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1 Algebraic groups and G-varieties
We consider algebraic varieties over C, not necessarily irreducible. The algebra of regular functions
on X is denoted by C[X], that corresponds to the coordinate ring if X is affine. The field of rational
functions is C(X).

Definition 1. An algebraic group is a variety G that has a compatible group structure, i.e. the
multiplication and the inverse map

· : G×G −→ G, ι : G −→ G

(g, h) 7−→ g · h g 7−→ g−1

are morphism of varieties. We say that G is an affine algebraic group if G is an affine variety.

Definition 2. A morphism of algebraic groups G and H is a morphism of variety f : G→ H that is
also a group homomorphism. An algebraic subgroup of G is a closed subvariety H such that H ↪→ G is
a morphism of algebraic groups. An algebraic quotient of G is an algebraic group G′ such that there
exists a morphism f : G→ G′ and surjective

The connected component G0 containing the neutral element eG is said neutral component and it
is a closed normal subgroup of G such that the quotient G/G0 is finite.

Proposition 3. If f : G → H is a morphism of algebraic groups, then the image of f is a closed
subgroup and, if f is injective, it is a closed immersion.

Example 4. 1. Any finite group is algebraic.

2. The general linear group GLn is an algebraic group. We already know that it is an affine
variety. Since the coefficients of the product AB of two matrices are polynomial functions in the
coefficients of A and B, we can say that the product map (as well the inverse map) is a morphism
of varieties. The special linear group SLn is also algebraic since it is a closed subgroup of GLn,
defined by ∆ = 1, where ∆ is the determinant. We will see that any algebraic group is linear,
i.e. it is a subgroup of GLn defined by polynomial equations.

3. The multiplicative group C∗ ≃ GL1 and the additive group C ↪→ GL2, t 7→
(
1 t
0 1

)
.

4. The n−dimensional torus (C∗)n, that is isomorphic to diagonal invertible matrices, is algebraic.

5. Let Un ⊂ GLn the subgroup of upper triangular matrices with 1 on the diagonal, this is a
nilpotent group (i.e. A − In is nilpotent for every A ∈ Un). It is algebraic as it is a closed
subgroup of GLn.
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6. Every elliptic curve in P2 is an non-affine algebraic group.
⋄

Proposition 5. An algebraic group G is a smooth variety and its components are the cosets (or lateral
classes) gG0 : = {gh|h ∈ G0}, for g ∈ G.

Definition 6. A G-variety is a variety X equipped with an action of the algebraic group G,

α : G×X −→ X, (g, x) 7−→ g · x

that is a morphism of varieties. We say that α is an algebraic G−action.

An algebraic action α : G×X −→ X induces a linear action of G on the coordinate ring C[X] :

α : G× C[X] −→ C[X], (g, f) 7−→
(g · f) : X → C

x 7→ f(g−1 · x)

From now X will be an affine variety and G an affine algebraic group.

Lemma 7. The vector space C[X] is a union of finite dimensional G−stable subspaces on which G
acts algebraically.

Proof. We consider the pullback

α# : C[X] −→ C[G×X] ≃ C[G]⊗ C[X], f 7−→ (f ◦ α),

where f ◦ α : G×X → C and f ◦ α(g, x) = f(g · x). We write α#(f) = f ◦ α =
n∑

i=1

φi ⊗ ψi, hence

α#(f)(g, x) = f(g · x) =
n∑

i=1

φi(g)ψi(x), ψi ∈ C[X]

But we know that g ·f = f(g−1 ·_) =
n∑

i=1

φi(g
−1)ψi(_), so the translates g ·f span a finite-dimensional

subspace V ⊆ C[X] containing f , on which G acts, that is clearly G−stable.

The pullback α# is also called coaction homomorphism. This Lemma leads to the following defini-
tion.

Definition 8. A (rational) G-module is a complex vector space V equipped with a linear action of
G such that every v ∈ V is contained in a finite-dimensional G−stable subspace on which G acts
algebraically.

Example 9. Coordinate rings of G−varieties are rational G−modules by Lemma 7. ⋄

Remark 10. Finite dimensional G−modules are in 1 : 1 correspondence with finite dimensional al-
gebraic representations of G. Indeed for a finite dimensional G−module V we can construct the
representation ρ : G→ GL(V ) as follows:

ρ(g) : V −→ V, x 7−→ g · x.

Conversely, a finite-dimensional representaton ρ : G→ GL(V ) yields the action

· : G× V −→ V, (g, x) 7−→ ρ(g)(x).
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Example 11. One can prove that C∗−modules corresponds to Z−graded vector spaces. ⋄

Definition 12. Give two G−varieties X,Y , we say that a morphism f : X → Y is equivariant, or
that it is a G-morphism, if f(g · x) = g · f(x) for every g ∈ G and x ∈ X.

Proposition 13. Let G be an affine algebraic group and X an affine G−variety. Then X is equivari-
antly isomorphic to a closed G−subvariety in a finite-dimensional G−module.

Proof. We choose generators C[X] = C[f1, . . . , fn]. By Lemma 7 {g · fi ∈ C[X]| g ∈ G} ⊆ Vi ⊂ C[X],
where V is a finite-dimensional G−module. It follows that V : = V1 + · · ·+ Vn generates the algebra
C[X] and the map

ι : X −→ V ∗, x 7−→ (v 7→ v(x))

is a closed equivariant immersion.

Definition 14. Given a G−variety X and x ∈ X we define the orbit of x and the stabilizer as

G · x : = {g · x | g ∈ G}, Gx : = {g ∈ G | g · x = x}.

The stabilizer is a closed subgroup of G, also called isotropy group of x.

Proposition 15. We have:

1. The orbit G · x is a locally closed smooth subvariety of X.

2. Every component of G · x has dimension dim(G)− dim(Gx).

3. G · x = G · x ∪ smaller dimension orbits.

Example 16. 1. C∗ acts on Cn by t · (x1, . . . , xn) := (tx1, . . . , txn). Then {0} is the unique closed
orbit and the other orbits are the lines through 0.

2. C∗ acts on C2 by t · (x, y) = (tx, t−1y). The closed orbits are the origin and the hyperbolae
{xy = c}.

3. SL2 acts on C2 by multiplication. The orbits are the origin and its complement, that is not an
affine variety. The stabilizer of (1, 0) is U2 ≃ C.

⋄

Corollary 17. Any affine algebraic group is linear.

Proof. Let G be an affine algebraic group acting on itself by multiplication. The algebra C[G] is
generated by a finite-dimensional G−module V , so G→ GL(V ) is injective and the image is closed by
Proposition 3, so G can be seen as a closed subgroup of GL(V ), hence it is linear.

Now we state the result that is the starting point for construction of quotients of linear algebraic
groups by closed subgroups.

Proposition 18. Every closed subgroup H ⊆ G of a linear algebraic group is the stabilizer of a line ℓ
in a finite-dimensional G−module V .

This result can be rephrased as any closed subgroup of G is the stabilizer of a point in the projec-
tivization of a finite dim. G−module.

Theorem 19. Let G be a linear algebraic group and H a closed subgroup. Then G/H has a unique
structure of G−variety that satisfies the following properties:
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(i) The quotient map π : G→ G/H, g 7→ gH is a morphism.

(ii) U ⊆ G/H is open if and only if π−1(U) is open in G.

(iii) For any open U ⊆ G/H the pullback π# : C[U ] ≃ C[π−1(U)]H is an isomorphism.

Moreover, G/H is smooth and quasi-projective.

Proof. (sketch) By Proposition 18 there exists a G−module V and x ∈ P(V ) such that H = Gx. Let
X := G · x and p : G→ X, g 7→ g · x the orbit map. Then p is a surjective G−morphism whose fibers
are the cosets gH. By generic smoothness and equivariance, π is a smooth open morphism satisfying
(i) and (ii).

Definition 20. A variety X is homogeneous if it is equipped with a transitive action of an algebraic
group G. A homogeneous space is a pair (X,x), where X is homogeneous and x is the base point.

By the previous Theorem, it follows that homogeneous spaces (X,x) with an action of a linear
algebraic group G are exactly the quotientspaces G/H, where H = Gx.

2 Reductive groups
Now two questions naturally arise, one more geometric, one more algebraic.

Question 21. Given an action of an algebraic group G on a G−variety, what is the correct definition
of a geometric quotient? Does it always exists?

Question 22 (Hilbert’s 14 problem). An action of an algebraic group G on X induces an action on
the polynomial algebra C[X] and give rise to the invariant functions C[X]G. More in general, if a
group G acts over a finitely generated k−algebra A, is the invariant ring AG finitely generated?

The answer to both questions is negative. In particular, Nagata gave a counter-example of an
action of an affine algebraic group for which the ring of invariant is not finitely generated. However,
the restriction on the hypothesis to have an affirmative answer to both questions is the same, given by
reductive groups!

We will see more precisely how to construct geometric quotients, now we will give the tools that en-
sure their existence. In particular, the existence of a geometric quotient depends also by the properties
of the acting group G.

Altough we assumed to work over C, we give the definition of reductive group over any field k, to
underline the importance of this assumption in the examples.

Definition 23. A linear algebraic group G is reductive over k if it does not contain any closed normal
unipotent subgroup, i.e. a subgroup isomorphic to Un.

We want to characterize reductive groups through their linear representations.

Definition 24. Let G be an algebraic group and V a G−module (ρ : G→ GL(V ) a representation on
a vector space V ) . We say that V (ρ) is simple (or irreducible) if it has no proper G−submodules (V
has no proper subspaces stable under ρ(G)). V is semi-simple (or completely irreducible) if it satisfies
one of the equivalent condition:

(i) V is sum of simple submodules.

(ii) V ≃
⊕
Vi, where Vi are simple G−modules (V splits into direct sum of simple subspaces that

are invariant under ρ(G)).
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(iii) Any submodule W ⊆ V admits a G−stable complement s.t. V =W ⊕W ′

Example 25. Let G be a unipotent group, then every simple G−module is trivial, i.e. isomorphic to
C. ⋄

The previous definition can be restated in terms of representations of G.

Theorem 26. The following are equivalent for a linear algebraic group G over C:

(i) G is reductive.

(ii) G contains no closed normal subgroup isomorphic to (Cn,+).

(iii) G has a compact subgroup K that is Zariski dense.

(iv) Every finite-dimensional G−module is semi-simple. (definition of linearly reductive group over
any field k , equivalent to reductive in characteristic 0)

(v) Every G−module is semi-simple.

Part (iv) can be restated as follows: every linear representation ρ : G → GL(V ) is completely
reducible, that is, it decomposes as a direct sum of irreducible representations. Equivalently, the
C−vector space V splits into the direct sum of irreducible G−modules.

For completeness we report the following.

Definition 27. An affine algebraic group G is geometrically reductive is for every finite dimensional
linear representation ρ : G → GL(V ) and every v ∈ V G \ 0, there exists a G−invariant non-constant
homogeneous polynomial f ∈ k[V ] such that f(v) ̸= 0.

Theorem 28 (Weyl, Nagata, Mumford, Haboush). For smooth affine algebraic group:

linearly reductive ⇒ geometrically reductive ⇔ reductive

These notions coincide in characteristic zero.

Example 29. 1. GLn, SLn and Sp2n are reductive if char(k) = 0. They are not linearly reductive
in positive characteristic.

2. The algebraic torus (C∗)n is reductive.

3. The Borel subgroup of GLn is not reductive since it corresponds to upper triangular matrices,
and hence contains Un.

4. Any finite group whose order is not divisible by the characteristic of k is linearly reductive. In
particular, if char(k) = 0, every finite group is reductive.

⋄

Definition 30. We say that an algebraic group G acts rationally on a finitely generated k−algebra
Aif every element of A is contained in a finite dimensional G−invariant linear subspace of A

Theorem 31 (Nagata). Let G be a reductive group acting rationally on a finitely generated k−algebra
A. Then the invariant algebra AG is finitely generated.

Corollary 32. If A = C[X], where X is a G−variety and G an affine algebraic group, then C[X]G is
finitely generated.

To prove Nagata’s Theorem we need the following tools/results.

5



Definition 33. Let G be a group acting on a k−algebra A. A Reynolds operator is a map of
AG−modules ρ : A→ AG such that ρ|AG = idAG .

Lemma 34. A reductive group G acting rationally on a finitely generated algebra A admits a Reynolds
operator.

Corollary 35. If a reductive group G acts rationally on algebras A and B that admit a Reynolds
operator, then any G−equivariant morphism f : A→ B commutes with the Reynolds operators

ρB ◦ f = f ◦ ρA.

Lemma 36. In the same hypothesis, for every ideal I ⊆ AG, we have IA ∩ AG = I. In particular, if
A is Noetherian then so is AG.

Proof. (Nagata’s Theorem)
First we reduce to the case where A is a polynomial algebra with a linear G−action.
We consider A = k[f1, . . . , fc]. Since the action is rational, for every fi we can find a finite

dimensional G−module Vi containing fi. In particular we find a finite dimensional G−module V
containing the algebra generators f1, . . . , fc. This gives us a G−equivariant surjection

Sym∗(V ) ↠ A i.e.(k[x1, . . . , xc] ↠ A)

between algebras that admit a Reynolds operator by Lemma 34. By Corollary 35 we have a surjection
between the invariant rings:

Sym∗(V )G ↠ AG i.e.(k[x1, . . . , xc]
G ↠ A)

So if we prove that k[x1, . . . , xc]G is finitely generated we can conclude.
Let us assume that A = k[x1, . . . , xc]. In particular A is standard graded by: A =

⊕
n≥0

An. The

invariant ring AG inherits the grading

AG =
⊕
n≥0

(AG)n =
⊕
n≥0

(An)
G.

By the previous Lemma, AG is Noetherian, so the maximal homogeneous ideal AG
+ =

⊕
n>0

(AG)n is

finitely generated. Let a1, . . . , am be generators of AG
+, it follows, from a general result in commutative

algebra, that AG = A0[a1, . . . , am] = k[a1, . . . , am], so it is a finitely generated k−algebra.
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