
Affine GIT

In this talk, we will define several notions of quotients for affine varieties and study how they are
related to each other. Here, the group G will always be an affine algebraic group.

Definition 1. Let G be an affine algebraic group acting on a variety X. A categorical quotient
is a variety Y and a G-invariant morphism π : X → Y satisfying the following universal property.
For any variety Z, and for any G-invariant morphism f : X → Z, f factors uniquely through π:
f : X

π→ Y → Z.
In this case, we denote Y by X//G.

This definition is large, but it is difficult to compute a quotient. The second notion of quotient will be
equivalent if everything is affine and allows us to compute quotients.

Definition 2. Let G be a reductive group acting on an affine variety X. The affine GIT quotient,
denotedX//G is the image of the morphism π : X → Cn, x 7→ (f1(x), ..., fn(x)), for f1, ..., fn generators
of C[X]G.

The surjective map π : X → X//G corresponds to the inclusion C[X]G ⊆ C[X]. Equivalently,
X//G = Spec(C[X]G).

Lemma 3. The image X//G is closed and independent of the generators f1, ..., fn ∈ C[X]G.

Definition 4. The affine GIT quotient is a categorical quotient.
Moreover, if G is reductive, and the categorical quotient is affine, then it is an affine GIT quotient.

Proposition 5. Let G be a reductive group and X be an affine variety such that X//G is affine. Then:

1. Let Z ⊆ X be a G-invariant closed subspace. Then, f : Z//G → X//G is a closed immersion
(i.e. f# : C[X]G → C[Z]G is surjective).

2. Let Z,Z ′ ⊆ X be G-invariant closed subspaces. Then, π(Z ∩ Z ′) = π(Z) ∩ π(Z ′).

3. Each fiber of π contains a unique G-orbit.

4. If X is irreducible/normal, then so is X//G.

Example 6. • Let C∗ acts on (C)n by (t, (x1, ..., xn)) 7→ (tx1, ..., txn). Then C∗ acts on the coordi-
nate ring C[x1, ..., xn] by (t, f(x1, ..., xn)) 7→ f(t−1x1, ..., t

−1xn). The invariant elements are the
constant elements: C[x1, ..., xn]

G = C. The categorical quotient is just a point (C)n//C∗ = {0}.

• Let C∗ acts on (C)2 by (t, (x1, x2)) 7→ (tx1, t
−1x2). Similarly, C∗ acts on the coordinate ring

C[x1, x2] by (t, f(x1, x2)) 7→ f(t−1x1, tx2). In this case, we have non-constant invariant elements:
C[x1, x2]

G = C[x1x2] = C[z]. So the categorical quotient is C2//C∗ = A1.
In this case, the three orbits {x = 0}, {y = 0} and {(0, 0)} are sent to the point 0 ∈ A1. However,
it doesn’t contradict Proposition 5 (3) because only {(0, 0)} is closed.

We see from these examples that the categorical/affine GIT quotient doesn’t allow us to compute many
quotients. In the first example, we would like to consider the same action on the space (C)n \ {0} to
get Pn−1. However, since Pn−1 is not affine, this will not be covered in this talk but in the one about
projective GIT.
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Definition 7. Let G be an affine algebraic group acting on a variety X. A good quotient is a variety
Y, together with a G-invariant morphism π : X → Y such that:

1. π is surjective, and for W,W ′ ⊆ X disjoint, G-inavariant closed subspaces, π(W ) ∩ π(W ′) = ∅.

2. A subspace U ⊆ Y is open if and only if π−1(U) is open.

3. For any open subspace U ⊆ Y , π yields an isomorphism C[π−1(U)]G ≃ C[U ].

Proposition 8. Let G be an affine algebraic group acting on a variety X, and Y be a good quotient.
Then, Y is a categorical quotient.
Conversely, if G is reductive, X is affine, and Y is an affine categorical quotient, then Y is a good
quotient.

Proposition 9. Let G be an affine algebraic group. A geometric quotient of X by G consists of a
variety Y together with a morphism f : X → Y such that:

1. π is surjective, and its fiber are exactly the G-orbits in X.

2. A subspace U ⊆ Y is open if and only if π−1(U) is open.

3. For any open subspace, π yields an isomorphism C[π−1(U)]G ≃ C[U ].

If it exists, we denote Y by X/G.

The geometric quotients are actually the quotients we would like to consider. The problem is that
they don’t always exist.

Proposition 10. If Y is a geometric quotient, then it is also a good and a categorical quotient.

Proposition 11. If π : X → Y is a good/geometric quotient, then for every U ⊆ Y open, φ|φ−1(U) :
φ−1(U) → U is also a good/geometric quotient.
Moreover, if π : X → Y is G-invariant, and we have a cover of Y by open subspaces Ui such that
φ|φ−1(Ui) : φ

−1(Ui) → Ui.

Definition 12. Let G be a reductive group acting on an affine variety X such that X//G is affine. A
point x ∈ X is stable if G · x is closed and Gx is finite (i.e. dim(Gx) = 0).
We denote the set of stable points of X by Xs.

Proposition 13. The projection π(Xs) is open in X//G and Xs = π−1(π(Xs)). In particular Xs is
open and G-invariant. The restriction map πs : Xs → π(Xs) is a geometric quotient.

Example 14. • Let C∗ act on Cn as in Example 6. This action does not admit a geometric
quotient as the only closed orbit is {0}, and {0} belongs to all the orbit closures.
Moreover, there are no stable points as the stabilizer of {0} is infinite, and none of the other
orbits are closed.
In this case, we can compute the quotient of Cn \ {0}, under the action of C∗, and we will get
Pn−1, as every line is precisely identified to a point.

• Let C∗ act on Cn. The affine GIT quotient is not a geometric quotient as the orbit {x = 0} and
{y = 0} are not closed.
The stable points are Xs = C2 \ ({x = 0} ∪ {y = 0}). The geometric quotient Xs/C∗ = C \ {0}
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is given by the map Xs → C \ {0}, (x, y) 7→ xy.
Let G = GL2 be the group of 2 × 2 invertible matrices acting on the variety of 2 × 2 matrices
Mat2×2 by conjugation, (G,M) 7→ GMG−1. The orbits are given by the Jordan canonical form(

α 0
0 α

)
,

(
α 0
0 β

)
,

(
α 1
0 β

)
.

The orbit corresponding to the second type of matrices is closed; the orbit of the first kind is
just a point, but the closure of the orbit of the third contains the first type. Moreover, there are
no stable points as t · id is in the stabilizer of all matrices. We don’t have a GIT quotient. We
can prove that C[x11, x12, x21, x22]

G = C[tr, det] ⊆ C[y1, y2]. The affine GIT quotient is given by
the map Mat2×2 → A2,M → (tr(M), det(M)).
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