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Abstract

In this talk, we give a proof sketch of the Hitchin-Simpson correspondence following Wentworth

[Wen16], which states that to a fixed complex vector bundle E → X over a compact Riemann surface

g ≥ 2 up to smooth bundle isomorphism, the moduli space of polystable Higgs bundles (∂E ,Φ) is

homeomorphic to the moduli space of harmonic metrics on (∂E ,Φ), that is, hermitian metrics h, whose

associated Chern connection paired with the Higgs field (A,Φ) satisfies Hitchins equation

⋆(FA + [Φ,Φ∗]) = −iµ(E) IdE .

We begin by fixing a complex vector bundle E → X over a compact Riemann surface g ≥ 2 with rank n

and degree d.

Remark. Any complex vector bundle over a compact Riemann surface with rank n and degree d is smoothly

isomorphic to

E ∼= det(E)⊕ Cn−1,

where det(E) is the determinant line bundle of E, which has degree d. Furthermore, complex line bundles

are classified by their first Chern class, or equivalently, when the base is a compact curve, by their degree.

Hence fixing the rank and degree of E completely determines its smooth type.

Structures on E

Recall the definition of the following structures on E → X:

Definition. A Hermitian metric h on E is an assignment of a Hermitian inner product

hp : Ep × Ep → C

that varies smoothly along the base X.

Remark. 1. The existence of a Hermitian metric on E is equivalent to a reduction of structure group from

GL(n,C) to U(n). Such a reduction is always possible as U(n) is the maximal compact subgroup of

GL(n,C), and GL(n,C) deformation retracts onto U(n).

2. The unitary gauge group G(E,h) := {g ∈ A0(X,Aut(E)), g∗ = g−1)} is the group of automorphisms

of E preserving its Hermitian structure

hp(gp · u, gp · v) = hp(u, v), u, v ∈ Ep.

For Hermitian metrics h, h′, there is a natural isomorphism G(E,h)
∼= G(E,h′). We will henceforth drop

the dependence on h and refer to the unitary gauge group as GE .
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Definition. A holomorphic structure on E is a Dolbeault operator

∂E : A0(X,E)→ A0,1(X,E),

such that ∂
2

E = 0 and satisfies the Leibniz rule

∂E(f ⊗ s) = ∂f ⊗ s+ f ⊗ ∂Es,

where ∂ : A0(X)→ A0,1(X) is the holomorphic structure of the base X.

Remark. 1. A holomorphic structure ∂E is a complex structure on the total space E, which makes it into

a complex manifold. We denote the space of holomorphic structures on E by Dol(E).

2. The complex gauge group GCE = {g ∈ A0(X,Aut(E))} is the group of automorphisms of E acting

on the holomorphic structures via

g · (E, ∂E) = (E, g ◦ ∂E ◦ g−1).

Two holomorphic vector bundles are holomorphically isomorphic if and only if they are related by a

complex gauge group action.

3. Let (E, ∂E , h) be a holomorphic Hermitian vector bundle. Since GE ⊆ GCE , the holomorphic and

Hermitian structure stays in the same isomorphism class within the unitary gauge orbit. However,

within the complex gauge orbit, the Hermitian structure varies. In fact, we can identify the space of

Hermitian structures with GCE/GE .

Definition. A connection on E is a differential operator

dA : A0(X,E)→ A1(X,E)

satisfying the Leibniz rule

dA(f ⊗ s) = df ⊗ s+ f ⊗ dAs,

where d : A0(X)→ A1(X) is exterior differentiation on X.

Remark. 1. A connection is called flat if its curvature vanishes FA = d2A = 0 ∈ A2(X,End(E)).

2. The unitary and complex gauge group acts on dA via conjugation, g · dA = g ◦ dA ◦ g−1.

3. Given a Hermitian structure (E, h), dA is called a unitary connection if dAh = 0, i.e. h is parallel

with respect to dA. We will denote the space of unitary connections with respect to h by A(E, h).

The Atiyah-Bott Isomorphism

The three structures above are a priori independent of each other, each one of them can exist on the

smooth complex bundle E without any relation to the other two. However, the Atiyah-Bott isomorphism

characterizes a relationship between holomorphic structures and unitary connections on E.

Theorem (Atiyah-Bott Isomorphism). Fix (E, h) a Hermitian structure. Then there is a one to one corre-

spondence:

Dol(E)
1:1←→ A(E, h)

between the set of holomorphic structures ∂E on E and the set of unitary connections with respect to h.
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Proof. (⇒) Given a holomorphic structure ∂E , there is a unique unitary connection dA such that d0,1A = ∂E

called the Chern connection.

(⇐) Conversely, given a unitary connection dA, its (0, 1)-part d
0,1
A satisfies the Leibniz rule and (d0,1)2 = 0

as there are no nontrivial (0, 2)-forms on compact Riemann surfaces.

Note that given a holomorphic structure (E, ∂E), the choice of a Hermitian metric h determines uniquely

the Chern connection A(∂E , h) =: A.

Definition. A Hermitian metric h on (E, ∂E) is called a Hermite-Einstein metric if its associated Chern

connection A is projectively flat,

⋆FA = −iµ(E) IdE ,

where µ(E) := deg(E)/rank(E) is the slope of E and IdE ∈ A0(X,End(E)) is section of identity matrices

at each p ∈ X.

Meanwhile, given a holomorphic vector bundle (E, ∂E), a Higgs field is a holomorphic section Φ ∈
H0(X,End(E) ⊗ K), where K := T ∗X denotes the canonical line bundle. Together, a pair (E, ∂E ,Φ) is

called a Higgs bundle.

Definition. A Hermitian metric h on (E, ∂E ,Φ) is called a harmonic metric if its associated Chern

connection and Higgs field pair (A,Φ) satisfies the Hitchin equation,

⋆(FA + [Φ,Φ∗]) = −iµ(E) IdE .

The Hitchin-Simpson Correspondence

The Hitchin-Simpson correspondence relates the polystability of a Higgs bundle to the existence of a har-

monic metric on it, while the Hitchin-Kobayashi correspondence is a simpler version relating the polystability

of a holomorphic vector bundle to the existence of a Hermite-Einstein metric on it. Their proofs are similar in

vein, where the former essentially builds on that of the latter, but accounting for the extra Higgs field. In the

case of vanishing Higgs field Φ ≡ 0, the Hitchin-Simpson correspondence reduces to the Hitchin-Kobayashi

correspondence.

Before stating the correspondence, let’s briefly recall the notion of stability for vector bundles and Higgs

bundles. A holomorphic vector bundle is:

• stable if all holomorphic subbundles F has strictly smaller slope µ(F ) < µ(E),

• polystable if it is the direct sum of stable subbundles E =
⊕

i Ei of the same slope µ(E) = µ(Ei).

On the other hand, the stability conditions for Higgs bundles are restricted to Φ-invariant subbundles

F ⊂ E, Φ(F ) ⊂ F ⊗K.

A Higgs bundle is:

• stable if all Φ-invariant subbundles F has strictly smaller slope µ(F ) < µ(E),
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• polystable if it is the direct sum of stable Higgs subbundles (E,Φ) =
⊕

i(Ei,Φi) of the same slope

µ(E) = µ(Ei).

Theorem (Hitchin-Kobayashi Correspondence). Let (E, ∂E) be a holomorphic vector bundle, then

(E, ∂E) polystable ⇔ (E, ∂E) admits a Hermite-Einstein metric.

For degree zero, (E, ∂E) is polystable if and only if E admits a flat connection.

Theorem (Hitchin-Simpson Correspondence). Let (E, ∂E ,Φ) be a Higgs bundle, then

(E, ∂E ,Φ) polystable ⇔ (E, ∂E ,Φ) admits a harmonic metric.

Proof sketch. (⇐) Suppose we have (A,Φ) satisfying Hitchin’s equation. Let S ⊂ E be a Φ-invariant

holomorphic subbundle. We show that

µ(S) ≤ µ(E)

and equality holds if and only if β = 0 and Φ splits. This is equivalent to showing that E is polystable.

Using the Hermite-Einstein metric h, we form the decomposition E = S ⊕ Q where Q = E/S is a

holomorphic bundle that is a subbundle of E precisely when the Dolbeault operator is diagonal,

∂E =

(
∂S β

0 ∂Q

)
.

Here β ∈ H0,1(X,Hom(Q,S)) is an extension class for the short exact sequence

0→ S → E → Q→ 0,

which vanishes β = 0 when the sequence splits, i.e. when Q ⊂ E a subbundle.

The associated Chern connection is a block skew-Hermitian form

dA = ∂E − ∂
∗
E =

(
dAS

β

−β∗ dAQ

)
.

We compute its curvature

FA = dA ∧ dA =

(
FAS

− β ∧ β∗ dAS
β + βdAQ

−dAQ
β∗ − β∗dAS

FAQ
− β∗ ∧ β

)
.

Recall that the degree of a complex vector bundle E over a curve X is the evaluation of its first Chern

class

c1(E) =

[
i

2π
tr ⋆ FA

]
∈ H2(X,R)

on the volume form ω of X, normalized to
∫
X
ω = 2π.

Let πS : E → E denote the orthogonal projection onto the subbundle S, π2
S = πS . Recall that on

A1(X,End(E)) there is a positive definite inner product

⟨α, β⟩ = − i

2π

∫
X

tr(α ∧ ⋆β).
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Then, we can compute

degS =

∫
X

c1(S)ω =
i

2π

∫
X

tr(⋆FA)ω

=
i

2π

∫
X

tr (πS ⋆ FAS
πS + ⋆(β ∧ β∗))ω

=
i

2π

∫
X

tr (−iµ(E)πSIdEπS + iπS ⋆ [Φ,Φ∗]πS + ⋆(β ∧ β∗))ω

= µ(E) rank(S)−
(
|πSΦ(I − πS)|2 + |β|2

)
≤ µ(E) rank(S),

where in the third line we’ve used the fact that FA is a solution to Hitchin’s equation, and in the fourth

line we’ve used the computation

i

2π

∫
X

tr(πS ⋆ [Φ,Φ∗]πS)ω = |πSΦ(I − πS)|2

and that
1

2π

∫
X

tr ⋆ (β ∧ β∗)ω = i|β|2.

Thus we have shown that

µ(S) ≤ µ(E)

with equality if and only if β = 0 and Φ splits.

(⇒) It suffices to assume E = (E, ∂E ,Φ) is stable. Let Ah be the Chern connection associated to a Hermi-

tian metric h. Then we vary (Ah,Φ) along a sequence in the complex gauge orbit of E∞ = (E, ∂E ,Φ)

and show that in the limit, there exists a solution (A∞,Φ∞) to Hitchin’s equation corresponding to

(E∞, ∂∞,Φ∞) in the same orbit. We have to show that the limiting bundle E∞ is indeed a Higgs bundle

and that E = E∞ are isomorphic as Higgs bundles. In other words, the limiting map g∞ : E → E∞ of

the sequence of gauge transformations {gj} is well-defined gauge transformation.

The proof comes in four steps and involve quite some analysis that we shall gloss over as italicized

claims without proof. Notably, the proof utilizes Uhlenbeck’s weak compactness theorem, which we

state here as a proposition directly taken from Wentworth’s notes [Wen16]:

Proposition. Fix p ≥ 2. Let {Aj} be a sequence of Lp
1-connections with ||FAj

||Lp
uniformly bounded.

Then there exists a sequence of unitary gauge transformations gj ∈ Lp
2 and a smooth unitary connection

A∞ such that (after passing to a subsequence) gj(Aj)→ A∞ weakly in Lp
1 and strongly in Lp.

Step 1. Finding the limiting bundle (E∞, ∂∞,Φ∞): There exists a minimizing sequence (Aj ,Φj) for

the Yang-Mills-Higgs functional

YMH(A,Φ) :

∫
X

|i ⋆ (FA + [Φ,Φ∗])− µ(E) IdE |2ω

in the same complex gauge orbit of (E,Φ), for which ||FAj
||Lp is bounded for any p. Applying Uh-

lenbeck’s weak compactification we obtain a smooth unitary connection A∞ such that if we write

∂Aj
= ∂A∞ + aj , aj → 0 weakly in Lp

1. By the Sobolev embedding theorem, we may assume that

aj → 0 for some Cα. Each Φj is holomorphic by assumption, hence

0 = ∂Aj
Φj = ∂A∞Φj + [aj ,Φj ].
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Next, using much mathematical analysis, one argues that Φj converges in Cα to some Φ∞. By the

holomorphicity of Φj , we write

∂A∞Φ∞ = ∂Aj (Φ∞ − Φj)− [aj ,Φj ].

Since Φ∞−Φj → 0, [aj ,Φj ]→ 0 in Cα, we have that ∂A∞Φ∞ = 0 weakly. Hence, by Weyl’s lemma,

Φ∞ is holomorphic, and (E∞, ∂∞,Φ∞) is indeed a Higgs bundle.

Step 2. Construct nonzero holomorphic map g∞ : E → E∞: Let gj(A) = Aj be the complex gauge

transformations associated to the minimizing sequence (Aj ,Φj). That is,

gjΦ = Φjgj .

Using a similar argument as in Step 1, one shows that gj → g∞ in Cα, and that g∞ is holomorphic

with

g∞Φ = Φ∞g∞.

Step 3. The gauge transformation g∞ is an isomorphism: Suppose g∞ is not an isomorphism. Then

the existence of the Φ-invariant subbundle S = ker g∞ ⊆ E contradicts our assumption that E is stable.

Step 4. Finally, one checks that the a priori weak solution (A∞,Φ∞) is a solution to Hitchin’s equation

by checking that it is a critical point of the Yang-Mills-Higgs functional.

Due to time constraints, it was not possible to cover all details of this proof. Please refer to Theorem

2.17 of [Wen16] to fill in the gaps.
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