Discussion sheet: Proj and Ample line bundles

Enya Hsiao, Leonie Kayser, Bernhard Reinke

February 2024

We want to associate to an integral graded finitely generated \mathbb{C} -algebra $A = \bigoplus_{n \ge 0} A_n$ a projective variety Proj A. As a warm-up, we discuss some properties of the Spec construction and we will see later to what extend they also hold for Proj.

1 The affine spectrum

We recall some facts about affine varieties. Given an integral finitely generated \mathbb{C} -algebra B, we have associated a affine variety Spec B. Moreover, if B' is another integral finitely generated \mathbb{C} -algebra, then we have a natural bijection

$$\operatorname{Hom}_{\mathbb{C}\operatorname{-alg}}(B, B') \cong \operatorname{Hom}_{\mathbb{C}}(\operatorname{Spec} B', \operatorname{Spec} B)$$
(1)

In other words, the categories of integral finitely generated \mathbb{C} -algebras and the categories of affine varieties are contravariantly equivalent.

1.1 The underlying set

For a finitely generated \mathbb{C} -algebra B, we considered

$$mSpec B = \{ \mathfrak{m} \subset B \mid \mathfrak{m} \text{ is a maximal ideal} \}.$$

$$(2)$$

In the modern scheme theoretic foundation, the underlying space of the variety associated to B is

$$\operatorname{Spec} B = \{ \mathfrak{p} \subset B \mid \mathfrak{p} \text{ is a prime ideal} \}.$$
(3)

Recall that an ideal \mathfrak{p} is prime iff for $a, b \in B$ we have that if the product ab is in \mathfrak{p} , then one of the factors a or b has to be in \mathfrak{p} . In other words, the quotient B/\mathfrak{p} is integral.

Exercise 1.1. Show that for $B = \mathbb{C}[x]$ the maximal ideals are of the form $(x - \alpha)$ for $\alpha \in \mathbb{C}$, but (0) is also a prime ideal.

For $f \in B$, we have $D(f) = \{ \mathfrak{p} \subset B \mid f \notin \mathfrak{p} \}$. These form a basis of the topology on Spec B.

Exercise 1.2. Give a complete description of the open sets in Spec $\mathbb{C}[x]$. In particular, show that (0) is contained in every non-empty open set. It is called the "generic" point of Spec $\mathbb{C}[x]$.

Exercise 1.3. One often writes $f(\mathfrak{p}) \neq 0$ instead of $f \notin \mathfrak{p}$. Convince yourself that this notation makes sense by looking at the maximal ideals of $\mathbb{C}[x]$.

2 The Proj construction

We want to associate to an integral graded finitely generated \mathbb{C} -algebra $A = \bigoplus_{r \ge 0} A_r$ a projective variety $\operatorname{Proj} A$. The example that you should have in mind is $\operatorname{Proj} \mathbb{C}[x_0, \ldots, x_n] = \mathbb{CP}^n$. In the modern scheme theoretic setting, one can associate a projective \mathbb{C} -scheme $\operatorname{Proj} A$ to a graded finitely generated \mathbb{C} -algebra A, so the condition that A is integral is not needed for the general scheme-theoretic construction, but it simplifies the exposition.

2.1 Underlying set

We first define the underlying set of Proj A. In our construction, it will be closer to Spec B than to mSpec B. First some notations:

- An element $f \in A_r$ is called homogeneous of degree r.
- An ideal $\mathfrak{a} \subset A$ is called graded if it is generated by its homogeneous elements.
- The ideal $A_+ = \bigoplus_{r>0} A_r$ is called the irrelevant ideal.

Definition 2.1. The underlying space of Proj A is given by

$$\{ \mathfrak{p} \subset A \mid \mathfrak{p} \text{ graded prime ideal}, A_+ \not \subset \mathfrak{p} \}.$$

$$\tag{4}$$

For $f \in A_+$ homogeneous, we consider the standard open set

$$D_{+}(f) = \{ \mathfrak{p} \in \operatorname{Proj} A \mid f \notin \mathfrak{p} \}$$

$$\tag{5}$$

The sets form an basis for the Zariski topology on Proj A.

Exercise 2.1. Show that $D_{+}(fg) = D_{+}(f) \cap D_{+}(g)$.

Exercise 2.2 (Optional). In this exercise we deal with graded \mathbb{C} -algebras that are not necessarily integral or satisfy $A_0 = \mathbb{C}$, in order to motivate that (4) is the correct general definition.

- a) Let A be a finitely generated graded \mathbb{C} -algebra with $A_0 = \mathbb{C}$. Show that every homogeneous prime ideal is contained in the irrelevant ideal A_+ .
- b) If B, B' are \mathbb{C} -algebras, the direct product $B \times B'$ is also a \mathbb{C} -algebra. The sets $B \times 0$ are $0 \times B'$ are ideals in $B \times B'$, and every prime ideal $\mathfrak{p} \subset B \times B'$ contains exactly one of $\{B \times 0, 0 \times B'\}$.
- c) Show that for A, A' finitely generated graded \mathbb{C} -algebras, show that we have an homeomorphism $\operatorname{Proj}(A \times A') \cong$ $\operatorname{Proj} A \sqcup \operatorname{Proj} A'$, where $A \times A'$ has the grading $(A \times A')_n = A_n \times A'_n$.

2.2 Affine charts

From now on we again assume for simplicity that A is integral. All fractions that will appear can be understood in the quotient field of A. For $f \in A_r$ non-zero for r > 0, we define a ring

$$A_{(f)} = \left\{ \left. \frac{g}{f^k} \right| k \ge 0, g \in A_{rk} \right\}$$
(6)

Exercise 2.3. Let f_1, f_2 be non-zero, homogeneous of positive degree. Show that $A_{(f_1)} \subset A_{(f_1f_2)}$ as subsets of the quotient field of A.

Theorem 2.1. The space $\operatorname{Proj} A$ carries the structure of a projective variety such that for every f homogeneous nonzero of positive degree, $D_+(f) \cong \operatorname{Spec} A_{(f)}$. We have the following compatibility: for f_1, f_2 non-zero, homogeneous of positive degree, we have that the inclusion $D_+(f_1f_2) \subset D_+(f_1)$ is the morphism contravariantly equivalent to the inclusion $A_{(f_1)} \subset A_{(f_1f_2)}$.

Exercise 2.4. For $A = \mathbb{C}[x_0, x_1]$, use the covering $\operatorname{Proj} A = D_+(x_0) \cup D_+(x_1)$ to convince yourself that $\operatorname{Proj} A = \mathbb{CP}^1$.

- a) Show that $\operatorname{Proj} A = D_+(x_0) \cup D_+(x_1)$ is indeed a covering (Hint: $A_0 = \mathbb{C}$ and x_0, x_1 generate the irrelevant ideal.)
- b) Show $A_{(x_0)} = \mathbb{C}[\frac{x_1}{x_0}], A_{(x_1)} = \mathbb{C}[\frac{x_0}{x_1}], A_{(x_0x_1)} = \mathbb{C}[\frac{x_1}{x_0}, \frac{x_0}{x_1}].$
- c) Interpret the previous calculations as the description of Proj A as two copies of \mathbb{A}^1 glued along $\mathbb{A}^1 \setminus \{0\}$ along the identification $\eta = t^{-1}$.

2.3 Proj as a functor

In this section $A \subset A'$ are two finitely generated graded \mathbb{C} -algebras (with the same grading, so $A_r \subset A'_r$ for all $r \geq 0$).

Exercise 2.5. If $B \subset B'$ are two \mathbb{C} -algebras, and $\mathfrak{p} \subset B'$ is a prime ideal, show that $\mathfrak{p} \cap B$ is a prime ideal. Note: this is also called the contraction of \mathfrak{p} along the inclusion. In fact, this is the set-theoretic map $\operatorname{Spec} B' \to \operatorname{Spec} B$ associated to the inclusion.

Exercise 2.6. If $\mathfrak{a} \subset A'$ is a graded ideal, then $\mathfrak{a} \cap A$ is a graded ideal.

With these exercises we could try to define a map from $\operatorname{Proj} A'$ to $\operatorname{Proj} A'$ via contraction. It is not necessarily globally defined:

Exercise 2.7. If $A = \mathbb{C}[x_0, x_1] \subset A' = \mathbb{C}[x_0, x_1, x_2]$, show that the ideal generated by x_0 and x_1 in A' gives an element in $\operatorname{Proj} A'$, but its contraction to A is $A_+ \notin \operatorname{Proj} A$.

Exercise 2.8. For $A \subset A'$ inclusion of integral finitely generated graded \mathbb{C} -algebras, show that

$$U \coloneqq \{ \mathfrak{p} \in \operatorname{Proj} A' \mid A_+ \not\subset \mathfrak{p} \}$$

$$\tag{7}$$

is a (dense) open subset with respect to the Zariski topology.

Theorem 2.2. The map

$$U \xrightarrow{\psi} \operatorname{Proj} A$$
$$\mathfrak{p} \mapsto \mathfrak{p} \cap A$$

is the underlying map of a morphism of varieties. Moreover if $f \in A_+$ is non-zero homogeneous, $\psi^{-1}(\operatorname{Spec} A_{(f)}) = \operatorname{Spec} B_{(f)}$, and ψ restricts to the morphism associated to the inclusion $A_{(f)} \subset B_{(f)}$.

A morphism defined on a dense open subset of a variety is also called a *rational* morphism, we denote this by $\operatorname{Proj} A' \dashrightarrow \operatorname{Proj} A$.

Exercise 2.9. What is the geometric meaning of the map associated to the inclusion $\mathbb{C}[x_0, x_1] \subset \mathbb{C}[x_0, x_1, x_2]$?

Exercise 2.10. Let $A = \bigoplus_{r \ge 0} A_r$ be a finitely generated graded \mathbb{C} -algebra. Consider $A^{(d)} = \bigoplus_{r > 0} A_{dr}$.

a) Show that $A^{(d)}$ is a graded subalgebra of A.

b) Show that $\mathfrak{p} \mapsto \mathfrak{p} \cap A^{(d)}$ defines a homeomorphism of $\operatorname{Proj} A$ and $\operatorname{Proj} A^{(d)}$.

The map is in fact the underlying map of an isomorphism of varieties.

3 Line bundles

3.1 Vector bundles as locally free sheaves

Similar to vector bundles over smooth manifolds, one can define vector bundles of rank r over a variety X as a map $\pi: E \to X$ over a variety X where every fibre over a (closed) point $x \in X$ is endowed with a \mathbb{C} -vector space structure, and we have an affine cover $(U_i)_{i \in I}$ of X such that the vector bundle is locally trivial, i.e., $\pi^{-1}(U_i) \cong U_i \times \mathbb{A}^r$. Given a vector bundle, we can consider its sheaf of sections

$$\Gamma(U, E) \coloneqq \{ s \mid U \to E \colon \pi \circ s = \mathrm{id}_U \}$$

$$\tag{8}$$

Exercise 3.1. Let U be a trivializing affine on X, so that $\phi: \pi^{-1}(U) \to U \times \mathbb{A}^r$ is the trivialization. Let $t_i: \mathbb{A}^r \to \mathbb{A}^1$ be the projection to the *i*-th component.

Show that

$$\Gamma(U, E) \to \mathcal{O}_X(U)^r \tag{9}$$

$$s \mapsto (t_1 \circ \phi \circ s, \dots, t_r \circ \phi \circ s) \tag{10}$$

is an isomorphism of $\mathcal{O}_X(U)$ -modules.

The exercise shows that the sheaf of sections of a vector bundle is locally free. In fact, we have the following: **Theorem 3.1.** There is a equivalence of categories between vector bundles and locally free sheaves.

We are in particular interested in line bundles, i.e., locally free sheaves of rank 1.

3.2 Twisting sheaf

Let us now consider the following

Definition 3.1. For $d \in \mathbb{Z}, U \subset \mathbb{CP}^n$ Zariski open, define

$$\mathcal{O}_{\mathbb{CP}^n}(d)(U) = \{ \frac{g}{f} \mid f \in \mathbb{C}[x_0, \dots, x_n]_e, g \in \mathbb{C}[x_0, \dots, x_n]_{e+d} \text{ for some } e \in \mathbb{Z}, f(p) \neq 0 \quad \forall p \in U \}$$
(11)

Note that the sets $\mathcal{O}_{\mathbb{CP}^n}(d)(U)$ are always subsets of the field $\mathbb{C}(x_0,\ldots,x_n)$.

Theorem 3.2. For every d, $\mathcal{O}_{\mathbb{CP}^n}(d)$ defines a locally free sheaf associated to a line bundle on \mathbb{CP}^n .

Let us unpack this for n = 1

- **Exercise 3.2.** a) Show that $\mathcal{O}_{\mathbb{CP}^1}(d)(D_+(x_0)) = x_0^d \mathbb{C}[\frac{x_1}{x_0}], \mathcal{O}_{\mathbb{CP}^1}(d)(D_+(x_1)) = x_1^d \mathbb{C}[\frac{x_0}{x_1}]$ and deduce that one can trivialize $\mathcal{O}_{\mathbb{CP}^1}(d)$ over $D_+(x_0)$ and $D_+(x_1)$.
 - b) Show that $\mathcal{O}_{\mathbb{CP}^1}(d)(\mathbb{CP}^1) = \mathbb{C}[x_0, x_1]_d$. In particular, $\mathcal{O}_{\mathbb{CP}^1}(d)(\mathbb{CP}^1) = 0$ for d < 0, $\mathcal{O}_{\mathbb{CP}^1}(0)(\mathbb{CP}^1) = \mathbb{C}$.
 - c) Do similar computations for \mathbb{CP}^n .

3.3 Linear series

Let X be a projective variety. Suppose \mathcal{L} is a line bundle on X. We can consider $\Gamma(X, \mathcal{L})$, the global sections of \mathcal{L} . This is a finite dimensional vector space. We can define a rational morphism from X to $\mathbb{P}(\Gamma(X, \mathcal{L})^*)$ as follows:

Let $x \in X$ be a (closed) point. If $\pi : \mathcal{L} \to X$ is the projection map (thinking of L as an actual vector bundle), we can take an identification $\pi^{-1}(x) \cong \mathbb{C}$. The identification is unique up to a scalar choice $\in \mathbb{C}^*$. We can then consider the map $\Gamma(X, \mathcal{L}) \xrightarrow{ev_x} \pi^{-1}(x) \cong \mathbb{C}$. If not all global sections vanish at x, then this gives us an element in $\mathbb{P}(\Gamma(X, \mathcal{L})^*)$.

Definition 3.2. We say that \mathcal{L} is very ample if the above map is globally defined and is a closed immersion. A line bundle is ample if some tensor power is very ample.

Exercise 3.3. Check that the above construction gives the identity under appropriate identifications for $\mathcal{L} = \mathcal{O}_{\mathbb{CP}^1}(1)$.

Closely related, for a projective variety X and a line bundle \mathcal{L} , we can consider the graded ring $R(X, \mathcal{L}) = \bigoplus_{r \ge 0} \Gamma(X, \mathcal{L}^{\otimes r})$. There is a rational morphism $X \dashrightarrow \operatorname{Proj} R(X, \mathcal{L})$, sending a point x to the ideal of vanishing sections at x. In fact, there is the following alternative description for ample: On a projective variety X, a line bundle \mathcal{L} is ample if and only if the associated morphism $X \dashrightarrow \operatorname{Proj} R(X, \mathcal{L})$ is an isomorphism.