a has n distinct roots and $\gcd(a, b) = 1$. If we normalize $a_n = 1$, then the set of critical points is finite.

Exercample 7. Show that if c has N distinct roots, then for *all* $\tilde{a} \neq 0$ the following linear system

has no nonzero solution:

$$\begin{bmatrix} c & \tilde{a}^2 \end{bmatrix} \cdot \begin{pmatrix} b \\ g \end{pmatrix} = 0.$$

Exercample 8. Derive this from Thom–Porteous formula! The matrix M has column degrees

$$\begin{bmatrix} 1 & 0 \dots 0 & 2 \dots 2 \end{bmatrix} \begin{matrix} \\ 1 \\ n \\ \\ N-n \end{matrix}.$$

Exercample 9.

- Derive a formula for the number of points $a \in \mathbb{P}^n$ where $M(a)$ is not of full rank!
- Study this in the case $n = 1, N = 3$ (distance to cone $\mathbb{V}(y_0y_2 - y_1^2) \subseteq \mathbb{A}^3$).