Affine GIT

In this talk, we will define several notions of quotients for affine varieties and study how they are
related to each other. Here, the group G will always be an affine algebraic group.

Definition 1. Let G be an affine algebraic group acting on a variety X. A categorical quotient
is a variety Y and a G-invariant morphism 7 : X — Y satisfying the following universal property.
For any variety Z, and for any G-invariant morphism f : X — Z, f factors uniquely through :
f:X5Y > Z.

In this case, we denote Y by X//G.

This definition is large, but it is difficult to compute a quotient. The second notion of quotient will be
equivalent if everything is affine and allows us to compute quotients.

Definition 2. Let G be a reductive group acting on an affine variety X. The affine GIT quotient,
denoted X//G is the image of the morphism 7 : X — C", z — (f1(x), ..., fu(x)), for f1, ..., fn generators
of C[X]€.

The surjective map 7 : X — X//G corresponds to the inclusion C[X]¢ C C[X]. Equivalently,
X//G = Spec(C[X]%).

Lemma 3. The image X//G is closed and independent of the generators fi, ..., fn € C[X]C.

Definition 4. The affine GIT quotient is a categorical quotient.
Moreover, if G is reductive, and the categorical quotient is affine, then it is an affine GIT quotient.

Proposition 5. Let G be a reductive group and X be an affine variety such that X//G is affine. Then:

1. Let Z C X be a G-invariant closed subspace. Then, f : Z//G — X//G is a closed immersion
(i.e. f#:C[X]% — C[Z]% is surjective).

2. Let Z,Z' C X be G-invariant closed subspaces. Then, m(ZNZ'") =n(Z)Nn(Z').
3. FEach fiber of m contains a unique G-orbit.
4. If X is irreducible/normal, then so is X//G.

Example 6. e Let C* acts on (C)™ by (t, (z1, ..., zpn)) — (tz1,...,tx,). Then C* acts on the coordi-
nate ring C[x1, ..., 2, by (¢, f(z1, ..., xn)) = f(t " 1,...,t t2,). The invariant elements are the
constant elements: C[z1,...,7,]¢ = C. The categorical quotient is just a point (C)"//C* = {0}.

e Let C* acts on (C)? by (t, (z1,72)) = (tw1,t txy). Similarly, C* acts on the coordinate ring
Clx1, x2] by (t, f(z1,22)) = f(t"'w1,txs). In this case, we have non-constant invariant elements:
Clz1, 72]¢ = Clzy25] = C[2]. So the categorical quotient is C2//C* = Al
In this case, the three orbits {z = 0}, {y = 0} and {(0,0)} are sent to the point 0 € A'. However,
it doesn’t contradict Proposition 5 (3) because only {(0,0)} is closed.

We see from these examples that the categorical/affine GIT quotient doesn’t allow us to compute many
quotients. In the first example, we would like to consider the same action on the space (C)" \ {0} to
get P*~1. However, since P"~! is not affine, this will not be covered in this talk but in the one about
projective GIT.



Definition 7. Let G be an affine algebraic group acting on a variety X. A good quotient is a variety
Y, together with a G-invariant morphism 7 : X — Y such that:

1.  is surjective, and for W, W' C X disjoint, G-inavariant closed subspaces, m(W) N 7(W’) = §.
2. A subspace U C Y is open if and only if 7=(U) is open.
3. For any open subspace U C Y, 7 yields an isomorphism C[z~1(U)]“ ~ C[U].

Proposition 8. Let G be an affine algebraic group acting on a variety X, and Y be a good quotient.
Then, Y is a categorical quotient.

Conversely, if G is reductive, X is affine, and Y is an affine categorical quotient, then Y is a good
quotient.

Proposition 9. Let G be an affine algebraic group. A geometric quotient of X by G consists of a
variety Y together with a morphism f: X — Y such that:

1. 7 is surjective, and its fiber are exactly the G-orbits in X.

2. A subspace U CY is open if and only if m=1(U) is open.

3. For any open subspace, 7 yields an isomorphism C[r—*(U)]¢ ~ C[U].
If it exists, we denote Y by X/G.

The geometric quotients are actually the quotients we would like to consider. The problem is that
they don’t always exist.

Proposition 10. IfY is a geometric quotient, then it is also a good and a categorical quotient.

Proposition 11. If 7 : X — Y is a good/geometric quotient, then for every U CY open, @ -1 (v
o Y U) = U is also a good/geometric quotient.

Moreover, if 1 : X — Y is G-invariant, and we have a cover of Y by open subspaces U; such that
Plo-1(wy) < (Ui) = Us.

Definition 12. Let G be a reductive group acting on an affine variety X such that X//G is affine. A
point x € X is stable if G - z is closed and G, is finite (i.e. dim(G,) = 0).
We denote the set of stable points of X by X*.

Proposition 13. The projection w(X?®) is open in X//G and X* = 7= (w(X?®)). In particular X* is
open and G-invariant. The restriction map ©° : X° — w(X?®) is a geometric quotient.

Example 14. e Let C* act on C™ as in Example 6. This action does not admit a geometric
quotient as the only closed orbit is {0}, and {0} belongs to all the orbit closures.
Moreover, there are no stable points as the stabilizer of {0} is infinite, and none of the other
orbits are closed.
In this case, we can compute the quotient of C™ \ {0}, under the action of C*, and we will get
P"~1, as every line is precisely identified to a point.

o Let C* act on C™. The affine GIT quotient is not a geometric quotient as the orbit {x = 0} and
{y = 0} are not closed.
The stable points are X* = C?\ ({x = 0} U {y = 0}). The geometric quotient X*/C* = C\ {0}



is given by the map X* — C\ {0}, (z,y) — zy.
Let G = GLs be the group of 2 x 2 invertible matrices acting on the variety of 2 x 2 matrices
Mataxo by conjugation, (G, M) — GMG™!. The orbits are given by the Jordan canonical form

a 0 a 0 a 1
(6 2)( %) 8)
The orbit corresponding to the second type of matrices is closed; the orbit of the first kind is
just a point, but the closure of the orbit of the third contains the first type. Moreover, there are
no stable points as ¢ - id is in the stabilizer of all matrices. We don’t have a GIT quotient. We
can prove that C[z1y, T12, To1, 222]% = C[tr, det] € Cly1,y2]. The affine GIT quotient is given by
the map Mataxo — A% M — (tr(M), det(M)).



