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The notes of this talk are based on [Hos15, Sections 5.1, 5.2, 6.1]. In this talk, we begin with the theory of
projective GIT quotients in the case where G acts linear on a projective variety:

Setting:

• G will be a reductive affine algebraic group.

• G → GLn+1 is a fixed group homomorphism, so G acts linearly on CPn.

• X ⊂ CPn is a closed G-subvariety.

Under these circumstance we say that G acts linearly on X ⊂ CPn. Note: we really think of X as a subvariety of
a given CPn, so the embedding is part of the data.

Let us denote by S the ring C[x0, . . . , xn]. We have seen that X is determined by

I(X) = ⟨{ f ∈ S homogeneous | f(p) = 0 ∀p ∈ X }⟩ (1)

We have that R(X) := S/I(X) is a graded C-algebra. In fact ProjR(X) ∼= X. For simplicity, we will assume as in
the discussion session that X is irreducible, so R(X) is integral. Furthermore SpecR(X) ∼= X̃ ⊂ Cn+1 is the affine
cone of X. If π : Cn+1 \ {0} → CPn is the projection map, then X̃ = π−1(X) ∪ {0}.

Now G ⟳ R(X) =
⊕

r≥0 R(X)r preserves the grading. From this we obtain R(X)G =
⊕

r≥0 R(X)Gr as a graded

subalgebra of R(X) with grading (R(X)G)r = (R(X)r)
G. By Nagata’s theorem, R(X)G is finitely generated. So

the inclusion R(X)G ↪→ R(X) gives a rational morphism:

ProjR(X) 99K ProjR(X)G (2)

We describe the indeterminacy locus and the domain of definition of this morphism by the following definitions
related to R(X)G+ =

⊕
r>0 R(X)Gr :

Definition 1. • A point x ∈ X is called unstable if f(x) = 0 for all f ∈ R(X)G+ homogeneous. The set of all
unstable points is called null cone N. (More accurately, π−1(N) ∪ {0} the (affine) null cone, and N is the
projective variety associated to it).

• A point x ∈ X is called semistable if f(x) ̸= 0 for some f ∈ R(X)G+ homogeneous. The set of all semistable
points is called Xss.

Then Xss is the domain of definition of (2), the map Xss → X //G := ProjR(X)G is called the projective GIT
quotient of the linear action of G on X.

Theorem 2. If G is reductive affine algebraic group acting linearly on X ⊂ CPn, then ϕ : X → X // G is a good
quotient of the G-action on Xss, moreover X // G is a projective variety.

Recall [Hos15, Definition 3.27] that a morphism between varieties ϕ : X → Y is a good quotient of a G-action if:

a) ϕ is G-invariant

b) ϕ is surjective.

c) If U ⊂ Y is an open subset, the morphism OY (U) → OX(ϕ−1(U)) is an isomorphism onto the G-invariant
functions OX(ϕ−1(U))G.

d) If W ⊂ X is a G-invariant closed subset of X, its image ϕ(W ) is closed in Y.

1



Type {Type } Algebraic Definition Geometric Criterion

unstable N ∀f ∈ R(X)G+, f(x) = 0 0 ∈ G · x̃

semistable Xss ∃f ∈ R(X)G+, f(x) ̸= 0 0 ̸∈ G · x̃

polystable Xps G · x ⊂ Xss relatively closed G · x̃ closed (?)

stable Xs G · x ⊂ Xss relatively closed and dimGx = 0 G · x̃ closed and dimGx̃ = 0

Table 1: Different types of points x for a linear action G ⟳ X and their characterization on a lift x̃ in the affine
cone X̃

e) If W1 and W2 are disjoint G-invariant closed subsets, then ϕ(W1) and ϕ(W2) are disjoint.

f) ϕ is affine (preimages of every affine open is affine)

Proof of theorem 2. Let us denote Y = X //G = ProjR(X)G. Since Y is the Proj of a finitely generated (integral)
graded C-algebra, it is a projective variety. For f ∈ R(X)G+ homogeneous, the sets Yf = { y ∈ Y | f(y) ̸= 0 } form
an basis for the Zariski topology on Y . Now ϕ−1(Yf ) = Xf = {x ∈ X | f(x) ̸= 0 } and we have

O(Yf ) = (R(X)G)(f) ∼= (R(x)(f))
G ∼= O(Xf )

G (3)

so ϕf : Xf → Yf
∼= SpecO(Xf )

G is an affine GIT quotient, hence good. By covering Y with the affine opens Yf ,
we see that ϕ is a gluing of good quotients, so it is also good (see [Hos15, Remark 3.34]).

In particular, we have have for x1, x2 ∈ Xss that

G · x1 ∩G · x2 ∩Xss ̸= ∅ ⇔ ϕ(x1) = ϕ(x2) (4)

The existence of non-closed orbits in Xss prevent Xss → X //G from being a geometric quotient. In order to obtain
a geometric quotient we introduce the following set:

Definition 3. A point x ∈ X is stable if we have the following:

• x is semistable

• G · x is closed in Xss

• Gx is zero dimensional.

The set of stable points is denoted by Xs.

Note that this is not the definition given in [Hos15], but the equivalent description as [Hos15, Lemma 5.9]. With
this we have the following:

Lemma 4. Xs and Xss are open subsets of X.

Theorem 5 ([Hos15, Theorem 5.6]). There is an open subvariety Y s ⊂ Y = X // G such that ϕ−1(Y s) = Xs and
the GIT quotient restrict to a geometric quotient ϕ : Xs → Y s.

Definition 6. A point x ∈ X is polystable if it is semistable and G ·X ⊂ Xss is relatively closed.

Lemma 7. If x ∈ X is semistable, then G · x contains a unique polystable orbit.

We can give the following topological criterion for stability:

Lemma 8. Let x ∈ X, let x̃ ∈ X̃ a lift of x (i.e. π(x̃) = x). We have the following:

a) x is semistable if and only if 0 ̸∈ G · x̃

b) x is stable if and only if Gx̃ is zero dimensional and G · x̃ is closed in x̃.

We organize this information in table 1 (adapted from [Tho23, Proposition 6.5]).
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Example 1. Consider the action of C∗ on CP2 given by the homomorphism

t 7→


t 0 0

0 t 0

0 0 t−1

 (5)

Using the geometric criterion we see that N = { z = 0 } ∪ { [0 : 0 : 1] }, and Xs = Xss = CP2 \N . In this example,
every semistable point is in fact stable. If we denote the homogeneous coordinate ring of X = CP2 by C[x0, . . . , x2],
then R(X)G = C[x0x2, x1x2], X // G = ProjR(X)G ∼= CP1, with quotient map

[x0 : x1 : x2] 7→ [x0x2 : x1x2] (6)

Example 2. Consider the action of C∗ on CP2 given by the homomorphism

t 7→


t 0 0

0 1 0

0 0 t−1

 (7)

Using the geometric criterion we see that N = { [1 : 0 : 0] ∪ [0 : 0 : 1] }, and that [0 : 1 : 0] is polystable but not
stable. We have that [0 : 1 : 0] is the unique polystable point in the orbit closures of { z = 0 } and {x = 0 }. So
Xs = CP2 \ ({ z = 0 } ∪ {x = 0 }), Xps = Xs ∪ [0 : 1 : 0]. In particular, we have Xs ⊊ Xps ⊊ Xss ⊊ X. We
have R(X)G = C[x0x2, x1]. If we consider the Veronese subring (R(X)G)(2) = C[x0x2, x

2
1], we see again that

X // G ∼= CP1. In fact, the description of R(X)G = C[x0x2, x1] gives us that X // G can be thought of a weighted
projective space P(1, 2), but in dimension 1, they are all isomorphic to CP1. For subtleties related to weighted
projective spaces see [Dol82, Section 1.5].

Two extremal examples:

Example 3. If G acts trivially, then X // G ∼= X, but if G is positive dimensional, then Xs is empty.

Example 4. Consider the action of C∗ on CP2 given by the homomorphism

t 7→


t 0 0

0 t 0

0 0 t

 (8)

Then every point is unstable, so N = CP2, and X // G = ∅. These examples also show that the datum of the group
homomorphism G → GLn+1 can really affect the resulting quotient.

References

[Dol82] Igor Dolgachev. Weighted projective varieties. In Group actions and vector fields (Vancouver, B.C., 1981),
volume 956 of Lecture Notes in Math., pages 34–71. Springer, Berlin, 1982.

[Hos15] Victoria Hoskins. Moduli problems and geometric invariant theory. Available at https: // userpage.

fu-berlin. de/ hoskins/ M15_ Lecture_ notes. pdf , 2015.

[Tho23] Alexander Thomas. A gentle introduction to the non-abelian hodge correspondence. Available at https:
// arxiv. org/ abs/ 2208. 05940 , 2023.

3

https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf
https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf
https://arxiv.org/abs/2208.05940
https://arxiv.org/abs/2208.05940

