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The talk is based on [AN16]. We are going to construct the moduli space of Higgs bundles over
a compact Riemann surface using the space of doubled connections. This is a infinite dimensional
hyperkéhler space with a group action of the unitary gauge group, which admits a hyperkahler
moment map. The moduli space of Higgs bundles is the hyperkéhler quotient together with a
specific complex structure. Under certain stability conditions, this will be a smooth Kéahler manifold
of finite dimension. As an example we consider it for line bundles of degree zero.

0. PRELIMINARIES

Throughout this whole talk X will denote a compact
Riemann surface of genus ¢ > 2 and E — X a complex
vector bundle of degree d and rank n. Moreover, wy
denotes a compatible Kéhler form on X such that 1 =
f x wx. For a fixed hermitian metric 1 on E we extend
the Hodge-star to Q! (EndE) by defining it on products
*x(wA) := (xwA*) for w € Q}(X) and A € QO°(EndE),
where A* is the adjoint of A with respect to i. Then
x> = —Tand ¢ A xih = — x ¢ A 1. Since we are going to
take a qoutient of an infinte dimensional manifold by
an infinite dimensional Lie group, we need to redefine
Riemannian and hyperkéhler structures.

Definition 0.1. Let M be a possibly infinite dimensional
smooth manifold and p € M.

A Riemannian metric g on M is a smoothly varing inner
product g, on the tangent spaces such that T,M > X
8(X,-) € TyM* is injective.

A Riemannian metric g together with three complex struc-
tures 11, Ip, I3 (defined as in finite dimensions) satifying
I? = LIz = —1 is called a hyperkihler structure if the

forms w; = g(I; -, -) are closed and g is hermitian with re-
spect to all complex structures.

We will use the following theorem to prove the
smoothness and the existence of a Hyperkahler struc-
ture on the Moduli space of Higgs bundles.

Theorem 0.2. Let G be a possibly infinite dimensional Lie
group acting freely and proper on a hyperkihler manifold
M such that there exists a hyperkéihler moment map, i.e.

pr M = (g%)%3, satisfying dppi(Z) = 1,z w; for all
ZegpeMandi=1,231If

Tp(G.p) ® Tp(G.p)* = Tyu *(0)

forall p € u=1(0), then u=1(0)/G is a smooth hyperkihler
manifold.

Proof. In [AT07, p. 171, Theorem 2.22]. O

1. HIGGS BUNDLES

Definition 1.1. A tuple (E,d, ¢) consisting of a holomor-
phic vector bundle and a Higgs field ¢ € H°(X, EndE ® K)
is called a Higgs bundle. We consider H(X, EndE ® K) C
QYW (EndE)

Given a Higgs Bundle (E, d, ) a Higgs subbundle is
a holomorphic subbundle F C E that is ¢-invariant, i.e.
¢(F) C F® K. The slope of a vector bundle E — X
is given by the quotient yu(E) = dﬁ(—gEE. This topological
quantity is used to define stability conditions for holo-
morphic vector bundles. In a similar manner, we define

the notion of stability for Higgs bundles.
Definition 1.2. A Higgs bundle (E,d, ¢) is called

(i) stable if the slope of all proper Higgs subbundles is
less then u(E).

(ii) polystable if E decomposes as the direct sum of stable
Higgs bundles E; such that y(E) = u(E;) for all i.

Let us look at a simple example of a stable Higgs
bundle.

Example 1.1. Consider a spin structure on X, i.e. a holo-
morphic line bundle L — X such that [> = K. Set
E = L@ L™ and define a section of EndE ® K by

_ {00

= (1)
Since Hom(L,L 1)K = L7'L7'K = K™K = Cy, ¢ is
well defined. 1 € H°(Cy), thus (E, @) is a Higgs bundle
of rank 2 and degree 0. L and L' are the only proper holo-
morphic subbundles. We obtain ¢(L) = L™'K ¢ LK and
@(L™Y) = 0 C L™K, meaning that L~ is the only proper
Higgs subbundle. Further deg L~! = —% deglL=1-g<
0. Hence, the Higgs bundle is stable.

We want to define the Moduli of Higgs bundles for
fixed rank and degree. Since all vector bundles of same
degree and rank over X are topologically equivalent we
fix E —+ X and consider every Higgs bundle of degree

d and rank 7 to be a pair (9, ¢) € A?S x QO(EndE) =:



AS such that d¢ = 0. AS is modeled on the complex
vector space Q%! (EndE) @ Q'?(EndE). Moreover, the
complex gauge group Gc := Q°(Aut(E)) acts on A$
via ¢.(0,9) = (godog~t,gpg!). Thus, two Higgs
bundles are in the same orbit if there exists a vector
bundle isomorphism g: E — E that commutes with the
holomorphic structures and the Higgs fields. Such a g
is called an isomorphism of Higgs bundles.

2. THE SPACE OF DOUBLED CONNECTIONS

Let  be a hermitian metric on E. We consider
the unitary gauge group G := QU(UE) := {g €
OY(AutE) | ¢* = ¢!} and its action on a space isomor-
phic to AL, Locally the Lie group G is given by smooth
maps X D U — U(n) with pointwise matrix multipli-
cation. Thus, g = Q°(uE) := {Z € QY(EndE) | — Z =
Z*} and we will use the identification

Q2(uE) = ¢, Fi—)/ tr(FA ).
X

Definition 2.1. A pair (D,$) € A" := AL x Q!(uE)
is called a doubled connection, where A% is the space of
unitary connections on E with respect to h.

This is an infinite dimensional affine space modeled
on O'uE) ® QY(uE). If A € QOuE), then A* =
—A € QYuE) and 2 = —1. This implies that x €
I'End(TX* ® EndE) defines a complex structure on A%
If we identify the dual space of Q' (uE) with itself via
the metric ¢"

J"(A,B) = — /X tr(A A +B) )

on .Ah, we obtain a natural complex structure
111 T(D’(P)AH — T(D’(P)AH, Il(A/(P) = (*A,— *(P) on
AH. Moreover, AT carries the product metric g :=
g" @ ¢" given by

2((A1,¢1), (As, ) == —/Xtr(Al/\*A2+¢1 A %)

Proposition 2.2. (A, 1)) and AS are isomorphic as com-
plex manifolds.

Proof. Let f: A — AL, f(D,¢) = (dp,¢'?), where
¢ = L(p+ix¢p) and 0p = (D —ixD). f has
an explicit inverse by taking the Chern connection and
¢ ¢—9" Let (A,¢) € Tp4)A", then

2df (%A, — x P) = (xA+iA, —x P +ip)
=i(A—ixA,p+ix¢)
=i02df(A,¢).

O
We will use frequently that every element in Q! (uE)
decomposes uniquely as ¢ = ¢ —¢" for ¢ €
OY(EndE) and vice versa ¢ = (¢ +ix¢). The ac-
tion G ¢ A is given by conjugation.
Proposition 2.3. The infinitesimal action of G at (D, ¢) €
At is given by p: g — T(D’¢).AH, Zw— (—DZ,[Z,¢)).

Proof. 1t suffice to consider the matrix exponential up to
first order terms under the differentiation. Using that
1 € QY(UE) is parallel we obtain

p(2)= 4] (1+12).(D,9)

- %‘ (DIZ+O(8),¢ = 9tZ + 129+ O())
t=
= (-DZ,(Z,9)).
O
I; is just one of many complex structures on the space

of doubled connections. In fact we have the following
statement:

Proposition 2.4. The tuple (I1, I, I3, ), with (A, $) =
(—¢,A) and I3(A, ) = (—x¢,— x A), defines a hy-
perkiihler structure on AM with Kihler forms w; =
¢(I;+, ). Further the map u = (uy,po,u3): AL —
(g*)%3, where

(i) u1(D,$) == —FP + ¢ A ¢ —2mididrwy

(ii) up(D,¢) := —D ¢

(iii) p3(D, ¢) := Do
is a hyperkihler moment map for G & AH.
Proof. First note that A" is an affine space and all com-
mutators of vector fields vanish, hence the almost com-
plex structures are integrable. Further the 2 = —1 im-
plies the quaternionic relation I? = I;,I3 = —1. The
forms w; have constant coefficients and are therefore
closed. Let {e;} be a basis of Q! (uE). A frame of TAH
is given by p = (D, ¢) — €x(p) = (ex, ;). Thus, the
coefficient functions w; yimn = wi(€x, €mn) are constant.

It remains to check that g is hermitian with respect to
all I. Let Z; = (A;, ¢;) € T(D,(P).AH fori=1,2 then

g(I1Z1, 1122) = — /X tl‘(*Al A *2A2 + (—*)¢1 A *(—*)4')2)

- _ /Xtr(Al Akl + 1 A <)
=8(Z1,22).
Using that ¢ = ¢ @ ¢, where ¢" as in we obtain
§(hZ1,hZy) = g((—1, A1), (—¢2, A2))
&' (=1, —¢2) + ¢" (A1, A2)
§((A1, ¢1), (Az,¢2))
8(Z1, Z,).




Combing the calculations above

8(I3Z1,13Z3) = g((—* 1, — % A1), (— x 2, — x Ay))
= 8((*A1, = x 1), (A2, — x §2))
= §(IaZ1, hZy)
= (21, 22).
Thus, (I, I, I3, g) is a hyperkdhler structure. Now let
(A,¢) € T(D,A)AH and Z € g. We need to check that
dui(A,$)(Z) = wi(p(Z),(A,)) foralli =1,2,3.

dpi (A, §) = dt‘ (D +tA, ¢+ td)
- .
dt\t ST (1) A (g )
_dt‘t_p FP —tDA+ ¢ A+t ¢] + O(£)
= —DA+[$,¢].

A local computation and the properties of the trace
yields tr(Z[¢, ¢]) = tr([Z, ] A ¢). Using this equation,
Stokes theorem and that the trace is parallel we obtain

A1 (A,9)(2) = [ te(~ZDA+Z[g,¢))
:/Xtr(DZAA+z[¢,q>])
:/Xtr(DZAA+[z,¢]A4>)

= wi(p(2),(A,9)).
Note that the of D + tA induced connection on EndE is

of the form D + t[A, -]. Then

din (A, §) = dt‘ 2(D + tA, ¢ + t)
:%‘tzo(_ —tA)(xp + tx )
:ﬁ‘tZO—D*cp—tD*(j)—t[A',*q)]—|—(9(t2)
= —Dx¢p—[A x¢].

We conclude

B2l A §)(2) = [,
=

=k
= @(p(2), (4,9).

i = 3 can be shown with a similar calculation. The
adjoint action of G on its Lie algebra is given by conju-
gation and with the trace being invariant under permu-
tation we obtain for eachi =1,2,3

Adiui(D,¢)(Z) = ui(D, $) (g7 Zg)
= ui(gDg ', gpg ™).

tr(—ZD % ¢ — Z[A, x¢))
1(DZ Ax¢p — *[Z,p] N A)

t(DZ A *¢ + [Z,p] A*A)

Thus, the maps are G—equivariant.

O

We call a doubled connection harmonic if it is con-
tained in #~1(0) and irreducible if there are no proper
D- and ¢-invariant subbundles of E. Denote the set of

irreducible double connections as A5,

Theorem 2.5. The action G = G/U(1)CA"* is free
and proper and for all harmonic (D, ¢) € A we have that

G.(D,9)) @ (T(n,4)(G-(D,$)))*

Proof. In [AN16, Ch. 6.3]. O

T(p,g)( Tipgyi ' (0).

Set ps := p|yns, then the hyperkdhler quotient
M; (X)) = 1#51(0)/ G is called the moduli space
of irreducible harmonic doubled connections and is
a smooth manifold inheriting the hyperkéhler struc-
ture of AH. Without the irreducebilty we get the mod-
uli space of harmonic double connections M, ;(X),
which is a priori not a smooth manifold. The tangent
spaces to M; ;(X) are given by

(X) = ker(

us)/p(g)
= ker(d (D,¢)ys)ﬂp( )t

Ti(p,g) M

Let us calculate the orhorgonal complement of p(g) C
T(D/(P)AH with respect to g. Let Z € g and (A,¢) €
T(D,¢)AH. Then

8(0(2), (A, $) =
- /Xtr(Z(D*A + ¢, %))

_ /Xtr(_Dz N*A+[Z,¢] A <)

Therefore, (A, ¢) € p(g)*
—[¢, x¢).

Proposition 2.6. The quaternonic dimension of the hy-
perkiihler manifold M? ,(X) is (g — 1)n® + 1.

if and only if DxA =

Proof. We won't give the details but only an idea of the
proof. For details check [AN16, Ch. 6.3]. Consider the

map D: T(D/(P)AH — O?(uE)®* given by
D(A,§) = (g 1s(A,$), D x A+ [, ).
One can show that this is an elliptic operator of index
(¢ — 1)n? and its cokernel has quaternionic dimension
1. Then, dimpy kerD = indD + dimyyg cokerD = (g —
1)n? + 1. The proposition follows from the fact that the
tangent space to the moduli space at a point (D, ¢) is
exactly the kernel of D. O




3. THE MODULI SPACE OF HIGGS BUNDLES

Now we want to specify the zero set of y in a rea-
sonable way to define the moduli of Higgs bundles, i.e.
consider it as a subset of A$. Let us combine two of the
moment maps as jic = pi3 +ipp: AH — g&. Using that
the holomorphic structure of a connection is given by
dp = 3(D—i*D) and ¢ = ¢ — 9" we obtain

fi(D,¢) = (D —ixD)(¢ —9") =20p¢.

Further pA P = —p A P* — 9" Np = —[¢,¢*] and
therefore

- 3 x A,
p1(0) = {(D,¢)lopg =0, FP + [p,9"] = —ZNZEIdwa}.

Thus, under the isomorphism f from proposition
the zero set of y are Higgs bundles (9, ¢) € A{ such
that the Chern connection can be modified to a projec-

tivly flat connection V = D%+ p+9% ie.
d
FY = —27iidpwy.

We have the following theorem, proven by Carlos T.
Simpson in [CS88], connecting the notion of stability
of Higgs bundles and irreducibility of doubled connec-
tions.

Theorem 3.1. For all [(D,¢)] € M;, ,(X) the pair (dp, ¢)
is a stable Higgs bundle and vice versa every stable Higgs
bundle is isomorphic to (dp, @) for a irreducible doubled con-
nection (D, ¢). Moreover, polystable Higgs bundles corre-
spond in the same way to harmonic doubled connections.

Thus, we have a one-to-one correspondence of iso-
morphism classes of stable Higgs bundles and points
in M5 ,(X). Finally we are ready to state the following

definition.

Definition 3.2. The moduli space of stable Higgs bun-
dles of rank n and degree d over a compact Riemann surface
X of genus g > 2 is the smooth Kihler manifold of complex
dimension 2(g — 1)n? + 2 given by

na(X) = (M; 4(X), 1, 8).

Without the irreduciblity we have the moduli of
polystable Higgs bundles 7, ;(X) which is a quasi-
projective variety with singularities and its smooth
points are exactly the isomorphism classes of stable
Higgs bundles.

Example 3.1. Higgs line bundles of degree 0

First realize that a holomorphic line bundle has no proper
holomorphic subbundles and hence every Higgs bundle of
rank 1 is stable. Consider a line bundle L — X of degree
zero together with a Higgs bundle (9, ¢). Since, EndL =
L='L = Cx a Higgs field is a holomorphic section of the
canonical bundle ¢ € HOK. Under the isomorphism

O X)s¢—p+ixp eTK

we have H'K = Harm(X) = kerd Nker*d and via the
Hodge-decomposition the space of harmonic 1-forms is iso-
morphic to H}p (X), which is a 2g-dimensional real vector
space. Let (D, ¢) be a harmonic doubled connection corre-
sponding to the Higgs bundle. Then

u~1(0) = {(D,$) € A" |F” = 0,¢ € HarmX}
= 71 1(0) x HarmX,

where fi: A" — g*, D — —FP is the moment map of the
action G A", The Kihler quotient (i=1(0)/G,*) is the
moduli space of holomorphic structures [AN16, Chapter 5].
Since G acts trivial on 1-forms we obtain

Hio(X) = (i 1(0)/G, %) x (Harm(X), —x)
= JacX x (C¢)*
= T*JacX.

Thus, the moduli space of degree zero and rank one Higgs
bundles over a compact Riemann surface is a smooth Kihler
manifold given by the cotangent bundle to the Jacobian vari-
ety of X.
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