Differential Geometric Construction of the Moduli Space of Higgs Bundles

Tim Maruhn

Seminar: Geometric invariant theory and non-Abelian Hodge correspondence

(Dated: March 13, 2024)

The talk is based on [AN16]. We are going to construct the moduli space of Higgs bundles over a compact Riemann surface using the space of doubled connections. This is a infinite dimensional hyperkähler space with a group action of the unitary gauge group, which admits a hyperkähler moment map. The moduli space of Higgs bundles is the hyperkähler quotient together with a specific complex structure. Under certain stability conditions, this will be a smooth Kähler manifold of finite dimension. As an example we consider it for line bundles of degree zero.

0. PRELIMINARIES

Throughout this whole talk *X* will denote a compact Riemann surface of genus $g \ge 2$ and $E \to X$ a complex vector bundle of degree *d* and rank *n*. Moreover, ω_X denotes a compatible Kähler form on *X* such that $1 = \int_X \omega_X$. For a fixed hermitian metric *h* on *E* we extend the Hodge-star to $\Omega^1(\text{End}E)$ by defining it on products $\star(\omega A) := (\star \omega A^*)$ for $\omega \in \Omega^1(X)$ and $A \in \Omega^0(\text{End}E)$, where A^* is the adjoint of *A* with respect to *h*. Then $\star^2 = -1$ and $\phi \land \star \psi = -\star \phi \land \psi$. Since we are going to take a qoutient of an infinite dimensional manifold by an infinite dimensional Lie group, we need to redefine Riemannian and hyperkähler structures.

Definition 0.1. Let \mathcal{M} be a possibly infinite dimensional smooth manifold and $p \in \mathcal{M}$.

A **Riemannian metric** g on \mathcal{M} is a smoothly varing inner product g_p on the tangent spaces such that $T_p\mathcal{M} \ni X \mapsto$ $g(X, \cdot) \in T_p\mathcal{M}^*$ is injective.

A Riemannian metric g together with three complex structures I_1, I_2, I_3 (defined as in finite dimensions) satifying $I_i^2 = I_1 I_2 I_3 = -1$ is called a **hyperkähler structure** if the forms $\omega_i = g(I_i \cdot, \cdot)$ are closed and g is hermitian with respect to all complex structures.

We will use the following theorem to prove the smoothness and the existence of a Hyperkähler structure on the Moduli space of Higgs bundles.

Theorem 0.2. Let \mathcal{G} be a possibly infinite dimensional Lie group acting freely and proper on a hyperkähler manifold \mathcal{M} such that there exists a **hyperkähler moment map**, i.e. $\mu: \mathcal{M} \to (\mathfrak{g}^*)^{\oplus 3}$, satisfying $d_p\mu_i(Z) = \iota_{\rho(Z)}\omega_i$ for all $Z \in \mathfrak{g}, p \in \mathcal{M}$ and i = 1, 2, 3. If

$$T_p(\mathcal{G}.p) \oplus T_p(\mathcal{G}.p)^{\perp} = T_p \mu^{-1}(0)$$

for all $p \in \mu^{-1}(0)$, then $\mu^{-1}(0)/\mathcal{G}$ is a smooth hyperkähler manifold.

Proof. In [AT07, p. 171, Theorem 2.22].

1. HIGGS BUNDLES

Definition 1.1. A tuple $(E, \bar{\partial}, \varphi)$ consisting of a holomorphic vector bundle and a **Higgs field** $\varphi \in H^0(X, \operatorname{End} E \otimes K)$ is called a **Higgs bundle**. We consider $H^0(X, \operatorname{End} E \otimes K) \subset \Omega^{1,0}(\operatorname{End} E)$

Given a Higgs Bundle $(E, \overline{\partial}, \varphi)$ a **Higgs subbundle** is a holomorphic subbundle $F \subset E$ that is φ -invariant, i.e. $\varphi(F) \subset F \otimes K$. The **slope** of a vector bundle $E \to X$ is given by the quotient $\mu(E) = \frac{\deg E}{\mathsf{rk}E}$. This topological quantity is used to define stability conditions for holomorphic vector bundles. In a similar manner, we define the notion of stability for Higgs bundles.

Definition 1.2. A Higgs bundle $(E, \bar{\partial}, \varphi)$ is called

- (i) stable if the slope of all proper Higgs subbundles is less then μ(E).
- (ii) **polystable** if E decomposes as the direct sum of stable Higgs bundles E_i such that $\mu(E) = \mu(E_i)$ for all *i*.

Let us look at a simple example of a stable Higgs bundle.

Example 1.1. Consider a spin structure on X, i.e. a holomorphic line bundle $L \rightarrow X$ such that $L^2 \cong K$. Set $E = L \oplus L^{-1}$ and define a section of End $E \otimes K$ by

$$\varphi = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Since $\operatorname{Hom}(L, L^{-1})K = L^{-1}L^{-1}K = K^{-1}K = \underline{\mathbb{C}}_X$, φ is well defined. $1 \in H^0(\underline{\mathbb{C}}_X)$, thus (E, φ) is a Higgs bundle of rank 2 and degree 0. L and L^{-1} are the only proper holomorphic subbundles. We obtain $\varphi(L) = L^{-1}K \not\subset LK$ and $\varphi(L^{-1}) = 0 \subset L^{-1}K$, meaning that L^{-1} is the only proper Higgs subbundle. Further deg $L^{-1} = -\frac{1}{2} \operatorname{deg} L = 1 - g < 0$. Hence, the Higgs bundle is stable.

We want to define the Moduli of Higgs bundles for fixed rank and degree. Since all vector bundles of same degree and rank over *X* are topologically equivalent we fix $E \to X$ and consider every Higgs bundle of degree *d* and rank *n* to be a pair $(\bar{\partial}, \varphi) \in \mathcal{A}_E^{\bar{\partial}} \times \Omega^{1,0}(\text{EndE}) =:$

 $\mathcal{A}_1^{\mathbb{C}}$ such that $\bar{\partial}\varphi = 0$. $\mathcal{A}_1^{\mathbb{C}}$ is modeled on the complex vector space $\Omega^{0,1}(\operatorname{EndE}) \oplus \Omega^{1,0}(\operatorname{EndE})$. Moreover, the complex gauge group $\mathcal{G}_{\mathbb{C}} := \Omega^0(\operatorname{Aut}(E))$ acts on $\mathcal{A}_1^{\mathbb{C}}$ via $g.(\bar{\partial},\varphi) = (g \circ \bar{\partial} \circ g^{-1}, g\varphi g^{-1})$. Thus, two Higgs bundles are in the same orbit if there exists a vector bundle isomorphism $g: E \to E$ that commutes with the holomorphic structures and the Higgs fields. Such a g is called an **isomorphism of Higgs bundles**.

2. THE SPACE OF DOUBLED CONNECTIONS

Let *h* be a hermitian metric on *E*. We consider the unitary gauge group $\mathcal{G} := \Omega^0(UE) := \{g \in \Omega^0(\operatorname{Aut} E) | g^* = g^{-1}\}$ and its action on a space isomorphic to $\mathcal{A}_1^{\mathbb{C}}$. Locally the Lie group \mathcal{G} is given by smooth maps $X \supset U \rightarrow U(n)$ with pointwise matrix multiplication. Thus, $\mathfrak{g} = \Omega^0(\mathfrak{u} E) := \{Z \in \Omega^1(\operatorname{End} E) | -Z = Z^*\}$ and we will use the identification

$$\Omega^2(\mathfrak{u} E) \cong \mathfrak{g}^*, \ F \mapsto \int_X \operatorname{tr}(F \wedge \cdot).$$

Definition 2.1. A pair $(D, \phi) \in \mathcal{A}^H := \mathcal{A}^h_E \times \Omega^1(\mathfrak{u} E)$ is called a **doubled connection**, where \mathcal{A}^h_E is the space of unitary connections on E with respect to h.

This is an infinite dimensional affine space modeled on $\Omega^1(\mathfrak{u} E) \oplus \Omega^1(\mathfrak{u} E)$. If $A \in \Omega^0(\mathfrak{u} E)$, then $A^* =$ $-A \in \Omega^0(\mathfrak{u} E)$ and $\star^2 = -1$. This implies that $\star \in$ $\Gamma \text{End}(TX^* \otimes \text{End} E)$ defines a complex structure on \mathcal{A}^h_E . If we identify the dual space of $\Omega^1(\mathfrak{u} E)$ with itself via the metric g^h

$$g^{h}(\dot{A},\dot{B}) = -\int_{X} \operatorname{tr}(\dot{A} \wedge \star \dot{B}) \tag{1}$$

on \mathcal{A}_{E}^{h} , we obtain a natural complex structure $I_{1}: T_{(D,\phi)}\mathcal{A}^{H} \to T_{(D,\phi)}\mathcal{A}^{H}$, $I_{1}(\dot{A}, \dot{\phi}) = (\star \dot{A}, - \star \dot{\phi})$ on \mathcal{A}^{H} . Moreover, \mathcal{A}^{H} carries the product metric $g := g^{h} \oplus g^{h}$ given by

$$g((\dot{A}_1,\dot{\phi}_1),(\dot{A}_2,\dot{\phi}_2)) := -\int_X \operatorname{tr}(\dot{A}_1 \wedge \star \dot{A}_2 + \dot{\phi}_1 \wedge \star \dot{\phi}_2)$$

Proposition 2.2. (\mathcal{A}^H, I_1) and $\mathcal{A}_1^{\mathbb{C}}$ are isomorphic as complex manifolds.

Proof. Let $f: \mathcal{A}^H \to \mathcal{A}_1^C$, $f(D, \phi) = (\bar{\partial}_D, \phi^{1,0})$, where $\phi^{1,0} = \frac{1}{2}(\phi + i \star \phi)$ and $\bar{\partial}_D = \frac{1}{2}(D - i \star D)$. f has an explicit inverse by taking the Chern connection and $\varphi \mapsto \varphi - \overline{\varphi}^*$. Let $(\dot{A}, \dot{\phi}) \in T_{(D,\phi)}\mathcal{A}^H$, then

$$\begin{aligned} 2df(\star\dot{A}, -\star\dot{\phi}) &= (\star\dot{A} + i\dot{A}, -\star\dot{\phi} + i\dot{\phi}) \\ &= i(\dot{A} - i\star\dot{A}, \dot{\phi} + i\star\dot{\phi}) \\ &= i\circ 2df(\dot{A}, \dot{\phi}). \end{aligned}$$

We will use frequently that every element in $\Omega^1(\mathfrak{u} E)$ decomposes uniquely as $\phi = \varphi - \overline{\varphi}^*$ for $\varphi \in \Omega^{1,0}(\text{EndE})$ and vice versa $\varphi = \frac{1}{2}(\phi + i \star \phi)$. The action $\mathcal{G} \oplus \mathcal{A}^H$ is given by conjugation.

Proposition 2.3. The infinitesimal action of \mathcal{G} at $(D, \phi) \in \mathcal{A}^H$ is given by $\rho \colon \mathfrak{g} \to T_{(D,\phi)}\mathcal{A}^H, Z \mapsto (-DZ, [Z, \phi]).$

Proof. It suffice to consider the matrix exponential up to first order terms under the differentiation. Using that $1 \in \Omega^0(UE)$ is parallel we obtain

$$\rho(Z) = \frac{d}{dt}\Big|_{t=0} (1+tZ).(D,\phi)$$

= $\frac{d}{dt}\Big|_{t=0} (DtZ + \mathcal{O}(t^2), \phi - \phi tZ + tZ\phi + \mathcal{O}(t^2))$
= $(-DZ, [Z, \phi]).$

 I_1 is just one of many complex structures on the space of doubled connections. In fact we have the following statement:

Proposition 2.4. The tuple (I_1, I_2, I_3, g) , with $I_2(\dot{A}, \dot{\phi}) = (-\dot{\phi}, \dot{A})$ and $I_3(\dot{A}, \dot{\phi}) = (-\star \dot{\phi}, -\star \dot{A})$, defines a hyperkähler structure on \mathcal{A}^H with Kähler forms $\omega_i = g(I_i \cdot, \cdot)$. Further the map $\mu = (\mu_1, \mu_2, \mu_3): \mathcal{A}^H \to (\mathfrak{g}^*)^{\oplus 3}$, where

(i)
$$\mu_1(D,\phi) := -F^D + \phi \wedge \phi - 2\pi i \frac{d}{n} i d_E \omega_X$$

(ii) $\mu_2(D,\phi) := -D \star \phi$
(iii) $\mu_3(D,\phi) := D\phi$

is a hyperkähler moment map for $\mathcal{G} \cap \mathcal{A}^H$.

Proof. First note that \mathcal{A}^H is an affine space and all commutators of vector fields vanish, hence the almost complex structures are integrable. Further the $\star^2 = -1$ implies the quaternionic relation $I_i^2 = I_1 I_2 I_3 = -1$. The forms ω_i have constant coefficients and are therefore closed. Let $\{e_k\}$ be a basis of $\Omega^1(\mathfrak{u} E)$. A frame of $T\mathcal{A}^H$ is given by $p = (D, \phi) \mapsto \epsilon_{kl}(p) = (e_k, e_l)$. Thus, the coefficient functions $\omega_{i,klmn} = \omega_i(\epsilon_{kl}, \epsilon_{mn})$ are constant. It remains to check that g is hermitian with respect to all I_i . Let $Z_i = (\dot{A}_i, \dot{\phi}_i) \in T_{(D,\phi)}\mathcal{A}^H$ for i = 1, 2 then

$$g(I_1Z_1, I_1Z_2) = -\int_X \operatorname{tr}(\star \dot{A}_1 \wedge \star^2 \dot{A}_2 + (-\star)\dot{\phi}_1 \wedge \star(-\star)\dot{\phi}_2)$$

= $-\int_X \operatorname{tr}(\dot{A}_1 \wedge \star \dot{A}_2 + \dot{\phi}_1 \wedge \star \dot{\phi}_2)$
= $g(Z_1, Z_2).$

Using that $g = g^h \oplus g^h$, where g^h as in 1, we obtain

$$g(I_2Z_1, I_2Z_2) = g((-\dot{\phi}_1, \dot{A}_1), (-\dot{\phi}_2, \dot{A}_2))$$

= $g^h(-\dot{\phi}_1, -\dot{\phi}_2) + g^h(\dot{A}_1, \dot{A}_2)$
= $g((\dot{A}_1, \dot{\phi}_1), (\dot{A}_2, \dot{\phi}_2))$
= $g(Z_1, Z_2).$

Combing the calculations above

$$g(I_3Z_1, I_3Z_2) = g((-\star \dot{\phi}_1, -\star \dot{A}_1), (-\star \dot{\phi}_2, -\star \dot{A}_2))$$

= $g((\star \dot{A}_1, -\star \dot{\phi}_1), (\star \dot{A}_2, -\star \dot{\phi}_2))$
= $g(I_2Z_1, I_2Z_2)$
= $g(Z_1, Z_2).$

Thus, (I_1, I_2, I_3, g) is a hyperkähler structure. Now let $(\dot{A}, \dot{\phi}) \in T_{(D,A)} \mathcal{A}^H$ and $Z \in \mathfrak{g}$. We need to check that $d\mu_i(\dot{A}, \dot{\phi})(Z) = \omega_i(\rho(Z), (\dot{A}, \dot{\phi}))$ for all i = 1, 2, 3.

$$d\mu_1(\dot{A}, \dot{\phi}) = \frac{d}{dt}\Big|_{t=0} \mu_1(D + t\dot{A}, \phi + t\dot{\phi})$$

$$= \frac{d}{dt}\Big|_{t=0} - F^{D+t\dot{\phi}} + (\phi + t\dot{\phi}) \wedge (\phi + t\dot{\phi})$$

$$= \frac{d}{dt}\Big|_{t=0} - F^D - tD\dot{A} + \phi \wedge \phi + t[\dot{\phi}, \phi] + \mathcal{O}(t^2)$$

$$= -D\dot{A} + [\dot{\phi}, \phi].$$

A local computation and the properties of the trace yields $tr(Z[\phi, \phi]) = tr([Z, \phi] \land \phi)$. Using this equation, Stokes theorem and that the trace is parallel we obtain

$$d\mu_1(\dot{A}, \dot{\phi})(Z) = \int_X \operatorname{tr}(-ZD\dot{A} + Z[\dot{\phi}, \phi])$$

= $\int_X \operatorname{tr}(DZ \wedge \dot{A} + Z[\dot{\phi}, \phi])$
= $\int_X \operatorname{tr}(DZ \wedge \dot{A} + [Z, \phi] \wedge \dot{\phi})$
= $\omega_1(\rho(Z), (\dot{A}, \dot{\phi})).$

Note that the of $D + t\dot{A}$ induced connection on EndE is of the form $D + t[\dot{A}, \cdot]$. Then

$$d\mu_{2}(\dot{A},\dot{\phi}) = \frac{d}{dt}\Big|_{t=0}\mu_{2}(D+t\dot{A},\phi+t\dot{\phi})$$

$$= \frac{d}{dt}\Big|_{t=0}(-D-t\dot{A})(\star\phi+t\star\dot{\phi})$$

$$= \frac{d}{dt}\Big|_{t=0} - D\star\phi-tD\star\dot{\phi}-t[\dot{A},\star\phi] + \mathcal{O}(t^{2})$$

$$= -D\star\phi-[\dot{A},\star\phi].$$

We conclude

$$d\mu_{2}(\dot{A},\dot{\phi})(Z) = \int_{X} \operatorname{tr}(-ZD \star \dot{\phi} - Z[\dot{A},\star\phi])$$
$$= \int_{X} \operatorname{tr}(DZ \wedge \star \dot{\phi} - \star [Z,\phi] \wedge \dot{A})$$
$$= \int_{X} \operatorname{tr}(DZ \wedge \star \dot{\phi} + [Z,\phi] \wedge \star \dot{A})$$
$$= \omega_{2}(\rho(Z), (\dot{A},\dot{\phi})).$$

i = 3 can be shown with a similar calculation. The adjoint action of G on its Lie algebra is given by conjugation and with the trace being invariant under permutation we obtain for each i = 1, 2, 3

$$Ad_{g}^{*}\mu_{i}(D,\phi)(Z) = \mu_{i}(D,\phi)(g^{-1}Zg)$$
$$= \mu_{i}(gDg^{-1},g\phi g^{-1}).$$

Thus, the maps are \mathcal{G} -equivariant.

We call a doubled connection **harmonic** if it is contained in $\mu^{-1}(0)$ and **irreducible** if there are no proper *D*- and ϕ -invariant subbundles of *E*. Denote the set of irreducible double connections as $\mathcal{A}^{H,s}$.

Theorem 2.5. The action $\mathcal{G}_{eff} := \mathcal{G}/U(1) \odot \mathcal{A}^{H,s}$ is free and proper and for all harmonic $(D, \phi) \in \mathcal{A}^{H,s}$ we have that

$$T_{(D,\phi)}(\mathcal{G}.(D,\phi)) \oplus (T_{(D,\phi)}(\mathcal{G}.(D,\phi)))^{\perp} = T_{(D,\phi)}\mu^{-1}(0).$$
Proof. In [AN16, Ch. 6.3].

Set $\mu_s := \mu|_{\mathcal{A}^{H,s}}$, then the hyperkähler quotient $\mathcal{M}_{n,d}^s(X) := \mu_s^{-1}(0) / \mathcal{G}_{\text{eff}}$ is called the **moduli space** of irreducible harmonic doubled connections and is a smooth manifold inheriting the hyperkähler structure of \mathcal{A}^H . Without the irreducebilty we get the **moduli space** of harmonic double connections $\mathcal{M}_{n,d}(X)$, which is a priori not a smooth manifold. The tangent spaces to $\mathcal{M}_{n,d}^s(X)$ are given by

$$T_{[(D,\phi)]}\mathcal{M}^{s}_{n,d}(X) = \ker(d_{(D,\phi)}\mu_{s})/\rho(\mathfrak{g})$$
$$\cong \ker(d_{(D,\phi)}\mu_{s}) \cap \rho(\mathfrak{g})^{\perp}.$$

Let us calculate the orhorgonal complement of $\rho(\mathfrak{g}) \subset T_{(D,\phi)}\mathcal{A}^H$ with respect to g. Let $Z \in \mathfrak{g}$ and $(\dot{A}, \dot{\phi}) \in T_{(D,\phi)}\mathcal{A}^H$. Then

$$g(\rho(Z), (\dot{A}, \dot{\phi})) = -\int_X \operatorname{tr}(-DZ \wedge \star \dot{A} + [Z, \phi] \wedge \star \dot{\phi})$$
$$= \int_X \operatorname{tr}(Z(D \star \dot{A} + [\phi, \star \dot{\phi}]).$$

Therefore, $(\dot{A}, \dot{\phi}) \in \rho(\mathfrak{g})^{\perp}$ if and only if $D \star \dot{A} = -[\phi, \star \dot{\phi}]$.

Proposition 2.6. The quaternonic dimension of the hyperkähler manifold $\mathcal{M}_{nd}^{s}(X)$ is $(g-1)n^{2}+1$.

Proof. We won't give the details but only an idea of the proof. For details check [AN16, Ch. 6.3]. Consider the map $\widehat{D}: T_{(D,\phi)}\mathcal{A}^H \to \Omega^2(\mathfrak{u} E)^{\oplus 4}$ given by

$$\widehat{D}(\dot{A}, \dot{\phi}) = (d_{(D,\phi)}\mu_s(\dot{A}, \dot{\phi}), D \star \dot{A} + [\phi, \star \dot{\phi}]).$$

One can show that this is an elliptic operator of index $(g-1)n^2$ and its cokernel has quaternionic dimension 1. Then, $\dim_{\mathbb{H}} \ker \widehat{D} = \operatorname{ind} \widehat{D} + \dim_{\mathbb{H}} \operatorname{coker} \widehat{D} = (g-1)n^2 + 1$. The proposition follows from the fact that the tangent space to the moduli space at a point (D, ϕ) is exactly the kernel of \widehat{D} .

3. THE MODULI SPACE OF HIGGS BUNDLES

Now we want to specify the zero set of μ in a reasonable way to define the moduli of Higgs bundles, i.e. consider it as a subset of $\mathcal{A}_1^{\mathbb{C}}$. Let us combine two of the moment maps as $\mu_{\mathbb{C}} = \mu_3 + i\mu_2$: $\mathcal{A}^H \to \mathfrak{g}_{\mathbb{C}}^*$. Using that the holomorphic structure of a connection is given by $\overline{\partial}_D = \frac{1}{2}(D - i \star D)$ and $\phi = \varphi - \overline{\varphi}^*$ we obtain

$$\tilde{\mu}(D,\phi) = (D-i\star D)(\varphi-\overline{\varphi}^*) = 2\bar{\partial}_D\varphi$$

Further $\phi \land \phi = -\phi \land \overline{\phi}^* - \overline{\phi}^* \land \phi = -[\phi, \overline{\phi}^*]$ and therefore

$$\mu^{-1}(0) = \{ (D,\phi) | \bar{\partial}_D \varphi = 0, F^D + [\varphi, \overline{\varphi}^*] = -2\pi i \frac{d}{n} \mathrm{id}_E \omega_X \}.$$

Thus, under the isomorphism f from proposition 2.2 the zero set of μ are Higgs bundles $(\bar{\partial}, \varphi) \in \mathcal{A}_1^{\mathbb{C}}$ such that the Chern connection can be modified to a projectivly flat connection $\nabla = D^{\bar{\partial}} + \varphi + \overline{\varphi}^*$, i.e.

$$F^{\nabla} = -2\pi i \frac{d}{n} \mathrm{id}_E \omega_X.$$

We have the following theorem, proven by Carlos T. Simpson in [CS88], connecting the notion of stability of Higgs bundles and irreducibility of doubled connections.

Theorem 3.1. For all $[(D, \phi)] \in \mathcal{M}_{n,d}^s(X)$ the pair $(\bar{\partial}_D, \varphi)$ is a stable Higgs bundle and vice versa every stable Higgs bundle is isomorphic to $(\bar{\partial}_D, \varphi)$ for a irreducible doubled connection (D, ϕ) . Moreover, polystable Higgs bundles correspond in the same way to harmonic doubled connections.

Thus, we have a one-to-one correspondence of isomorphism classes of stable Higgs bundles and points in $\mathcal{M}_{n,d}^s(X)$. Finally we are ready to state the following definition.

Definition 3.2. The moduli space of stable Higgs bundles of rank n and degree d over a compact Riemann surface X of genus $g \ge 2$ is the smooth Kähler manifold of complex dimension $2(g-1)n^2 + 2$ given by

$$\mathcal{H}_{n,d}^s(X) := (\mathcal{M}_{n,d}^s(X), I_1, g).$$

Without the irreduciblity we have the **moduli of polystable Higgs bundles** $\mathcal{H}_{n,d}(X)$ which is a quasiprojective variety with singularities and its smooth points are exactly the isomorphism classes of stable Higgs bundles.

Example 3.1. Higgs line bundles of degree 0

First realize that a holomorphic line bundle has no proper holomorphic subbundles and hence every Higgs bundle of rank 1 is stable. Consider a line bundle $L \to X$ of degree zero together with a Higgs bundle $(\bar{\partial}, \varphi)$. Since, EndL = $L^{-1}L = \underline{\mathbb{C}}_X$ a Higgs field is a holomorphic section of the canonical bundle $\varphi \in H^0K$. Under the isomorphism

$$\Omega^1(X) \ni \phi \mapsto \phi + i \star \phi \in \Gamma K$$

we have $H^0K \cong \text{Harm}(X) = \ker d \cap \ker \star d$ and via the Hodge-decomposition the space of harmonic 1-forms is isomorphic to $H^1_{dR}(X)$, which is a 2g-dimensional real vector space. Let (D, ϕ) be a harmonic doubled connection corresponding to the Higgs bundle. Then

$$\mu^{-1}(0) = \{ (D, \phi) \in \mathcal{A}^H | F^D = 0, \phi \in \operatorname{Harm} X \}$$
$$= \tilde{\mu}^{-1}(0) \times \operatorname{Harm} X,$$

where $\tilde{\mu}: \mathcal{A}^h \to \mathfrak{g}^*, D \mapsto -F^D$ is the moment map of the action $\mathcal{G} \subset \mathcal{A}^h$. The Kähler quotient $(\tilde{\mu}^{-1}(0)/\mathcal{G}, \star)$ is the moduli space of holomorphic structures [AN16, Chapter 5]. Since \mathcal{G} acts trivial on 1-forms we obtain

$$\mathcal{H}_{1,0}(X) = (\tilde{\mu}^{-1}(0)/\mathcal{G}, \star) \times (\operatorname{Harm}(X), -\star)$$

= JacX × (\mathbb{C}^{g})*
= T*JacX.

Thus, the moduli space of degree zero and rank one Higgs bundles over a compact Riemann surface is a smooth Kähler manifold given by the cotangent bundle to the Jacobian variety of X.

REFERENCES

- [AN16] Andrew Neitzke. Moduli of Higgs Bundles. Lecture Notes. 2016. URL: https://gauss.math.yale.edu/ ~an592/exports/higgs-bundles.pdf.
- [CS88] Carlos T. Simpson. "Constructing Variations of Hodge Structure Using Yang-Mills Theory and Applications to Uniformization". In: Journal of the American Mathematical Society 1.4 (1988), pp. 867–918. ISSN: 08940347, 10886834. URL: http://www.jstor. org/stable/1990994 (visited on 03/09/2024).
- [AT07] Alice Barbara Tumpach. "Hyperkähler structures and infinite-dimensional Grassmannians". In: *Journal of Functional Analysis* 243.1 (Feb. 2007), pp. 158– 206. ISSN: 0022-1236. DOI: 10.1016/j.jfa.2006.05. 019. URL: http://dx.doi.org/10.1016/j.jfa. 2006.05.019.