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The talk is based on [AN16]. We are going to construct the moduli space of Higgs bundles over
a compact Riemann surface using the space of doubled connections. This is a infinite dimensional
hyperkähler space with a group action of the unitary gauge group, which admits a hyperkähler
moment map. The moduli space of Higgs bundles is the hyperkähler quotient together with a
specific complex structure. Under certain stability conditions, this will be a smooth Kähler manifold
of finite dimension. As an example we consider it for line bundles of degree zero.

0. PRELIMINARIES

Throughout this whole talk X will denote a compact
Riemann surface of genus g ≥ 2 and E → X a complex
vector bundle of degree d and rank n. Moreover, ωX
denotes a compatible Kähler form on X such that 1 =∫

X ωX . For a fixed hermitian metric h on E we extend
the Hodge-star to Ω1(EndE) by defining it on products
⋆(ωA) := (⋆ωA∗) for ω ∈ Ω1(X) and A ∈ Ω0(EndE),
where A∗ is the adjoint of A with respect to h. Then
⋆2 = −1 and ϕ ∧ ⋆ψ = − ⋆ ϕ ∧ ψ. Since we are going to
take a qoutient of an infinte dimensional manifold by
an infinite dimensional Lie group, we need to redefine
Riemannian and hyperkähler structures.

Definition 0.1. Let M be a possibly infinite dimensional
smooth manifold and p ∈ M.

A Riemannian metric g on M is a smoothly varing inner
product gp on the tangent spaces such that TpM ∋ X 7→
g(X, ·) ∈ TpM∗ is injective.

A Riemannian metric g together with three complex struc-
tures I1, I2, I3 (defined as in finite dimensions) satifying
I2
i = I1 I2 I3 = −1 is called a hyperkähler structure if the

forms ωi = g(Ii · , · ) are closed and g is hermitian with re-
spect to all complex structures.

We will use the following theorem to prove the
smoothness and the existence of a Hyperkähler struc-
ture on the Moduli space of Higgs bundles.

Theorem 0.2. Let G be a possibly infinite dimensional Lie
group acting freely and proper on a hyperkähler manifold
M such that there exists a hyperkähler moment map, i.e.
µ : M → (g∗)⊕3, satisfying dpµi(Z) = ιρ(Z)ωi for all
Z ∈ g,p ∈ M and i = 1, 2, 3. If

Tp(G.p)⊕ Tp(G.p)⊥ = Tpµ−1(0)

for all p ∈ µ−1(0), then µ−1(0)/G is a smooth hyperkähler
manifold.

Proof. In [AT07, p. 171, Theorem 2.22].

1. HIGGS BUNDLES

Definition 1.1. A tuple (E, ∂̄, φ) consisting of a holomor-
phic vector bundle and a Higgs field φ ∈ H0(X, EndE⊗K)
is called a Higgs bundle. We consider H0(X, EndE ⊗ K) ⊂
Ω1,0(EndE)

Given a Higgs Bundle (E, ∂̄, φ) a Higgs subbundle is
a holomorphic subbundle F ⊂ E that is φ-invariant, i.e.
φ(F) ⊂ F ⊗ K. The slope of a vector bundle E → X
is given by the quotient µ(E) = deg E

rkE . This topological
quantity is used to define stability conditions for holo-
morphic vector bundles. In a similar manner, we define
the notion of stability for Higgs bundles.

Definition 1.2. A Higgs bundle (E, ∂̄, φ) is called

(i) stable if the slope of all proper Higgs subbundles is
less then µ(E).

(ii) polystable if E decomposes as the direct sum of stable
Higgs bundles Ei such that µ(E) = µ(Ei) for all i.

Let us look at a simple example of a stable Higgs
bundle.

Example 1.1. Consider a spin structure on X, i.e. a holo-
morphic line bundle L → X such that L2 ∼= K. Set
E = L ⊕ L−1 and define a section of EndE ⊗ K by

φ =

(
0 0
1 0

)
.

Since Hom(L, L−1)K = L−1L−1K = K−1K = CX , φ is
well defined. 1 ∈ H0(CX), thus (E, φ) is a Higgs bundle
of rank 2 and degree 0. L and L−1 are the only proper holo-
morphic subbundles. We obtain φ(L) = L−1K ̸⊂ LK and
φ(L−1) = 0 ⊂ L−1K, meaning that L−1 is the only proper
Higgs subbundle. Further deg L−1 = − 1

2 deg L = 1 − g <
0. Hence, the Higgs bundle is stable.

We want to define the Moduli of Higgs bundles for
fixed rank and degree. Since all vector bundles of same
degree and rank over X are topologically equivalent we
fix E → X and consider every Higgs bundle of degree
d and rank n to be a pair (∂̄, φ) ∈ A∂̄

E × Ω1,0(EndE) =:



AC
1 such that ∂̄φ = 0. AC

1 is modeled on the complex
vector space Ω0,1(EndE) ⊕ Ω1,0(EndE). Moreover, the
complex gauge group GC := Ω0(Aut(E)) acts on AC

1
via g.(∂̄, φ) = (g ◦ ∂̄ ◦ g−1, gφg−1). Thus, two Higgs
bundles are in the same orbit if there exists a vector
bundle isomorphism g : E → E that commutes with the
holomorphic structures and the Higgs fields. Such a g
is called an isomorphism of Higgs bundles.

2. THE SPACE OF DOUBLED CONNECTIONS

Let h be a hermitian metric on E. We consider
the unitary gauge group G := Ω0(UE) := {g ∈
Ω0(AutE) | g∗ = g−1} and its action on a space isomor-
phic to AC

1 . Locally the Lie group G is given by smooth
maps X ⊃ U → U(n) with pointwise matrix multipli-
cation. Thus, g = Ω0(uE) := {Z ∈ Ω1(EndE) | − Z =
Z∗} and we will use the identification

Ω2(uE) ∼= g∗, F 7→
∫

X
tr(F ∧ ·).

Definition 2.1. A pair (D, ϕ) ∈ AH := Ah
E × Ω1(uE)

is called a doubled connection, where Ah
E is the space of

unitary connections on E with respect to h.

This is an infinite dimensional affine space modeled
on Ω1(uE) ⊕ Ω1(uE). If A ∈ Ω0(uE), then A∗ =
−A ∈ Ω0(uE) and ⋆2 = −1. This implies that ⋆ ∈
ΓEnd(TX∗ ⊗ EndE) defines a complex structure on Ah

E.
If we identify the dual space of Ω1(uE) with itself via
the metric gh

gh(Ȧ, Ḃ) = −
∫

X
tr(Ȧ ∧ ⋆Ḃ) (1)

on Ah
E, we obtain a natural complex structure

I1 : T(D,ϕ)AH → T(D,ϕ)AH , I1(Ȧ, ϕ̇) = (⋆Ȧ,− ⋆ ϕ̇) on
AH . Moreover, AH carries the product metric g :=
gh ⊕ gh given by

g((Ȧ1, ϕ̇1), (Ȧ2, ϕ̇2)) := −
∫

X
tr(Ȧ1 ∧ ⋆Ȧ2 + ϕ̇1 ∧ ⋆ϕ̇2)

Proposition 2.2. (AH , I1) and AC
1 are isomorphic as com-

plex manifolds.

Proof. Let f : AH → AC
1 , f (D, ϕ) = (∂̄D, ϕ1,0), where

ϕ1,0 = 1
2 (ϕ + i ⋆ ϕ) and ∂̄D = 1

2 (D − i ⋆ D). f has
an explicit inverse by taking the Chern connection and
φ 7→ φ − φ∗. Let (Ȧ, ϕ̇) ∈ T(D,ϕ)AH , then

2d f (⋆Ȧ,− ⋆ ϕ̇) = (⋆Ȧ + iȦ,− ⋆ ϕ̇ + iϕ̇)

= i(Ȧ − i ⋆ Ȧ, ϕ̇ + i ⋆ ϕ̇)

= i ◦ 2d f (Ȧ, ϕ̇).

We will use frequently that every element in Ω1(uE)
decomposes uniquely as ϕ = φ − φ∗ for φ ∈
Ω1,0(EndE) and vice versa φ = 1

2 (ϕ + i ⋆ ϕ). The ac-
tion G ⟳ AH is given by conjugation.

Proposition 2.3. The infinitesimal action of G at (D, ϕ) ∈
AH is given by ρ : g → T(D,ϕ)AH , Z 7→ (−DZ, [Z, ϕ]).

Proof. It suffice to consider the matrix exponential up to
first order terms under the differentiation. Using that
1 ∈ Ω0(UE) is parallel we obtain

ρ(Z) =
d
dt

∣∣∣
t=0

(1 + tZ).(D, ϕ)

=
d
dt

∣∣∣
t=0

(DtZ +O(t2), ϕ − ϕtZ + tZϕ +O(t2))

= (−DZ, [Z, ϕ]).

I1 is just one of many complex structures on the space
of doubled connections. In fact we have the following
statement:

Proposition 2.4. The tuple (I1, I2, I3, g), with I2(Ȧ, ϕ̇) =
(−ϕ̇, Ȧ) and I3(Ȧ, ϕ̇) = (− ⋆ ϕ̇,− ⋆ Ȧ), defines a hy-
perkähler structure on AH with Kähler forms ωi =
g(Ii · , · ). Further the map µ = (µ1, µ2, µ3) : AH →
(g∗)⊕3, where

(i) µ1(D, ϕ) := −FD + ϕ ∧ ϕ − 2πi d
n idEωX

(ii) µ2(D, ϕ) := −D ⋆ ϕ

(iii) µ3(D, ϕ) := Dϕ

is a hyperkähler moment map for G ⟳ AH .

Proof. First note that AH is an affine space and all com-
mutators of vector fields vanish, hence the almost com-
plex structures are integrable. Further the ⋆2 = −1 im-
plies the quaternionic relation I2

i = I1 I2 I3 = −1. The
forms ωi have constant coefficients and are therefore
closed. Let {ek} be a basis of Ω1(uE). A frame of TAH

is given by p = (D, ϕ) 7→ ϵkl(p) = (ek, el). Thus, the
coefficient functions ωi,klmn = ωi(ϵkl , ϵmn) are constant.
It remains to check that g is hermitian with respect to
all Ii. Let Zi = (Ȧi, ϕ̇i) ∈ T(D,ϕ)AH for i = 1, 2 then

g(I1Z1, I1Z2) = −
∫

X
tr(⋆Ȧ1 ∧ ⋆2 Ȧ2 + (−⋆)ϕ̇1 ∧ ⋆(−⋆)ϕ̇2)

= −
∫

X
tr(Ȧ1 ∧ ⋆Ȧ2 + ϕ̇1 ∧ ⋆ϕ̇2)

= g(Z1, Z2).

Using that g = gh ⊕ gh, where gh as in 1, we obtain

g(I2Z1, I2Z2) = g((−ϕ̇1, Ȧ1), (−ϕ̇2, Ȧ2))

= gh(−ϕ̇1,−ϕ̇2) + gh(Ȧ1, Ȧ2)

= g((Ȧ1, ϕ̇1), (Ȧ2, ϕ̇2))

= g(Z1, Z2).
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Combing the calculations above

g(I3Z1, I3Z2) = g((− ⋆ ϕ̇1,− ⋆ Ȧ1), (− ⋆ ϕ̇2,− ⋆ Ȧ2))

= g((⋆Ȧ1,− ⋆ ϕ̇1), (⋆Ȧ2,− ⋆ ϕ̇2))

= g(I2Z1, I2Z2)

= g(Z1, Z2).

Thus, (I1, I2, I3, g) is a hyperkähler structure. Now let
(Ȧ, ϕ̇) ∈ T(D,A)AH and Z ∈ g. We need to check that
dµi(Ȧ, ϕ̇)(Z) = ωi(ρ(Z), (Ȧ, ϕ̇)) for all i = 1, 2, 3.

dµ1(Ȧ, ϕ̇) =
d
dt

∣∣∣
t=0

µ1(D + tȦ, ϕ + tϕ̇)

=
d
dt

∣∣∣
t=0

− FD+tϕ̇ + (ϕ + tϕ̇) ∧ (ϕ + tϕ̇)

=
d
dt

∣∣∣
t=0

− FD − tDȦ + ϕ ∧ ϕ + t[ϕ̇, ϕ] +O(t2)

= −DȦ + [ϕ̇, ϕ].

A local computation and the properties of the trace
yields tr(Z[ϕ̇, ϕ]) = tr([Z, ϕ] ∧ ϕ̇). Using this equation,
Stokes theorem and that the trace is parallel we obtain

dµ1(Ȧ, ϕ̇)(Z) =
∫

X
tr(−ZDȦ + Z[ϕ̇, ϕ])

=
∫

X
tr(DZ ∧ Ȧ + Z[ϕ̇, ϕ])

=
∫

X
tr(DZ ∧ Ȧ + [Z, ϕ] ∧ ϕ̇)

= ω1(ρ(Z), (Ȧ, ϕ̇)).

Note that the of D + tȦ induced connection on EndE is
of the form D + t[Ȧ, ·]. Then

dµ2(Ȧ, ϕ̇) =
d
dt

∣∣∣
t=0

µ2(D + tȦ, ϕ + tϕ̇)

=
d
dt

∣∣∣
t=0

(−D − tȦ)(⋆ϕ + t ⋆ ϕ̇)

=
d
dt

∣∣∣
t=0

− D ⋆ ϕ − tD ⋆ ϕ̇ − t[Ȧ, ⋆ϕ] +O(t2)

= −D ⋆ ϕ − [Ȧ, ⋆ϕ].

We conclude

dµ2(Ȧ, ϕ̇)(Z) =
∫

X
tr(−ZD ⋆ ϕ̇ − Z[Ȧ, ⋆ϕ])

=
∫

X
tr(DZ ∧ ⋆ϕ̇ − ⋆[Z, ϕ] ∧ Ȧ)

=
∫

X
tr(DZ ∧ ⋆ϕ̇ + [Z, ϕ] ∧ ⋆Ȧ)

= ω2(ρ(Z), (Ȧ, ϕ̇)).

i = 3 can be shown with a similar calculation. The
adjoint action of G on its Lie algebra is given by conju-
gation and with the trace being invariant under permu-
tation we obtain for each i = 1, 2, 3

Ad∗gµi(D, ϕ)(Z) = µi(D, ϕ)(g−1Zg)

= µi(gDg−1, gϕg−1).

Thus, the maps are G−equivariant.

We call a doubled connection harmonic if it is con-
tained in µ−1(0) and irreducible if there are no proper
D- and ϕ-invariant subbundles of E. Denote the set of
irreducible double connections as AH,s.

Theorem 2.5. The action Geff := G/U(1)

⟳ AH,s is free
and proper and for all harmonic (D, ϕ) ∈ AH,s we have that

T(D,ϕ)(G.(D, ϕ))⊕ (T(D,ϕ)(G.(D, ϕ)))⊥ = T(D,ϕ)µ
−1(0).

Proof. In [AN16, Ch. 6.3].

Set µs := µ|AH,s , then the hyperkähler quotient
Ms

n,d(X) := µ−1
s (0)/ Geff is called the moduli space

of irreducible harmonic doubled connections and is
a smooth manifold inheriting the hyperkähler struc-
ture of AH . Without the irreducebilty we get the mod-
uli space of harmonic double connections Mn,d(X),
which is a priori not a smooth manifold. The tangent
spaces to Ms

n,d(X) are given by

T[(D,ϕ)]Ms
n,d(X) = ker(d(D,ϕ)µs)/ρ(g)

∼= ker(d(D,ϕ)µs) ∩ ρ(g)⊥.

Let us calculate the orhorgonal complement of ρ(g) ⊂
T(D,ϕ)AH with respect to g. Let Z ∈ g and (Ȧ, ϕ̇) ∈
T(D,ϕ)AH . Then

g(ρ(Z), (Ȧ, ϕ̇)) = −
∫

X
tr(−DZ ∧ ⋆Ȧ + [Z, ϕ] ∧ ⋆ϕ̇)

=
∫

X
tr(Z(D ⋆ Ȧ + [ϕ, ⋆ϕ̇]).

Therefore, (Ȧ, ϕ̇) ∈ ρ(g)⊥ if and only if D ⋆ Ȧ =
−[ϕ, ⋆ϕ̇].

Proposition 2.6. The quaternonic dimension of the hy-
perkähler manifold Ms

n,d(X) is (g − 1)n2 + 1.

Proof. We won’t give the details but only an idea of the
proof. For details check [AN16, Ch. 6.3]. Consider the
map D̂ : T(D,ϕ)AH → Ω2(uE)⊕4 given by

D̂(Ȧ, ϕ̇) = (d(D,ϕ)µs(Ȧ, ϕ̇), D ⋆ Ȧ + [ϕ, ⋆ϕ̇]).

One can show that this is an elliptic operator of index
(g − 1)n2 and its cokernel has quaternionic dimension
1. Then, dimH ker D̂ = indD̂ + dimH cokerD̂ = (g −
1)n2 + 1. The proposition follows from the fact that the
tangent space to the moduli space at a point (D, ϕ) is
exactly the kernel of D̂.
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3. THE MODULI SPACE OF HIGGS BUNDLES

Now we want to specify the zero set of µ in a rea-
sonable way to define the moduli of Higgs bundles, i.e.
consider it as a subset of AC

1 . Let us combine two of the
moment maps as µC = µ3 + iµ2 : AH → g∗C. Using that
the holomorphic structure of a connection is given by
∂̄D = 1

2 (D − i ⋆ D) and ϕ = φ − φ∗ we obtain

µ̃(D, ϕ) = (D − i ⋆ D)(φ − φ∗) = 2∂̄D φ.

Further ϕ ∧ ϕ = −φ ∧ φ∗ − φ∗ ∧ φ = −[φ, φ∗] and
therefore

µ−1(0) = {(D, ϕ)|∂̄D φ = 0, FD + [φ, φ∗] = −2πi
d
n

idEωX}.

Thus, under the isomorphism f from proposition 2.2
the zero set of µ are Higgs bundles (∂̄, φ) ∈ AC

1 such
that the Chern connection can be modified to a projec-
tivly flat connection ∇ = D∂̄ + φ + φ∗, i.e.

F∇ = −2πi
d
n

idEωX .

We have the following theorem, proven by Carlos T.
Simpson in [CS88], connecting the notion of stability
of Higgs bundles and irreducibility of doubled connec-
tions.

Theorem 3.1. For all [(D, ϕ)] ∈ Ms
n,d(X) the pair (∂̄D, φ)

is a stable Higgs bundle and vice versa every stable Higgs
bundle is isomorphic to (∂̄D, φ) for a irreducible doubled con-
nection (D, ϕ). Moreover, polystable Higgs bundles corre-
spond in the same way to harmonic doubled connections.

Thus, we have a one-to-one correspondence of iso-
morphism classes of stable Higgs bundles and points
in Ms

n,d(X). Finally we are ready to state the following
definition.

Definition 3.2. The moduli space of stable Higgs bun-
dles of rank n and degree d over a compact Riemann surface
X of genus g ≥ 2 is the smooth Kähler manifold of complex
dimension 2(g − 1)n2 + 2 given by

Hs
n,d(X) := (Ms

n,d(X), I1, g).

Without the irreduciblity we have the moduli of
polystable Higgs bundles Hn,d(X) which is a quasi-
projective variety with singularities and its smooth
points are exactly the isomorphism classes of stable
Higgs bundles.

Example 3.1. Higgs line bundles of degree 0
First realize that a holomorphic line bundle has no proper
holomorphic subbundles and hence every Higgs bundle of
rank 1 is stable. Consider a line bundle L → X of degree
zero together with a Higgs bundle (∂̄, φ). Since, EndL =
L−1L = CX a Higgs field is a holomorphic section of the
canonical bundle φ ∈ H0K. Under the isomorphism

Ω1(X) ∋ ϕ 7→ ϕ + i ⋆ ϕ ∈ ΓK

we have H0K ∼= Harm(X) = ker d ∩ ker ⋆d and via the
Hodge-decomposition the space of harmonic 1-forms is iso-
morphic to H1

dR(X), which is a 2g-dimensional real vector
space. Let (D, ϕ) be a harmonic doubled connection corre-
sponding to the Higgs bundle. Then

µ−1(0) = {(D, ϕ) ∈ AH | FD = 0, ϕ ∈ HarmX}
= µ̃−1(0)× HarmX,

where µ̃ : Ah → g∗, D 7→ −FD is the moment map of the
action G ⟳ Ah. The Kähler quotient (µ̃−1(0)/G, ⋆) is the
moduli space of holomorphic structures [AN16, Chapter 5].
Since G acts trivial on 1-forms we obtain

H1,0(X) = (µ̃−1(0)/G, ⋆)× (Harm(X),−⋆)

= JacX × (Cg)∗

= T∗JacX.

Thus, the moduli space of degree zero and rank one Higgs
bundles over a compact Riemann surface is a smooth Kähler
manifold given by the cotangent bundle to the Jacobian vari-
ety of X.
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