Projective GIT for linear actions

Bernhard Reinke

February 2024

The notes of this talk are based on [Hos15, Sections 5.1, 5.2, 6.1]. In this talk, we begin with the theory of projective GIT quotients in the case where G acts linear on a projective variety:

Setting:

- G will be a reductive affine algebraic group.
- $G \to \operatorname{GL}_{n+1}$ is a fixed group homomorphism, so G acts linearly on \mathbb{CP}^n .
- $X \subset \mathbb{CP}^n$ is a closed *G*-subvariety.

Under these circumstance we say that G acts linearly on $X \subset \mathbb{CP}^n$. Note: we really think of X as a subvariety of a given \mathbb{CP}^n , so the embedding is part of the data.

Let us denote by S the ring $\mathbb{C}[x_0,\ldots,x_n]$. We have seen that X is determined by

$$I(X) = \left\langle \left\{ f \in S \text{ homogeneous } \mid f(p) = 0 \quad \forall p \in X \right\} \right\rangle$$
(1)

We have that $R(X) \coloneqq S/I(X)$ is a graded \mathbb{C} -algebra. In fact $\operatorname{Proj} R(X) \cong X$. For simplicity, we will assume as in the discussion session that X is irreducible, so R(X) is integral. Furthermore $\operatorname{Spec} R(X) \cong \tilde{X} \subset \mathbb{C}^{n+1}$ is the affine cone of X. If $\pi \colon \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ is the projection map, then $\tilde{X} = \pi^{-1}(X) \cup \{0\}$.

Now $G
ightharpoondown R(X) = \bigoplus_{r \ge 0} R(X)_r$ preserves the grading. From this we obtain $R(X)^G = \bigoplus_{r \ge 0} R(X)_r^G$ as a graded subalgebra of R(X) with grading $(R(X)^G)_r = (R(X)_r)^G$. By Nagata's theorem, $R(X)^G$ is finitely generated. So the inclusion $R(X)^G \hookrightarrow R(X)$ gives a rational morphism:

$$\operatorname{Proj} R(X) \dashrightarrow \operatorname{Proj} R(X)^G \tag{2}$$

We describe the indeterminacy locus and the domain of definition of this morphism by the following definitions related to $R(X)^G_+ = \bigoplus_{r>0} R(X)^G_r$:

- **Definition 1.** A point $x \in X$ is called *unstable* if f(x) = 0 for all $f \in R(X)^G_+$ homogeneous. The set of all unstable points is called *null cone* N. (More accurately, $\pi^{-1}(N) \cup \{0\}$ the (affine) null cone, and N is the projective variety associated to it).
 - A point $x \in X$ is called *semistable* if $f(x) \neq 0$ for some $f \in R(X)^G_+$ homogeneous. The set of all semistable points is called X^{ss} .

Then X^{ss} is the domain of definition of (2), the map $X^{ss} \to X /\!\!/ G := \operatorname{Proj} R(X)^G$ is called the projective GIT quotient of the linear action of G on X.

Theorem 2. If G is reductive affine algebraic group acting linearly on $X \subset \mathbb{CP}^n$, then $\phi: X \to X /\!\!/ G$ is a good quotient of the G-action on X^{ss} , moreover $X /\!\!/ G$ is a projective variety.

Recall [Hos15, Definition 3.27] that a morphism between varieties $\phi: X \to Y$ is a good quotient of a G-action if:

- a) ϕ is *G*-invariant
- b) ϕ is surjective.
- c) If $U \subset Y$ is an open subset, the morphism $\mathcal{O}_Y(U) \to \mathcal{O}_X(\phi^{-1}(U))$ is an isomorphism onto the *G*-invariant functions $\mathcal{O}_X(\phi^{-1}(U))^G$.
- d) If $W \subset X$ is a G-invariant closed subset of X, its image $\phi(W)$ is closed in Y.

Type	$\{ Type \}$	Algebraic Definition	Geometric Criterion
unstable	N	$\forall f \in R(X)^G_+, f(x) = 0$	$0\in\overline{G\cdot\tilde{x}}$
semistable	X^{ss}	$\exists f \in R(X)_+^G, f(x) \neq 0$	$0 \not\in \overline{G \cdot \tilde{x}}$
polystable	X^{ps}	$G \cdot x \subset X^{ss}$ relatively closed	$G \cdot \tilde{x}$ closed (?)
stable	X^s	$G \cdot x \subset X^{ss}$ relatively closed and dim $G_x = 0$	$G \cdot \tilde{x}$ closed and dim $G_{\tilde{x}} = 0$

Table 1: Different types of points x for a linear action $G \circ X$ and their characterization on a lift \tilde{x} in the affine cone \tilde{X}

- e) If W_1 and W_2 are disjoint G-invariant closed subsets, then $\phi(W_1)$ and $\phi(W_2)$ are disjoint.
- f) ϕ is affine (preimages of every affine open is affine)

Proof of theorem 2. Let us denote $Y = X /\!\!/ G = \operatorname{Proj} R(X)^G$. Since Y is the Proj of a finitely generated (integral) graded \mathbb{C} -algebra, it is a projective variety. For $f \in R(X)^G_+$ homogeneous, the sets $Y_f = \{y \in Y \mid f(y) \neq 0\}$ form an basis for the Zariski topology on Y. Now $\phi^{-1}(Y_f) = X_f = \{x \in X \mid f(x) \neq 0\}$ and we have

$$\mathcal{O}(Y_f) = (R(X)^G)_{(f)} \cong (R(x)_{(f)})^G \cong \mathcal{O}(X_f)^G$$
(3)

so $\phi_f: X_f \to Y_f \cong \operatorname{Spec} \mathcal{O}(X_f)^G$ is an affine GIT quotient, hence good. By covering Y with the affine opens Y_f , we see that ϕ is a gluing of good quotients, so it is also good (see [Hos15, Remark 3.34]).

In particular, we have have for $x_1, x_2 \in X^{ss}$ that

$$\overline{G \cdot x_1} \cap \overline{G \cdot x_2} \cap X^{ss} \neq \emptyset \Leftrightarrow \phi(x_1) = \phi(x_2) \tag{4}$$

The existence of non-closed orbits in X^{ss} prevent $X^{ss} \to X /\!\!/ G$ from being a geometric quotient. In order to obtain a geometric quotient we introduce the following set:

Definition 3. A point $x \in X$ is *stable* if we have the following:

- x is semistable
- $G \cdot x$ is closed in X^{ss}
- G_x is zero dimensional.

The set of stable points is denoted by X^s .

Note that this is not the definition given in [Hos15], but the equivalent description as [Hos15, Lemma 5.9]. With this we have the following:

Lemma 4. X^s and X^{ss} are open subsets of X.

Theorem 5 ([Hos15, Theorem 5.6]). There is an open subvariety $Y^s \subset Y = X /\!\!/ G$ such that $\phi^{-1}(Y^s) = X^s$ and the GIT quotient restrict to a geometric quotient $\phi: X^s \to Y^s$.

Definition 6. A point $x \in X$ is polystable if it is semistable and $G \cdot X \subset X^{ss}$ is relatively closed.

Lemma 7. If $x \in X$ is semistable, then $\overline{G \cdot x}$ contains a unique polystable orbit.

We can give the following topological criterion for stability:

Lemma 8. Let $x \in X$, let $\tilde{x} \in \tilde{X}$ a lift of x (i.e. $\pi(\tilde{x}) = x$). We have the following:

- a) x is semistable if and only if $0 \notin \overline{G \cdot \tilde{x}}$
- b) x is stable if and only if $G_{\tilde{x}}$ is zero dimensional and $G \cdot \tilde{x}$ is closed in \tilde{x} .

We organize this information in table 1 (adapted from [Tho23, Proposition 6.5]).

Example 1. Consider the action of \mathbb{C}^* on \mathbb{CP}^2 given by the homomorphism

$$t \mapsto \begin{pmatrix} t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t^{-1} \end{pmatrix}$$
(5)

Using the geometric criterion we see that $N = \{z = 0\} \cup \{[0:0:1]\}$, and $X^s = X^{ss} = \mathbb{CP}^2 \setminus N$. In this example, every semistable point is in fact stable. If we denote the homogeneous coordinate ring of $X = \mathbb{CP}^2$ by $\mathbb{C}[x_0, \ldots, x_2]$, then $R(X)^G = \mathbb{C}[x_0x_2, x_1x_2]$, $X \not| G = \operatorname{Proj} R(X)^G \cong \mathbb{CP}^1$, with quotient map

$$[x_0:x_1:x_2] \mapsto [x_0x_2:x_1x_2] \tag{6}$$

Example 2. Consider the action of \mathbb{C}^* on \mathbb{CP}^2 given by the homomorphism

$$t \mapsto \begin{pmatrix} t & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & t^{-1} \end{pmatrix}$$
(7)

Using the geometric criterion we see that $N = \{ [1:0:0] \cup [0:0:1] \}$, and that [0:1:0] is polystable but not stable. We have that [0:1:0] is the unique polystable point in the orbit closures of $\{z=0\}$ and $\{x=0\}$. So $X^s = \mathbb{CP}^2 \setminus (\{z=0\} \cup \{x=0\}), X^{ps} = X^s \cup [0:1:0]$. In particular, we have $X^s \subseteq X^{ps} \subseteq X^{ss} \subseteq X$. We have $R(X)^G = \mathbb{C}[x_0x_2,x_1]$. If we consider the Veronese subring $(R(X)^G)^{(2)} = \mathbb{C}[x_0x_2,x_1^2]$, we see again that $X \not / G \cong \mathbb{CP}^1$. In fact, the description of $R(X)^G = \mathbb{C}[x_0x_2,x_1]$ gives us that $X \not / G$ can be thought of a weighted projective space $\mathbb{P}(1,2)$, but in dimension 1, they are all isomorphic to \mathbb{CP}^1 . For subtleties related to weighted projective spaces see [Dol82, Section 1.5].

Two extremal examples:

Example 3. If G acts trivially, then $X \parallel G \cong X$, but if G is positive dimensional, then X^s is empty.

Example 4. Consider the action of \mathbb{C}^* on \mathbb{CP}^2 given by the homomorphism

$$t \mapsto \begin{pmatrix} t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t \end{pmatrix}$$
(8)

Then every point is unstable, so $N = \mathbb{CP}^2$, and $X /\!\!/ G = \emptyset$. These examples also show that the datum of the group homomorphism $G \to \operatorname{GL}^{n+1}$ can really affect the resulting quotient.

References

- [Dol82] Igor Dolgachev. Weighted projective varieties. In Group actions and vector fields (Vancouver, B.C., 1981), volume 956 of Lecture Notes in Math., pages 34–71. Springer, Berlin, 1982.
- [Hos15] Victoria Hoskins. Moduli problems and geometric invariant theory. Available at https://userpage. fu-berlin. de/hoskins/M15_Lecture_notes.pdf, 2015.
- [Tho23] Alexander Thomas. A gentle introduction to the non-abelian hodge correspondence. Available at https: //arxiv.org/abs/2208.05940, 2023.