The Moduli problem

Leonie Kayser

March 4, 2024

A naive moduli problem (over \mathbb{C}) is just a collection of "interesting" objects from algebraic geometry \mathcal{A} together with an equivalence relation \sim on this collection. We would like to have an algebraic variety whose points parameterize the equivalence classes of \mathcal{A}/\sim in such a way that nicely varying families of objects correspond to paths in this variety. We first make this precise.

1 Moduli problems

Definition 1. An *(extended) moduli problem* is a collection $\mathcal{A}(S)$ equipped with an equivalence relation \sim_S for every variety S, together with pullback map $f^* \colon \mathcal{A}(T) \to \mathcal{A}(S)$ for all morphisms $f \colon S \to T$. The pullback maps must obey the following:

- $(\mathrm{id}_S)^* = \mathrm{id}_{\mathcal{A}(S)}$ for all S, so $\mathrm{id}_S^*(F) = F$ for $F \in \mathcal{A}(S)$;
- if $E \sim_T F$ in $\mathcal{A}(T)$ and $f: S \to T$, then $f^*E \sim_S f^*F$;
- if $E \in \mathcal{A}(T)$ and $R \xrightarrow{f} S \xrightarrow{g} T$, then $(g \circ f)^* E \sim_R g^* f^* E$ (often one even has equality);
- if $* = \operatorname{Spec} \mathbb{C}$ is a point, then $(\mathcal{A}(*), \sim_*)$ is the naive moduli problem we care about.

The moduli functor associated to a moduli problem is the contravariant functor

 $\mathcal{M}\colon \mathbf{Var}_{\mathbb{C}}\to \mathbf{Set}, \qquad S\mapsto \mathcal{A}(S)/{\sim_S}.$

Example 2. The following are moduli problems, \sim_S being equality if not specified. What are the naive moduli problems?

- 1. For $n \in \mathbb{N}_0$ the constant functor $[n](S) \coloneqq \{1, 2, \dots, n\}$.
- 2. For a fixed variety M the functor of points $h_X(S) := \operatorname{Mor}_{\mathbb{C}}(S, M)$. Note that $h_M(*) = M$, hence the name.
- 3. The functor of global functions $\mathbb{G}_{a}(S) \coloneqq \mathcal{O}_{S}(S)$, or the functor of invertible functions $\mathbb{G}_{m}(S) \coloneqq \mathcal{O}_{S}(S)^{\times}$.
- 4. For $0 \le k \le n$ we have the *Grassmannian functor*

 $\mathcal{G}r_{k,n}(S) \coloneqq \{ q \colon S \times \mathbb{C}^n \twoheadrightarrow \mathcal{E} \mid \mathcal{E} \text{ is a quotient vector bundle of rank } n-k \}$

where \sim_S is isomorphism of vector bundles $f: \mathcal{E} \xrightarrow{\sim} \mathcal{E}'$ with $f \circ q = q'$.

5. For a fixed projective variety $X \in \operatorname{Var}_{\mathbb{C}}$ the Hilbert functor

 $\mathcal{H}ilb_X(S) = \{ Z \subseteq X \times S \mid Z \text{ a closed subscheme flat over } S \}$

with equality (or, pedantically, isomorphism as closed embeddings $Z \hookrightarrow X \times S$). Here "flat" informally means that the fibers of $Z \to S$ vary nicely.

6. The Moduli functor of smooth curves of genus g is

$$\mathcal{M}_g(S) = \left\{ \pi \colon X \to S \mid \begin{array}{c} \pi \text{ is a smooth morphism and for } s \in S \text{ the fiber} \\ \pi^{-1}(s) \text{ is a conn. smooth proj. curve of genus } g. \end{array} \right.$$

The equivalence relation is as isomorphism of varieties over S. We could also drop g and consider all relative smooth projective curves at once.

7. As a variant of the previous, we have the moduli functor of marked smooth curves

$$\mathcal{M}_{g,n}(S) = \{ (\pi, p_1, \dots, p_n) \mid \pi \text{ as before and } p_1, \dots, p_n \text{ are disjoint sections of } \pi \}$$

8. Let π be a finitely presented group and G an algebraic reductive group.

$$\Re(\pi, G)(S) = \{?\}$$

2 Coarse and fine moduli spaces

To define the notion of a moduli space, we need to recall the definition of a natural transformation. Let $\mathcal{F}, \mathcal{G} \colon \mathbf{Var}_{\mathbb{C}} \to \mathbf{Set}$ be contravariant functors. A natural transformation $\eta \colon \mathcal{F} \Rightarrow \mathcal{G}$ is a collection of maps $\eta_X \colon \mathcal{F}(X) \to \mathcal{G}(X)$ such that for all $f \colon X \to Y$ one has

$$\eta_X \circ \mathcal{F}(f) = \mathcal{G}(f) \circ \eta_Y \qquad \in \operatorname{Mor}_{\operatorname{Set}}(\mathcal{F}(Y), \mathcal{G}(X)).$$

A natural isomorphism is a natural transformation which has an inverse, equivalently all η_X are isomorphisms (here in **Set**: bijective).

Lemma 3 (Yoneda). The functors of points provide a fully faithful embedding

$$h_{(-)}: \operatorname{Var}_{\mathbb{C}} \hookrightarrow \operatorname{Fun}(\operatorname{Var}_{\mathbb{C}}^{\operatorname{opp}}, \operatorname{Set}), \qquad M \mapsto h_M$$

This means that $h_{(-)}$ is a covariant injective functor from $\operatorname{Var}_{\mathbb{C}}$ to presheaves such that $h: \operatorname{Mor}_{\mathbb{C}}(X,Y) \to \operatorname{Nat}(h_X,h_Y)$ is a bijection. Even more is true:

For any contravariant functor $\mathcal{F} \colon \mathbf{Var}^{\mathrm{opp}}_{\mathbb{C}} \to \mathbf{Set}$ one has

$$\operatorname{Nat}(h_M, \mathcal{F}) \leftrightarrow \mathcal{F}(M)$$
$$\eta \mapsto \eta_M(\operatorname{id}_M)$$
$$\eta(x) \leftrightarrow x, \qquad \eta(x)_X \colon \operatorname{Mor}(X, M) \ni f \mapsto \mathcal{F}(f)(x) \in \mathcal{F}(X)$$

Definition 4. Let \mathcal{M} be a moduli functor associated to a moduli problem, M a variety and $\eta: \mathcal{M} \Rightarrow h_M$ a natural transformation.

- 1. (M, η) is a fine moduli space for \mathcal{M} if η is a natural isomorphism.
- 2. (M, η) is a coarse moduli space if $\eta_{\text{Spec }\mathbb{C}} \colon \mathcal{M}(\text{Spec }\mathbb{C}) \to M$ is bijective and (M, η) is initial among pairs (N, ε) of varieties with natural transformations from \mathcal{M} to their functor of points.

Initial means here: For any variety N and any transformation $\varepsilon \colon \mathcal{M} \Rightarrow h_N$ there exists a *unique* morphism $f \colon \mathcal{M} \to N$, equivalently by Yoneda, a unique transformation $h_f \colon h_M \Rightarrow h_N$, such that $\varepsilon = h_f \circ \eta$.

Lemma 5. 1. Coarse moduli spaces are uniquely unique: If (M', η') is another coarse moduli space, then there is a unique isomorphism of varieties $f: M \xrightarrow{\sim} M'$ such that $\eta' = h_f \circ \eta$.

2. Fine moduli spaces are coarse moduli spaces (and hence also uniquely unique).

Proof. The first part follows from the universal property of coarse moduli spaces. For the second part: A natural isomorphism $\mathcal{M} \leftrightarrow h_M$ induces a bijection $\mathcal{M}(\operatorname{Spec} \mathbb{C}) \leftrightarrow M$. Furthermore, if (N, ε) is another tuple, then choose $h_f \coloneqq \varepsilon \circ \eta^{-1} \colon h_M \Rightarrow h_N$; this choice is forced upon us by the equation $\varepsilon = h_f \circ \eta$.

The set $h_M(M)$ has the distinguished element id_M . If (M, η) is a fine moduli space, then this determines a distinguished element in $\mathcal{M}(M)$.

Definition 6. For a fine moduli problem (M, η) the element $\mathcal{U} \coloneqq \eta_M^{-1}(\mathrm{id}_M) \in \mathcal{M}(M)$ is called the *universal family*.

The following lemma justifies the name by showing that *every* family (!) is a pullback of the universal family.

Lemma 7. Let $F \in \mathcal{A}(S)$ be a family over S, then $f \coloneqq \eta_S([F]_{\sim S})$ satisfies $f^*\mathcal{U} \sim_S F$. In other words: If $F \in \mathcal{M}(S)$, then $\mathcal{M}(\eta_S(F))(\mathcal{U}) = F$.

Proof. The second claim is equivalent to the first by the construction of \mathcal{M} from \mathcal{A} and \sim . The second claim follows from the definition of a natural transformation: For $f: S \to M$ we have $\eta_S \circ \mathcal{M}(f) = h_M(f) \circ \eta_M$, plugging in \mathcal{U} yields

$$\mathcal{M}(f)(\mathcal{U}) = \eta_S^{-1} \circ \eta_S \circ \mathcal{M}(f)(\mathcal{U}) = \eta_S^{-1} \circ h_M(f) \circ \eta_M(\mathcal{U})$$
$$\stackrel{\text{def }\mathcal{U}}{=} \eta_S^{-1} \circ h_M(f) \circ \eta_M \circ \eta_M^{-1}(\text{id}_M) = \eta_S^{-1}(f) \eqqcolon F.$$

In fact, for a pair (M, η) we define a universal family \mathcal{U} to be an element $\in \mathcal{M}(M)$ such that for every $F \in \mathcal{M}(S)$ one has $F = \mathcal{M}(\eta_S(F))(\mathcal{U})$. The existence of a universal family somewhat characterizes fine moduli spaces, as the following lemma shows.

Lemma 8. For a coarse moduli space (M, η) the following are equivalent:

- 1. (M, η) is a fine moduli space;
- 2. There is a $\mathcal{U} \in \mathcal{M}(M)$ with $\eta(\mathcal{U}) = \mathrm{id}_M$ and all η_S are injective.

Example 9. The Grassmannian functors are representable by our beloved $\operatorname{Gr}(k, n) = \operatorname{Mat}(k \times n, \mathbb{C}) / \operatorname{GL}(k, \mathbb{C})$. The universal family is the quotient of the trivial bundle

$$0 \to \{ (q, v) \in \mathcal{G}r_{k, n}(\mathbb{C}) \times \mathbb{C}^n \mid v \in \ker(q) \} \to \operatorname{Gr}(k, n) \times \mathbb{C}^n \to \mathcal{U} \to 0.$$

The left subbundle \mathcal{T} is the *tautological bundle*; identifying $q \colon \mathbb{C}^n \to \mathbb{C}^{n-k}$, with its kernel, we have

 $\mathcal{T} \cong \{ ([W], v) \mid W \subseteq \mathbb{C}^n \text{ of dim. } \mathbf{k}, v \in W \}.$

The Grassmannian is a fine moduli space, it is a smooth projective variety.

3 How to make a moduli space?

Often, moduli problems don't admit a fine moduli space, due to automorphisms. There are at least three options here:

• Weaken the notion of moduli space: Look for a coarse moduli space instead. For example, the functor $S \mapsto \operatorname{Pic}(S) = \{ \text{ line bundles on } S \} / \cong \text{ does not admit a fine moduli space, but } \{*\} \text{ is a coarse moduli space (why?).}$

- Weaken the type of space: The Hilbert functor is not representable as a fine moduli space in varieties. It is however representable in the category of projective schemes (after fixing the Hilbert polynomial). Similarly, the moduli space of curves is only a coarse moduli space (and only for 2g 2 + n > 0), for example $M_{1,1}$, the space of (marked) elliptic curves, is \mathbb{A}^1 , parametrized by the *j*-invariant. But it is always represented as a fine moduli space by a *Deligne-Mumford stack*, a category vastly extending the category of varieties.
- Add data to the moduli problem: The coarse moduli space of curves $M_{g,n}$ is actually a fine moduli space on the set of marked smooth curves with trivial automorphism group (these are dense if 2g - 2 + n > 0). Increasing n one can make all smooth curves automorphism-free, hence turn $M_{g,n}$ into a fine moduli space.

We now sketch how GIT enters the picture.

- Hilbert scheme can be constructed using Gotzmann number as a closed subscheme of $\operatorname{Gr}(k, I_G)$
- Every curve X of genus $g \geq 2$ has the property that $\Omega_{X,\mathbb{C}}^{\otimes 3}$ is a very ample line bundle $(\omega_{X,\mathbb{C}} \text{ is already ample for non-hyperelliptic curves}).$
- This gives closed embeddings $X \hookrightarrow \mathbb{P}(\Gamma(\Omega_{X,\mathbb{C}}^{\otimes 3})^*) = \mathbb{P}^{5g-6}$ of degree 6g 6.
- The subvarieties of \mathbb{P}^{5g-6} which are smooth connected curves of genus g and degree 6g-6 form a locally closed subscheme K_g of the Hilbert scheme
- Two curves are isomorphic if and only if they are the same up to the action of G = SL(5g 7); this action induces an action on the Hilbert scheme.
- Take the GIT quotient (projective GIT in the stable curve case) $M_g = K_g / / G$