
HILBERT–MUMFORD CRITERION

MAXIMILIAN WIESMANN

Abstract. In this talk we introduce the Hilbert–Mumford criterion, a numerical criterion simpli-
fying checking for (semi-)stability. The main reference is [2, §6].

Setup. Throughout this talk X ⊆ Pn denotes a projective variety, equipped with a G-linear
action, where G is a reductive group. Recall that this means that G acts on Pn via a group
homomorphism G → GLn+1 and X is a closed G-subvariety of Pn.

Definition 1. A 1-parameter subgroup λ of G is a nontrivial group homomorphism λ : C∗ → G.

For a point x ∈ X we then define λx : C∗ → X by λx(t) := λ(t).x. As the torus includes in
C∗ ↪→ P1, we can define the limits

lim
t→0

λx(t) and lim
t→∞

λx(t) = lim
t→0

λ−1
x (t).

These are well-defined by compactness of P1 (or, as the algebraic geometer likes to put it, by the
valuative criterion for properness).

Let X̃ ⊆ An+1 be the affine cone over X and let x̃ ∈ X̃ \ {0} be a lift of x. As above, we may

define λx̃ : C∗ → X̃, λx̃(t) := λ(t).x̃; however, the limits might not exist.

Fact 2 ([2, Prop. 3.12]). The action of λ(C∗) on An+1 is diagonalisable, i.e. there exists a basis
(e0, e1, . . . , en) of Cn+1 and integers r0, r1, . . . , rn ∈ Z such that

∀t ∈ C∗ : λei(t) = triei.

Let us write x̃ =
∑n

i=0 xiei; then λx̃(t) =
∑n

i=0 t
rixiei.

Definition 3. The Hilbert–Mumford weight of x at λ is

µ(x, λ) := −min{ri : xi ̸= 0}.

Note that this definition does not depend on the choice of the lift x̃. We collect some important
properties below.

Proposition 4.

(1) µ(x, λ) is the unique integer µ ∈ Z such that limt→0 t
µλx(t) exists and is non-zero

(2) for all n ∈ N, µ(x, λn) = nµ(x, λ)
(3) for all g ∈ G, µ(g.x, gλg−1) = µ(x, λ)
(4) µ(x, λ) = µ(y, λ) where y = limt→0 λx(t).

Proof. We have limt→0 t
µ(x,λ)λx(t) = limt→0 t

µ(x,λ)
∑n

i=0 t
rixiei =

∑
j : rj=−µ(x,λ) xjej which shows

part (1). The other properties are immediate consequences of (1). □

As a consequence, we obtain the following.

Proposition 5.

(1) µ(x, λ) < 0 if and only if limt→0 λx̃(t) = 0
(2) µ(x, λ) = 0 if and only if limt→0 λx̃(t) exists and is nonzero
(3) µ(x, λ) > 0 if and only if limt→0 λx̃(t) does not exist.
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type geometric Hilbert–Mumford

unstable 0 ∈ G.x̃ ∃ 1-ps λ : µ(x, λ) < 0

semistable 0 /∈ G.x̃ ∀ 1-ps λ : µ(x, λ) ≥ 0

stable G.x̃ = G.x̃ & dimGx̃ = 0 ∀ 1-ps λ : µ(x, λ) > 0

Table 1. Criteria for stability

Theorem 6 (Hilbert–Mumford Criterion).

(1) x ∈ Xss if and only if µ(x, λ) ≥ 0 for all 1-parameter subgroups λ of G
(2) x ∈ Xs if and only if µ(x, λ) > 0 for all 1-parameter subgroups λ of G.

Proof. We will show the “only if” direction; the other direction is more involved. The interested
reader is referred to [2] or [3, §7] for a proof in the case G = GLn+1.

Let x be semistable. We have seen in the previos talk that this is equivalent to 0 /∈ G.x̃ (see
Table 1). The limit of any 1-parameter subgroup (if it exists) will be contained in the orbit closure
of x. By Proposition 5, this implies µ(x, λ) ≥ 0.

Now let x be stable. This is equivalent to the G-orbit being closed, G.x̃ = G.x̃, and the sta-
biliser Gx̃ being finite. Let λ be a 1-parameter subgroup of G and assume per contradiction that
limt→0 λx̃(t) exists; let y denote this limit. As G.x̃ = G.x̃, y is contained in the orbit G.x̃. Then
also y must have finite stabiliser. However, λ(t) stabilises y for any t ∈ C∗:

λ(t).y = λ(t) lim
s→0

λ(s).x̃ = lim
s→0

λ(st).x̃ = y.

Hence, Gx̃ is at least 1-dimensional, a contradiction. Therefore, the limit limt→0 λx̃(t) does not
exist which is, by Proposition 5, equivalent to µ(x, λ) > 0. □

The following statement is equivalent to the Hilbert–Mumford Criterion and is called “Funda-
mental Theorem of GIT”.

Theorem 7. Let G be a reductive group acting on An+1. If x ∈ An+1 is a closed point and y ∈ G.x,
then there exists a 1-parameter subgroup λ of G such that limt→0 λx(t) = y.

Let us now take a look at two examples.

Example 8. (1) Let X = P2 and let G = C∗ act on X via

t 7→


t 0 0

0 t 0

0 0 t−1

 .

All 1-parameter subgroups of G are of the form t 7→ tm for m ∈ Z. By the second property
in Proposition 4, it is enough to check (semi-)stability only for λ(t) = t and λ−1(t) = t−1.
Let x = [x0 : x1 : x2] and choose x̃ = (x0, x1, x2) as a lift.

Then limt→0 λx̃λ(t) = limt→0(tx0, tx1, t
−1x2) exists if and only if x2 = 0. If x2 = 0 then

µ(x, λ) = −1, otherwise µ(x, λ) = 1.
Similarly, limt→0 λ

−1
x̃ (t) = limt→0(t

−1x0, t
−1x1, tx2) exists if and only if x = [0 : 0 : 1]; in

this case, µ(x, λ−1) = −1, otherwise µ(x, λ−1) = 1.
Hence we see Xss = Xs = P2 \ ({x2 = 0} ∪ {[0 : 0 : 1]}).
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(2) Let G = SL2 act on P1. Every 1-parameter subgroup of SL2 is conjugate to

λr : t 7→

tr 0

0 t−r


for r ∈ N. By properties (2) and (3) of Proposition 4, it is therefore enough to check
semistability for λ := λ1.

The action on P1 extends to an action on P(Sym(2, d)) ∼= Pd, the space of binary d-forms
as follows: let f(x, y) = a0x

d + a1x
d−1y + · · ·+ ady

d ∈ P(Sym(2, d)); then

λ(t).f(x, y) = a0t
dxd + a1t

d−1xd−1y + · · ·+ adt
−dyd.

Claim 9. A binary form of degree d is semistable if and only if all roots have multiplicity
at most d/2. It is stable if and only if all roots multiplicity less than d/2.

Proof. Assume that, possibly after a coordinate change, f has root [0 : 1] with multiplicity
m > d/2. Therefore, we can write f(x, y) =

∑
i≤d−m aix

d−iyi, and

lim
t→0

λ(t).f(x, y) = lim
t→0

∑
i≥m

ait
d−2ixd−iyi.

Since m > d/2, all exponents of t appearing in the sum above are positive and the limit
is zero, hence µ(f, λ) < 0 and f is unstable. On the other hand, if m < d/2, some of the
exponents of t are negative and the limit does not exist, and for m = d/2 the limit will be

ad/2x
d/2yd/2. Note that in particular for odd d, the semistable and stable locus agree. □

Finally, let us mention the Kempf–Ness Theorem which relates the GIT quotient with symplectic
reduction. See [1] for more details.

Theorem 10 (Kempf–Ness). Let X ⊆ Pn be a smooth complex variety, let G be a complex reductive
group acting linearly on X, and let K ⊂ G be a maximal compact subgroup of G. Then there is a
homeomorphism

X �GIT G ∼= X �symp K = µ−1(0)/K,

where µ is the moment map associated to the action of K. In this case, Xps = G.µ−1(0).
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