Discussion sheet: Rank one case

Enya Hsiao and Tim Maruhn

February 2024

In this sheet, we discuss the nonabelian Hodge correspondence in the case $G = \operatorname{GL}(1, \mathbb{C}) = \mathbb{C}^{\times}$. This is an abelian complex Lie group. We will derive the moduli spaces and examine the correspondence between them. A good source that worked out the rank one case using the language of deformation theory and groupoids is [GX08].

Let Σ be a closed orientable surface with genus $g \geq 2$, and fix $L \to \Sigma$ be a complex line bundle of degree 0. Furthermore, since line bundles on curves are classified by their degree, this means that up to smooth bundle isomorphism, L is the trivial line bundle over Σ . Here, our choice of $G = GL(1, \mathbb{C})$ appears as the structure group of L.

The Betti moduli space

By definition, the Betti moduli space is the affine GIT quotient

$$\mathcal{M}_B := \operatorname{Hom}(\pi_1(\Sigma), \mathbb{C}^{\times}) /\!\!/ \mathbb{C}^{\times},$$

where \mathbb{C}^{\times} acts by conjugation. Using the fact that \mathbb{C}^{\times} is abelian, deduce that $\mathcal{M}_B = (\mathbb{C}^{\times})^{2g}$ with a natural complex structure induced by that of \mathbb{C}^{\times} .

The de Rham moduli space

Let \mathcal{A}_L denote the affine space of connections on $L \to \Sigma$ modeled after the vector space of endomorphism valued 1-forms $\Omega^1(\Sigma, \operatorname{End}(L))$, where $\mathcal{A}_L^{flat} \subseteq \mathcal{A}_L$ denote the space of flat connections. Let $\mathcal{G}_L := \Omega^0(\Sigma, \operatorname{Aut}(L))$ be the gauge group acting on \mathcal{A}_L by conjugation.

By definition, the de Rham moduli space is the quotient

$$\mathcal{M}_{dR} := \mathcal{A}_L^{flat} / \mathcal{G}_L.$$

Deduce that

$$\mathcal{M}_{dR}(\Sigma) = H^1(\Sigma, \mathbb{C})/H^1(\Sigma, \mathbb{Z}) = \mathbb{C}^{2g}/\mathbb{Z}^{2g}$$

by going through the following steps:

- (i) Show that \mathcal{A}_L^{flat} is an affine space over the closed one-forms $Z^1(\Sigma) := \{\eta \in \Omega^1(\Sigma) \mid d\eta = 0\}$ and that \mathcal{G}_L acts on \mathcal{A}_L^{flat} by $g \cdot D = d + g(dg^{-1}) + \eta$ for $D = d + \eta$. Convince yourself that $g \cdot D$ is again flat.
- (ii) Let $\mathcal{G}_0 \subseteq \mathcal{G}_L$ denote the component of null homotopic maps. Show that any null homotopic map $g: \Sigma \to \mathbb{C}^*$ is $g = \exp f$ for some $f: \Sigma \to \mathbb{C}$, and that $\mathcal{A}_L^{flat}/\mathcal{G}_0 = H^1(\Sigma, \mathbb{C})$.

- (iv) Show that $\pi_0(\mathcal{G}_L) \cong H^1(\Sigma, \mathbb{Z})$ by using that $g \in \mathcal{G}_L$ induces a group homomorphism $g_* \in \operatorname{Hom}(\pi_1(\Sigma), \pi_1(\mathbb{C}^{\times}) = \mathbb{Z}) \cong H^1(\Sigma, \mathbb{Z}).$
- (v) Conclude the statement by using $\mathcal{A}_L^{flat}/\mathcal{G}_L = (\mathcal{A}_L^{flat}/\mathcal{G}_0)/\pi_0(\mathcal{G}_L).$
- (vi) Show that the complex structure on \mathcal{M}_{dR} agrees with that on \mathcal{M}_B .

The Dolbeault moduli space

Fix a complex structure on Σ to obtain $X := (\Sigma, \overline{\partial})$ a compact Riemann surface. Recall that the Dolbeault moduli space is defined to be the space of polystable Higgs bundles

$$\mathcal{M}_{Dol} := \{ (L, \overline{\partial}_L, \Phi) \text{ polystable} \} / \sim_{iso},$$

where $(L, \overline{\partial}_L)$ is a holomorphic line bundle over X with underlying smooth bundle L, and $\Phi \in H^0(X, \operatorname{End}(L, \overline{\partial}_L)K)$ is a holomorphic section $L \to LK$, where $K := T^*X$ is the canonical line bundle.

Deduce that

$$\mathcal{M}_{Dol} = \operatorname{Jac}(X) \times \mathcal{H}^{0,1}(X) = (\mathbb{C}^g / \mathbb{Z}^{2g}) \times \mathbb{C}^g,$$

by going through the following steps:

- (i) Show that every rank one Higgs bundle is stable, hence $\mathcal{M}_{Dol} := \{(L, \overline{\partial}_L, \Phi)\} / \sim_{iso}$.
- (ii) The isomorphism classes of degree 0 holomorphic line bundles over X is called the **Jacobian**, $Jac(X) \subseteq Pic(X)$, and is the kernel of map c_1 ,

$$\operatorname{Jac}(X) \to \operatorname{Pic}(X) \xrightarrow{c_1} H^2(X, \mathbb{Z})$$

 $[(L, \overline{\partial}_L)] \mapsto c_1(L),$

induced by the long exact cohomology sequence of the exponential sequence $\mathbb{Z} \to \mathcal{O} \to \mathcal{O}^*$.

- (iii) Given a holomorphic line bundle $(L, \overline{\partial}_L)$, show that the space of Higgs fields on L is equal to the harmonic (1, 0)-forms $\mathcal{H}_h^{1,0}(X) = H^0(X, K)$ with respect to a suitable Hermitian metric h.
- (iv) Finally, using the fact that the Jacobian is a g-torus

$$\operatorname{Jac}(X) = H^1(X, \mathcal{O})/H^1(X, \mathbb{Z}) = \mathbb{C}^g/\mathbb{Z}^{2g},$$

and that on the compact Riemann surface X, we have the following decomposition:

$$H^1(X,\mathbb{C}) = \mathcal{H}^{1,0}_h(X) \oplus \mathcal{H}^{0,1}_h(X)$$

where $\mathcal{H}_{h}^{1,0}(X) = \overline{\mathcal{H}_{h}^{0,1}}(X)$, deduce our desired result.

(v) What is the complex structure on \mathcal{M}_{Dol} induced from the complex structure on X? How does it differ from the complex structure on \mathcal{M}_B ?

References

[GX08] William M. Goldman and Eugene Z. Xia. "Rank one higgs bundles and representations of fundamental groups of Riemann surfaces". In: Memoirs of the American Mathematical Society 193.904 (2008), 0–0. DOI: 10.1090/memo/0904.