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We want to associate to an integral graded finitely generated C-algebra A =
⊕

n≥0An a projective variety
ProjA. As a warm-up, we discuss some properties of the Spec construction and we will see later to what extend
they also hold for Proj.

1 The affine spectrum

We recall some facts about affine varieties. Given an integral finitely generated C-algebra B, we have associated
a affine variety SpecB. Moreover, if B′ is another integral finitely generated C-algebra, then we have a natural
bijection

HomC-alg(B,B
′) ∼= HomC(SpecB

′,SpecB) (1)

In other words, the categories of integral finitely generated C-algebras and the categories of affine varieties are
contravariantly equivalent.

1.1 The underlying set

For a finitely generated C-algebra B, we considered

mSpecB = {m ⊂ B | m is a maximal ideal } . (2)

In the modern scheme theoretic foundation, the underlying space of the variety associated to B is

SpecB = { p ⊂ B | p is a prime ideal } . (3)

Recall that an ideal p is prime iff for a, b ∈ B we have that if the product ab is in p, then one of the factors a or b
has to be in p. In other words, the quotient B/p is integral.

Exercise 1.1. Show that for B = C[x] the maximal ideals are of the form (x−α) for α ∈ C, but (0) is also a prime
ideal.

For f ∈ B, we have D(f) = { p ⊂ B | f ̸∈ p }. These form a basis of the topology on SpecB.

Exercise 1.2. Give a complete description of the open sets in SpecC[x]. In particular, show that (0) is contained
in every non-empty open set. It is called the “generic” point of SpecC[x].

Exercise 1.3. One often writes f(p) ̸= 0 instead of f ̸∈ p. Convince yourself that this notation makes sense by
looking at the maximal ideals of C[x].

2 The Proj construction

We want to associate to an integral graded finitely generated C-algebra A =
⊕

r≥0Ar a projective variety ProjA.
The example that you should have in mind is ProjC[x0, . . . , xn] = CPn. In the modern scheme theoretic setting,
one can associate a projective C-scheme ProjA to a graded finitely generated C-algebra A, so the condition that A
is integral is not needed for the general scheme-theoretic construction, but it simplifies the exposition.
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2.1 Underlying set

We first define the underlying set of ProjA. In our construction, it will be closer to SpecB than to mSpecB.
First some notations:

• An element f ∈ Ar is called homogeneous of degree r.

• An ideal a ⊂ A is called graded if it is generated by its homogeneous elements.

• The ideal A+ =
⊕

r>0Ar is called the irrelevant ideal.

Definition 2.1. The underlying space of ProjA is given by

{ p ⊂ A | p graded prime ideal, A+ ̸⊂ p } . (4)

For f ∈ A+ homogeneous, we consider the standard open set

D+(f) = { p ∈ ProjA | f ̸∈ p } (5)

The sets form an basis for the Zariski topology on ProjA.

Exercise 2.1. Show that D+(fg) = D+(f) ∩D+(g).

Exercise 2.2 (Optional). In this exercise we deal with graded C-algebras that are not necessarily integral or satisfy
A0 = C, in order to motivate that (4) is the correct general definition.

a) Let A be a finitely generated graded C-algebra with A0 = C. Show that every homogeneous prime ideal is
contained in the irrelevant ideal A+.

b) If B,B′ are C-algebras, the direct product B ×B′ is also a C-algebra. The sets B × 0 are 0×B′ are ideals in
B ×B′, and every prime ideal p ⊂ B ×B′ contains exactly one of {B × 0, 0×B′}.

c) Show that for A,A′ finitely generated graded C-algebras, show that we have an homeomorphism Proj(A×A′) ∼=
ProjA ⊔ ProjA′, where A×A′ has the grading (A×A′)n = An ×A′

n.

2.2 Affine charts

From now on we again assume for simplicity that A is integral. All fractions that will appear can be understood in
the quotient field of A. For f ∈ Ar non-zero for r > 0, we define a ring

A(f) =

{
g

fk

∣∣∣∣ k ≥ 0, g ∈ Ark

}
(6)

Exercise 2.3. Let f1, f2 be non-zero, homogeneous of positive degree. Show that A(f1) ⊂ A(f1f2) as subsets of the
quotient field of A.

Theorem 2.1. The space ProjA carries the structure of a projective variety such that for every f homogeneous non-
zero of positive degree, D+(f) ∼= SpecA(f). We have the following compatibility: for f1, f2 non-zero, homogeneous
of positive degree, we have that the inclusion D+(f1f2) ⊂ D+(f1) is the morphism contravariantly equivalent to the
inclusion A(f1) ⊂ A(f1f2).

Exercise 2.4. For A = C[x0, x1], use the covering ProjA = D+(x0) ∪D+(x1) to convince yourself that ProjA =
CP1.

a) Show that ProjA = D+(x0) ∪D+(x1) is indeed a covering (Hint: A0 = C and x0, x1 generate the irrelevant
ideal.)

b) Show A(x0) = C[x1

x0
], A(x1) = C[x0

x1
], A(x0x1) = C[x1

x0
, x0

x1
].

c) Interpret the previous calculations as the description of ProjA as two copies of A1 glued along A1 \ {0} along
the identification η = t−1.
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2.3 Proj as a functor

In this section A ⊂ A′ are two finitely generated graded C-algebras (with the same grading, so Ar ⊂ A′
r for all

r ≥ 0).

Exercise 2.5. If B ⊂ B′ are two C-algebras, and p ⊂ B′ is a prime ideal, show that p ∩B is a prime ideal. Note:
this is also called the contraction of p along the inclusion. In fact, this is the set-theoretic map SpecB′ → SpecB
associated to the inclusion.

Exercise 2.6. If a ⊂ A′ is a graded ideal, then a ∩A is a graded ideal.

With these exercises we could try to define a map from ProjA′ to ProjA′ via contraction. It is not necessarily
globally defined:

Exercise 2.7. If A = C[x0, x1] ⊂ A′ = C[x0, x1, x2], show that the ideal generated by x0 and x1 in A′ gives an
element in ProjA′, but its contraction to A is A+ ̸∈ ProjA.

Exercise 2.8. For A ⊂ A′ inclusion of integral finitely generated graded C-algebras, show that

U := { p ∈ ProjA′ | A+ ̸⊂ p } (7)

is a (dense) open subset with respect to the Zariski topology.

Theorem 2.2. The map

U
ψ−→ ProjA

p 7→ p ∩A

is the underlying map of a morphism of varieties. Moreover if f ∈ A+ is non-zero homogeneous, ψ−1(SpecA(f)) =
SpecB(f), and ψ restricts to the morphism associated to the inclusion A(f) ⊂ B(f).

A morphism defined on a dense open subset of a variety is also called a rational morphism, we denote this by
ProjA′ 99K ProjA.

Exercise 2.9. What is the geometric meaning of the map associated to the inclusion C[x0, x1] ⊂ C[x0, x1, x2]?
Exercise 2.10. Let A =

⊕
r≥0Ar be a finitely generated graded C-algebra. Consider A(d) =

⊕
r≥0Adr.

a) Show that A(d) is a graded subalgebra of A.

b) Show that p 7→ p ∩A(d) defines a homeomorphism of ProjA and ProjA(d).

The map is in fact the underlying map of an isomorphism of varieties.

3 Line bundles

3.1 Vector bundles as locally free sheaves

Similar to vector bundles over smooth manifolds, one can define vector bundles of rank r over a variety X as a map
π : E → X over a varietyX where every fibre over a (closed) point x ∈ X is endowed with a C-vector space structure,
and we have an affine cover (Ui)i∈I of X such that the vector bundle is locally trivial, i.e., π−1(Ui) ∼= Ui × Ar.
Given a vector bundle, we can consider its sheaf of sections

Γ(U,E) := { s | U → E : π ◦ s = idU } (8)

Exercise 3.1. Let U be a trivializing affine on X, so that ϕ : π−1(U) → U×Ar is the trivialization. Let ti : Ar → A1

be the projection to the i-th component.
Show that

Γ(U,E) → OX(U)r (9)

s 7→ (t1 ◦ ϕ ◦ s, . . . , tr ◦ ϕ ◦ s) (10)

is an isomorphism of OX(U)-modules.

The exercise shows that the sheaf of sections of a vector bundle is locally free. In fact, we have the following:

Theorem 3.1. There is a equivalence of categories between vector bundles and locally free sheaves.

We are in particular interested in line bundles, i.e., locally free sheaves of rank 1.
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3.2 Twisting sheaf

Let us now consider the following

Definition 3.1. For d ∈ Z, U ⊂ CPn Zariski open, define

OCPn(d)(U) = { g
f
| f ∈ C[x0, . . . , xn]e, g ∈ C[x0, . . . , xn]e+d for some e ∈ Z, f(p) ̸= 0 ∀p ∈ U } (11)

Note that the sets OCPn(d)(U) are always subsets of the field C(x0, . . . , xn).

Theorem 3.2. For every d, OCPn(d) defines a locally free sheaf associated to a line bundle on CPn.

Let us unpack this for n = 1

Exercise 3.2. a) Show that OCP1(d)(D+(x0)) = xd0C[x1

x0
],OCP1(d)(D+(x1)) = xd1C[x0

x1
] and deduce that one can

trivialize OCP1(d) over D+(x0) and D+(x1).

b) Show that OCP1(d)(CP1) = C[x0, x1]d. In particular, OCP1(d)(CP1) = 0 for d < 0, OCP1(0)(CP1) = C.

c) Do similar computations for CPn.

3.3 Linear series

Let X be a projective variety. Suppose L is a line bundle on X. We can consider Γ(X,L), the global sections of L.
This is a finite dimensional vector space. We can define a rational morphism from X to P(Γ(X,L)∗) as follows:

Let x ∈ X be a (closed) point. If π : L → X is the projection map (thinking of L as an actual vector bundle),
we can take an identification π−1(x) ∼= C. The identification is unique up to a scalar choice ∈ C∗. We can then

consider the map Γ(X,L) evx−−→ π−1(x) ∼= C. If not all global sections vanish at x, then this gives us an element in
P(Γ(X,L)∗).

Definition 3.2. We say that L is very ample if the above map is globally defined and is a closed immersion. A
line bundle is ample if some tensor power is very ample.

Exercise 3.3. Check that the above construction gives the identity under appropriate identifications for L =
OCP1(1).

Closely related, for a projective variety X and a line bundle L, we can consider the graded ring R(X,L) =⊕
r≥0 Γ(X,L⊗r). There is a rational morphism X 99K ProjR(X,L), sending a point x to the ideal of vanishing

sections at x. In fact, there is the following alternative description for ample: On a projective variety X, a line
bundle L is ample if and only if the associated morphism X 99K ProjR(X,L) is an isomorphism.
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