The Moduli problem

Leonie Kayser

March 4, 2024

A naive moduli problem (over \mathbb{C}) is just a collection of "interesting" objects from algebraic geometry \mathcal{A} together with an equivalence relation \sim on this collection. We would like to have an algebraic variety whose points parameterize the equivalence classes of \mathcal{A} / \sim in such a way that nicely varying families of objects correspond to paths in this variety. We first make this precise.

1 Moduli problems

Definition 1. An (extended) moduli problem is a collection $\mathcal{A}(S)$ equipped with an equivalence relation \sim_{S} for every variety S, together with pullback map $f^{*}: \mathcal{A}(T) \rightarrow \mathcal{A}(S)$ for all morphisms $f: S \rightarrow T$. The pullback maps must obey the following:

- $\left(\mathrm{id}_{S}\right)^{*}=\mathrm{id}_{\mathcal{A}(S)}$ for all S, so $\operatorname{id}_{S}^{*}(F)=F$ for $F \in \mathcal{A}(S)$;
- if $E \sim_{T} F$ in $\mathcal{A}(T)$ and $f: S \rightarrow T$, then $f^{*} E \sim_{S} f^{*} F$;
- if $E \in \mathcal{A}(T)$ and $R \xrightarrow{f} S \xrightarrow{g} T$, then $(g \circ f)^{*} E \sim_{R} g^{*} f^{*} E$ (often one even has equality);
- if $*=\operatorname{Spec} \mathbb{C}$ is a point, then $\left(\mathcal{A}(*), \sim_{*}\right)$ is the naive moduli problem we care about.

The moduli functor associated to a moduli problem is the contravariant functor

$$
\mathcal{M}: \operatorname{Var}_{\mathbb{C}} \rightarrow \text { Set, } \quad S \mapsto \mathcal{A}(S) / \sim_{S}
$$

Example 2. The following are moduli problems, \sim_{S} being equality if not specified. What are the naive moduli problems?

1. For $n \in \mathbb{N}_{0}$ the constant functor $[n](S):=\{1,2, \ldots, n\}$.
2. For a fixed variety M the functor of points $h_{X}(S):=\operatorname{Mor}_{\mathbb{C}}(S, M)$. Note that $h_{M}(*)=$ M, hence the name.
3. The functor of global functions $\mathbb{G}_{\mathrm{a}}(S):=\mathcal{O}_{S}(S)$, or the functor of invertible functions $\mathbb{G}_{\mathrm{m}}(S):=\mathcal{O}_{S}(S)^{\times}$.
4. For $0 \leq k \leq n$ we have the Grassmannian functor

$$
\mathcal{G} r_{k, n}(S):=\left\{q: S \times \mathbb{C}^{n} \rightarrow \mathcal{E} \mid \mathcal{E} \text { is a quotient vector bundle of rank } n-k\right\}
$$

where \sim_{S} is isomorphism of vector bundles $f: \mathcal{E} \xrightarrow{\sim} \mathcal{E}^{\prime}$ with $f \circ q=q^{\prime}$.
5. For a fixed projective variety $X \in \operatorname{Var}_{\mathbb{C}}$ the Hilbert functor

$$
\mathcal{H i l b}_{X}(S)=\{Z \subseteq X \times S \mid Z \text { a closed subscheme flat over } S\}
$$

with equality (or, pedantically, isomorphism as closed embeddings $Z \hookrightarrow X \times S$). Here "flat" informally means that the fibers of $Z \rightarrow S$ vary nicely.
6. The Moduli functor of smooth curves of genus g is

$$
\mathcal{M}_{g}(S)=\left\{\begin{array}{l|l}
\pi: X \rightarrow S & \begin{array}{l}
\pi \text { is a smooth morphism and for } s \in S \text { the fiber } \\
\pi^{-1}(s) \text { is a conn. smooth proj. curve of genus } g
\end{array}
\end{array}\right\}
$$

The equivalence relation is as isomorphism of varieties over S. We could also drop g and consider all relative smooth projective curves at once.
7. As a variant of the previous, we have the moduli functor of marked smooth curves

$$
\mathcal{M}_{g, n}(S)=\left\{\left(\pi, p_{1}, \ldots, p_{n}\right) \mid \pi \text { as before and } p_{1}, \ldots, p_{n} \text { are disjoint sections of } \pi\right\}
$$

8. Let π be a finitely presented group and G an algebraic reductive group.

$$
\mathfrak{R}(\pi, G)(S)=\{?\}
$$

2 Coarse and fine moduli spaces

To define the notion of a moduli space, we need to recall the definition of a natural transformation. Let $\mathcal{F}, \mathcal{G}: \operatorname{Var}_{\mathbb{C}} \rightarrow$ Set be contravariant functors. A natural transformation $\eta: \mathcal{F} \Rightarrow \mathcal{G}$ is a collection of maps $\eta_{X}: \mathcal{F}(X) \rightarrow \mathcal{G}(X)$ such that for all $f: X \rightarrow Y$ one has

$$
\eta_{X} \circ \mathcal{F}(f)=\mathcal{G}(f) \circ \eta_{Y} \quad \in \operatorname{Mor}_{\text {Set }}(\mathcal{F}(Y), \mathcal{G}(X))
$$

A natural isomorphism is a natural transformation which has an inverse, equivalently all η_{X} are isomorphisms (here in Set: bijective).

Lemma 3 (Yoneda). The functors of points provide a fully faithful embedding

$$
h_{(-)}: \operatorname{Var}_{\mathbb{C}} \hookrightarrow \operatorname{Fun}\left(\operatorname{Var}_{\mathbb{C}}^{\mathrm{opp}}, \text { Set }\right), \quad M \mapsto h_{M}
$$

This means that $h_{(-)}$is a covariant injective functor from $\mathbf{V a r}_{\mathbb{C}}$ to presheaves such that $h: \operatorname{Mor}_{\mathbb{C}}(X, Y) \rightarrow \operatorname{Nat}\left(h_{X}, h_{Y}\right)$ is a bijection. Even more is true:

For any contravariant functor $\mathcal{F}: \operatorname{Var}_{\mathbb{C}}^{\mathrm{opp}} \rightarrow$ Set one has

$$
\begin{aligned}
\operatorname{Nat}\left(h_{M}, \mathcal{F}\right) & \leftrightarrow \mathcal{F}(M) \\
\eta & \mapsto \eta_{M}\left(\mathrm{id}_{M}\right) \\
\eta(x) & \leftrightarrow x, \quad \eta(x)_{X}: \operatorname{Mor}(X, M) \ni f \mapsto \mathcal{F}(f)(x) \in \mathcal{F}(X)
\end{aligned}
$$

Definition 4. Let \mathcal{M} be a moduli functor associated to a moduli problem, M a variety and $\eta: \mathcal{M} \Rightarrow h_{M}$ a natural transformation.

1. (M, η) is a fine moduli space for \mathcal{M} if η is a natural isomorphism.
2. (M, η) is a coarse moduli space if $\eta_{\operatorname{Spec} \mathbb{C}}: \mathcal{M}(\operatorname{Spec} \mathbb{C}) \rightarrow M$ is bijective and (M, η) is initial among pairs (N, ε) of varieties with natural transformations from \mathcal{M} to their functor of points.

Initial means here: For any variety N and any transformation $\varepsilon: \mathcal{M} \Rightarrow h_{N}$ there exists a unique morphism $f: M \rightarrow N$, equivalently by Yoneda, a unique transformation $h_{f}: h_{M} \Rightarrow$ h_{N}, such that $\varepsilon=h_{f} \circ \eta$.

Lemma 5. 1. Coarse moduli spaces are uniquely unique: If $\left(M^{\prime}, \eta^{\prime}\right)$ is another coarse moduli space, then there is a unique isomorphism of varieties $f: M \xrightarrow{\sim} M^{\prime}$ such that $\eta^{\prime}=h_{f} \circ \eta$.
2. Fine moduli spaces are coarse moduli spaces (and hence also uniquely unique).

Proof. The first part follows from the universal property of coarse moduli spaces. For the second part: A natural isomorphism $\mathcal{M} \leftrightarrow h_{M}$ induces a bijection $\mathcal{M}(\operatorname{Spec} \mathbb{C}) \leftrightarrow M$. Furthermore, if (N, ε) is another tuple, then choose $h_{f}:=\varepsilon \circ \eta^{-1}: h_{M} \Rightarrow h_{N}$; this choice is forced upon us by the equation $\varepsilon=h_{f} \circ \eta$.

The set $h_{M}(M)$ has the distinguished element id_{M}. If (M, η) is a fine moduli space, then this determines a distinguished element in $\mathcal{M}(M)$.
Definition 6. For a fine moduli problem (M, η) the element $\mathcal{U}:=\eta_{M}^{-1}\left(\operatorname{id}_{M}\right) \in \mathcal{M}(M)$ is called the universal family.

The following lemma justifies the name by showing that every family (!) is a pullback of the universal family.

Lemma 7. Let $F \in \mathcal{A}(S)$ be a family over S, then $f:=\eta_{S}\left([F]_{\sim_{S}}\right)$ satisfies $f^{*} \mathcal{U} \sim_{S} F$. In other words: If $F \in \mathcal{M}(S)$, then $\mathcal{M}\left(\eta_{S}(F)\right)(\mathcal{U})=F$.

Proof. The second claim is equivalent to the first by the construction of \mathcal{M} from \mathcal{A} and \sim. The second claim follows from the definition of a natural transformation: For $f: S \rightarrow M$ we have $\eta_{S} \circ \mathcal{M}(f)=h_{M}(f) \circ \eta_{M}$, plugging in \mathcal{U} yields

$$
\begin{aligned}
\mathcal{M}(f)(\mathcal{U}) & =\eta_{S}^{-1} \circ \eta_{S} \circ \mathcal{M}(f)(\mathcal{U})=\eta_{S}^{-1} \circ h_{M}(f) \circ \eta_{M}(\mathcal{U}) \\
& \stackrel{\operatorname{def} \mathcal{U}}{=} \eta_{S}^{-1} \circ h_{M}(f) \circ \eta_{M} \circ \eta_{M}^{-1}\left(\operatorname{id}_{M}\right)=\eta_{S}^{-1}(f)=: F .
\end{aligned}
$$

In fact, for a pair (M, η) we define a universal family \mathcal{U} to be an element $\in \mathcal{M}(M)$ such that for every $F \in \mathcal{M}(S)$ one has $F=\mathcal{M}\left(\eta_{S}(F)\right)(\mathcal{U})$. The existence of a universal family somewhat characterizes fine moduli spaces, as the following lemma shows.

Lemma 8. For a coarse moduli space (M, η) the following are equivalent:

1. (M, η) is a fine moduli space;
2. There is a $\mathcal{U} \in \mathcal{M}(M)$ with $\eta(\mathcal{U})=\mathrm{id}_{M}$ and all η_{S} are injective.

Example 9. The Grassmannian functors are representable by our beloved $\operatorname{Gr}(k, n)=\operatorname{Mat}(k \times$ $n, \mathbb{C}) / \mathrm{GL}(k, \mathbb{C})$. The universal family is the quotient of the trivial bundle

$$
0 \rightarrow\left\{(q, v) \in \mathcal{G} r_{k, n}(\mathbb{C}) \times \mathbb{C}^{n} \mid v \in \operatorname{ker}(q)\right\} \rightarrow \operatorname{Gr}(k, n) \times \mathbb{C}^{n} \rightarrow \mathcal{U} \rightarrow 0
$$

The left subbundle \mathcal{T} is the tautological bundle; identifying $q: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-k}$, with its kernel, we have

$$
\mathcal{T} \cong\left\{([W], v) \mid W \subseteq \mathbb{C}^{n} \text { of dim. } \mathrm{k}, v \in W\right\}
$$

The Grassmannian is a fine moduli space, it is a smooth projective variety.

3 How to make a moduli space?

Often, moduli problems don't admit a fine moduli space, due to automorphisms. There are at least three options here:

- Weaken the notion of moduli space: Look for a coarse moduli space instead. For example, the functor $S \mapsto \operatorname{Pic}(S)=\{$ line bundles on $S\} / \cong$ does not admit a fine moduli space, but $\{*\}$ is a coarse moduli space (why?).
- Weaken the type of space: The Hilbert functor is not representable as a fine moduli space in varieties. It is however representable in the category of projective schemes (after fixing the Hilbert polynomial). Similarly, the moduli space of curves is only a coarse moduli space (and only for $2 g-2+n>0$), for example $M_{1,1}$, the space of (marked) elliptic curves, is \mathbb{A}^{1}, parametrized by the j-invariant. But it is always represented as a fine moduli space by a Deligne-Mumford stack, a category vastly extending the category of varieties.
- Add data to the moduli problem: The coarse moduli space of curves $M_{g, n}$ is actually a fine moduli space on the set of marked smooth curves with trivial automorphism group (these are dense if $2 g-2+n>0$). Increasing n one can make all smooth curves automorphism-free, hence turn $M_{g, n}$ into a fine moduli space.

We now sketch how GIT enters the picture.

- Hilbert scheme can be constructed using Gotzmann number as a closed subscheme of $\operatorname{Gr}\left(k, I_{G}\right)$
- Every curve X of genus $g \geq 2$ has the property that $\Omega_{X, \mathbb{C}}^{\otimes 3}$ is a very ample line bundle ($\omega_{X, \mathrm{C}}$ is already ample for non-hyperelliptic curves).
- This gives closed embeddings $X \hookrightarrow \mathbb{P}\left(\Gamma\left(\Omega_{X, \mathbb{C}}^{\otimes 3}\right)^{*}\right)=\mathbb{P}^{5 g-6}$ of degree $6 g-6$.
- The subvarieties of $\mathbb{P}^{5 g-6}$ which are smooth connected curves of genus g and degree $6 g-6$ form a locally closed subscheme K_{g} of the Hilbert scheme
- Two curves are isomorphic if and only if they are the same up to the action of $G=$ SL $(5 g-7)$; this action induces an action on the Hilbert scheme.
- Take the GIT quotient (projective GIT in the stable curve case) $M_{g}=K_{g} / / G$

