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A naive moduli problem (over C) is just a collection of “interesting” objects from algebraic
geometry A together with an equivalence relation ∼ on this collection. We would like to have
an algebraic variety whose points parameterize the equivalence classes of A/∼ in such a way
that nicely varying families of objects correspond to paths in this variety. We first make this
precise.

1 Moduli problems

Definition 1. An (extended) moduli problem is a collection A(S) equipped with an equiva-
lence relation ∼S for every variety S, together with pullback map f∗ : A(T ) → A(S) for all
morphisms f : S → T . The pullback maps must obey the following:

• (idS)
∗ = idA(S) for all S, so id∗S(F ) = F for F ∈ A(S);

• if E ∼T F in A(T ) and f : S → T , then f∗E ∼S f∗F ;

• if E ∈ A(T ) and R
f→ S

g→ T , then (g ◦ f)∗E ∼R g∗f∗E (often one even has equality);

• if ∗ = SpecC is a point, then (A(∗),∼∗) is the naive moduli problem we care about.

The moduli functor associated to a moduli problem is the contravariant functor

M : VarC → Set, S 7→ A(S)/∼S .

Example 2. The following are moduli problems, ∼S being equality if not specified. What
are the naive moduli problems?

1. For n ∈ N0 the constant functor [n](S) := {1, 2, . . . , n}.

2. For a fixed variety M the functor of points hX(S) := MorC(S,M). Note that hM (∗) =
M , hence the name.

3. The functor of global functions Ga(S) := OS(S), or the functor of invertible functions
Gm(S) := OS(S)

×.

4. For 0 ≤ k ≤ n we have the Grassmannian functor

Grk,n(S) := { q : S × Cn ↠ E | E is a quotient vector bundle of rank n− k }

where ∼S is isomorphism of vector bundles f : E ∼→ E ′ with f ◦ q = q′.

5. For a fixed projective variety X ∈ VarC the Hilbert functor

HilbX(S) = { Z ⊆ X × S | Z a closed subscheme flat over S }

with equality (or, pedantically, isomorphism as closed embeddings Z ↪→ X × S). Here
“flat” informally means that the fibers of Z → S vary nicely.
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6. The Moduli functor of smooth curves of genus g is

Mg(S) =

{
π : X → S

∣∣∣∣ π is a smooth morphism and for s ∈ S the fiber
π−1(s) is a conn. smooth proj. curve of genus g.

}
The equivalence relation is as isomorphism of varieties over S. We could also drop g
and consider all relative smooth projective curves at once.

7. As a variant of the previous, we have the moduli functor of marked smooth curves

Mg,n(S) = { (π, p1, . . . , pn) | π as before and p1, . . . , pn are disjoint sections of π }

8. Let π be a finitely presented group and G an algebraic reductive group.

R(π,G)(S) = { ? }

2 Coarse and fine moduli spaces

To define the notion of a moduli space, we need to recall the definition of a natural transforma-
tion. Let F ,G : VarC → Set be contravariant functors. A natural transformation η : F ⇒ G
is a collection of maps ηX : F(X) → G(X) such that for all f : X → Y one has

ηX ◦ F(f) = G(f) ◦ ηY ∈ MorSet(F(Y ),G(X)).

A natural isomorphism is a natural transformation which has an inverse, equivalently all ηX
are isomorphisms (here in Set: bijective).

Lemma 3 (Yoneda). The functors of points provide a fully faithful embedding

h(−) : VarC ↪→ Fun(VaroppC ,Set), M 7→ hM .

This means that h(−) is a covariant injective functor from VarC to presheaves such that
h : MorC(X,Y ) → Nat(hX , hY ) is a bijection. Even more is true:

For any contravariant functor F : VaroppC → Set one has

Nat(hM ,F) ↔ F(M)

η 7→ ηM (idM )

η(x) 7→x, η(x)X : Mor(X,M) ∋ f 7→ F(f)(x) ∈ F(X).

Definition 4. Let M be a moduli functor associated to a moduli problem, M a variety and
η : M ⇒ hM a natural transformation.

1. (M,η) is a fine moduli space for M if η is a natural isomorphism.

2. (M,η) is a coarse moduli space if ηSpecC : M(SpecC) → M is bijective and (M,η) is
initial among pairs (N, ε) of varieties with natural transformations from M to their
functor of points.

Initial means here: For any variety N and any transformation ε : M ⇒ hN there exists
a unique morphism f : M → N , equivalently by Yoneda, a unique transformation hf : hM ⇒
hN , such that ε = hf ◦ η.

Lemma 5. 1. Coarse moduli spaces are uniquely unique: If (M ′, η′) is another coarse
moduli space, then there is a unique isomorphism of varieties f : M

∼→ M ′ such that
η′ = hf ◦ η.
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2. Fine moduli spaces are coarse moduli spaces (and hence also uniquely unique).

Proof. The first part follows from the universal property of coarse moduli spaces. For the
second part: A natural isomorphism M ↔ hM induces a bijection M(SpecC) ↔ M . Fur-
thermore, if (N, ε) is another tuple, then choose hf := ε◦η−1 : hM ⇒ hN ; this choice is forced
upon us by the equation ε = hf ◦ η.

The set hM (M) has the distinguished element idM . If (M,η) is a fine moduli space, then
this determines a distinguished element in M(M).

Definition 6. For a fine moduli problem (M,η) the element U := η−1
M (idM ) ∈ M(M) is

called the universal family.

The following lemma justifies the name by showing that every family (!) is a pullback of
the universal family.

Lemma 7. Let F ∈ A(S) be a family over S, then f := ηS([F ]∼S ) satisfies f∗U ∼S F . In
other words: If F ∈ M(S), then M(ηS(F ))(U) = F .

Proof. The second claim is equivalent to the first by the construction of M from A and ∼.
The second claim follows from the definition of a natural transformation: For f : S → M we
have ηS ◦M(f) = hM (f) ◦ ηM , plugging in U yields

M(f)(U) = η−1
S ◦ ηS ◦M(f)(U) = η−1

S ◦ hM (f) ◦ ηM (U)
def U
= η−1

S ◦ hM (f) ◦ ηM ◦ η−1
M (idM ) = η−1

S (f) =: F.

In fact, for a pair (M,η) we define a universal family U to be an element ∈ M(M) such
that for every F ∈ M(S) one has F = M(ηS(F ))(U). The existence of a universal family
somewhat characterizes fine moduli spaces, as the following lemma shows.

Lemma 8. For a coarse moduli space (M,η) the following are equivalent:

1. (M,η) is a fine moduli space;

2. There is a U ∈ M(M) with η(U) = idM and all ηS are injective.

Example 9. The Grassmannian functors are representable by our beloved Gr(k, n) = Mat(k×
n,C)/GL(k,C). The universal family is the quotient of the trivial bundle

0 → { (q, v) ∈ Grk,n(C)× Cn | v ∈ ker(q) } → Gr(k, n)× Cn → U → 0.

The left subbundle T is the tautological bundle; identifying q : Cn → Cn−k, with its kernel,
we have

T ∼= { ([W ], v) | W ⊆ Cn of dim. k, v ∈ W } .

The Grassmannian is a fine moduli space, it is a smooth projective variety.

3 How to make a moduli space?

Often, moduli problems don’t admit a fine moduli space, due to automorphisms. There are
at least three options here:

• Weaken the notion of moduli space: Look for a coarse moduli space instead. For
example, the functor S 7→ Pic(S) = { line bundles on S } / ∼= does not admit a fine
moduli space, but {∗} is a coarse moduli space (why?).
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• Weaken the type of space: The Hilbert functor is not representable as a fine moduli
space in varieties. It is however representable in the category of projective schemes (after
fixing the Hilbert polynomial). Similarly, the moduli space of curves is only a coarse
moduli space (and only for 2g − 2 + n > 0), for example M1,1, the space of (marked)
elliptic curves, is A1, parametrized by the j-invariant. But it is always represented as a
fine moduli space by a Deligne-Mumford stack, a category vastly extending the category
of varieties.

• Add data to the moduli problem: The coarse moduli space of curvesMg,n is actually
a fine moduli space on the set of marked smooth curves with trivial automorphism
group (these are dense if 2g − 2 + n > 0). Increasing n one can make all smooth curves
automorphism-free, hence turn Mg,n into a fine moduli space.

We now sketch how GIT enters the picture.

• Hilbert scheme can be constructed using Gotzmann number as a closed subscheme of
Gr(k, IG)

• Every curve X of genus g ≥ 2 has the property that Ω⊗3
X,C is a very ample line bundle

(ωX,C is already ample for non-hyperelliptic curves).

• This gives closed embeddings X ↪→ P(Γ(Ω⊗3
X,C)

∗) = P5g−6 of degree 6g − 6.

• The subvarieties of P5g−6 which are smooth connected curves of genus g and degree
6g − 6 form a locally closed subscheme Kg of the Hilbert scheme

• Two curves are isomorphic if and only if they are the same up to the action of G =
SL(5g − 7); this action induces an action on the Hilbert scheme.

• Take the GIT quotient (projective GIT in the stable curve case) Mg = Kg//G
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