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Abstract
Polynomial equations and their solutions play a ubiquitous role both for theoretical and
practical applications. A closely related problem is that of ideal membership, i. e. deciding
whether a polynomial is a linear combination of other polynomials. Gröbner bases provide
a well-developed machinery to deal with these problems symbolically as a part of computer
algebra systems. In this thesis we give an introduction to the theory of Gröbner bases with a
view towards computational complexity. In particular, we discuss algorithmic aspects and up-
per bounds depending on the classes of polynomials considered. Furthermore, lower bounds
on the size and computational complexity of Gröbner bases and related problems are pre-
sented. While often useful in practice, the worst-case complexity of Gröbner bases is located
in EXPSPACE.
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Introduction

Whether a particular Gröbner basis computation is

feasible is usually hard to predict in advance, so Gröbner

basis computations are still an adventurous business.

Gregor Kemper [24, p. 127]

Many real-world problems can be modeled using systems of polynomial equations. While
numerical algorithms can approximate real solutions with floating point arithmetic, some
applications such as cryptography require exact manipulation or benefit from closed-form
solutions. This motivates the study of symbolic algorithms to examine solvability and other
properties of systems of polynomial equations.An important questionwhich arises in this con-
text is that of ideal membership: Given polynomials 51 , . . . , 5B ∈ ℂ[-1 , . . . , -=], decide whether
a given polynomial 5 is a linear combination of the 58 :

5 = ℎ1 51 + · · · + ℎB 5B , ℎ8 ∈ ℂ[-1 , . . . , -=].

The set of such 5 is called the ideal � generated by the 58 . Hilbert’s Nullstellensatz asserts that
the system of equations 51(G) = · · · = 5 (G) = 0 has a solution G ∈ ℂ= if and only if 1 ∉ �, thus
the ideal membership problem “contains” consistency questions about polynomial equations.
In the case of polynomials in one variable 5 , 6 ∈ ℂ[-1], the familiar division algorithm can

be used to determine a quotient @ and remainder A such that

5 = @ · 6 + A, deg A < deg 6.

In particular A = 0 if and only if 5 is a multiple of 6, so this solves the ideal membership
problem. When generalizing this algorithm to several multivariate polynomials, problems of
non-uniqueness of the remainder arise. This leads to the notion of aGröbner basis, a special set
of ideal generators which can be characterized as “behaving well” with respect to the division
algorithm. A lot of problems about polynomials and ideals can be solved by first calculating
a Gröbner basis, for example the aforementioned ideal membership problem.
In this thesis we will explore the computational complexity of ideal membership, Gröbner

bases and related problems. The three chapters each deal with mathematical foundations,
algorithmic upper bounds and lower bounds respectively. The first chapter introduces various
notions from commutative algebra such as various classes of polynomials, monomial orders
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and the division algorithm in its general form. Gröbner bases and normal forms are defined,
various characterizations are presented and questions about uniqueness will be answered.

Chapter two is divided into two parts: The first part deals with Buchberger’s algorithm, the
first and most influential algorithm for Gröbner basis computation. The rest of the chapter is
dedicated to upper bounds on the complexity of the ideal membership problem and Gröbner
bases, culminating in a rather involved EXPSPACE-algorithm for both problems.
The final chapter provides a chain of complexity theoretic reductions from a generic

EXPSPACE-complete problem to both ideal membership and Gröbner bases. The main pro-
tagonist here are (commutative) Thue systems, close relatives of formal grammars, whose
structure can be cleverly embedded into binomial ideals. We also show that for some polyno-
mials 51 , . . . , 5B , a Gröbner basis of the corresponding ideal consists of double-exponentially
many elements, which shows that in the worst case Gröbner bases are too large to be useful.

The aim of this thesis is to introduce the reader to the rich theory of Gröbner bases with
its connections to symbolic algorithms, combinatorial problems and interesting complexity-
theoretic results. Along the way we will mention many related results and give pointers to
the literature.
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ideas and resources. Also thanks to my fellow students Jan and Tobias for helpful discussions
along the way. Last but not the least I would also like to thank my family and friends for
encouraging and supporting me whenever I needed them.



1
Gröbner bases

In this first chapter we introduce the main protagonists of this thesis: Polynomial ideals and
their Gröbner bases. We start by describing several interesting problems from both theoretical
and applied sciences which can be reduced to solving a system of polynomial equations
or more generally to the problem of ideal membership. Motivated by these problems we
then generalize the familiar polynomial division algorithm to several polynomials in several
variables, which naturally leads to the definition of a Gröbner basis. We discuss the topic of
uniqueness of normal forms and Gröbner bases, and apply these techniques to the class of
binomial ideals.
Most of the material presented here is standard and contained in any textbook on compu-

tational commutative algebra; we loosely follow von zu Gathen & Gerhard [23, Chapter 21]
and occasionally other texts [19, Chapter 1], [24, Chapter 9], [28, Chapter 1&2].

1.1 Motivating examples
Many interesting problems from the sciences and engineering can be modeled by polynomial
equations. We give an example from robotics [23, Example 21.1].

Example 1.1 (The reachability problem in robotics).Wemodel a simple robotic arm operating in the
plane ℝ2. It consists of two straight line seqments $% and %& of length 3 and 1 respectively,
with the origin $ = (0, 0) and two variable points % = (G, H), & = (I, F). The length of the
parts constrain the possible configurations of the joins % and& and enforce the following two
equations

G2 + H2 = 9, (G − I)2 + (H − F)2 = 1, G, H, I, F ∈ ℝ. (1.1)

Consider the line parameterized by ! =
{
(C , 5 − 2C) ∈ ℝ2

�� B ∈ ℝ }
. Can the robot reach !, i. e.

is there a configuration with & ∈ !? In this case the answer is yes, for example with % = (0, 3),
& = (1, 3). On the other hand, the line !′ =

{
(C , 10 − 2C) ∈ ℝ2

�� B ∈ ℝ }
seems out of reach, but

it is not immediately obvious how prove the non-solvability of such a problem (in this case, !′

has distance > 4 from the origin).
More generally, one can parameterize !�,� =

{
(C ,�C + �) ∈ ℝ2

�� B ∈ ℝ }
and ask: for which

values of �, � is there a solution? Of course, more complicated robots can be modeled with
multiple joints and other constraints, then the number of equations which must be satisfied



4 1 Polynomial ideals and Gröbner bases

simultaneously increases. y

Nonlinear algebra is the broad field of mathematics studying polynomial equations, their
structure and how to solve them, using techniques from various disciplines such as algebraic
geometry, computer algebra, optimization and representation theory. An overview of several
interesting applications of different flavors such as biochemical reactions, computer visions or
statistics is presented by Breiding et al. [7]. The solutions to the preceding problems aremostly
defined over the real or complex numbers, on the other hand applications in cryptography
are often interested in solutions defined over ℚ or finite fields.
Another interesting application is that of “automatic” theorem proving, adapted from [23,

Example 21.2].

Example 1.2 (Proving theorems in euclidean geometry). Consider a triangle with vertices �, �, �
in the plane, an elementary theorem states that the perpendicular bisectors of the three sides
all meet in a common point, the circumcenter. After scaling and rotating the triangle we may
assume � = (0, 0), � = (1, 0) and � = (G, H) for G, H ∈ ℝ (H ≠ 0). The three bisectors can be

1

� �

�

!��

!��

"

!��

Figure 1.1: The perpendicular bisectors of a triangle intersecting in the circumcenter ".

parametrized as

!�� =
{
(12 , A)

�� A ∈ ℝ }
, !�� =

{
( G2 + BH,

H

2 − BG)
�� B ∈ ℝ }

,

!�� =
{
( G+12 + CH,

H

2 − C(G − 1))
�� C ∈ ℝ }

Let " = (D, E) be a point, the condition that " lies on each of these lines can be described as
an equation

5��(D, E) = D −
1

2
= 0 (1.2)

5��(D, E) = G
(
D − G

2

)
− H

( H
2
− E

)
= 0 (1.3)

5��(D, E) = (G − 1)
(
D − G + 1

2

)
− H

( H
2
− E

)
= 0 (1.4)
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Clearly two of the three equations can be satisfied (for fixed G, H) at the same time, as two
non-parallel lines intersect. The question is whether there is a solution to 5�� = 5�� = 5�� = 0

at the same time. The answer is yes, since we have

5�� = 5�� − 5��

and hence if two of the polynomials vanish, then so does the third. Other geometric properties
of the triangle canalsobedescribedusingpolynomial equations, andonemayhope to similarly
prove more involved statements. y

The previous problem was solved by showing that a given polynomial is a linear combina-
tion of other polynomials. The coefficients (here 1,−1) may even be polynomials themselves,
the conclusion is still valid. This is an instance of the polynomial ideal membership, one of
the central problems of this thesis.

1.2 The ideal membership problem

We now formally introduce the notion of polynomial ideals and the membership problem.
Let ℕ = {0, 1, 2, . . . } denote the natural numbers and let � be a field such as ℚ,ℂ,�? and
- = {-1 , . . . , -=}.

Definition 1.3 (Polynomial). A polynomial over� is an expression

5 =
∑

∈ℕ=

5
 · -
1

1 · · ·-

=
= , 5
 ∈ �, 5
 ≠ 0 only for finitely many 
 ∈ ℕ= ,

the ring of polynomials is �[-] = �[-1 , . . . , -=]. The expression -
 is a monomial, the set
of monomials will be denoted as Mon(-) or Mon= . The 5
 are the coefficients of 5 . If 5
 ≠ 0,
then 5
-
 is a term of 5 , the set supp( 5 ) B

{
-
 ∈ Mon=

�� 5
 ≠ 0
}
is the support of f. The (total)

degree of 5 ≠ 0 is the number

deg 5 B max
{
|
 | = 
1 + · · · + 
=

�� 5
 ≠ 0
}
∈ ℕ1.

The zero polynomial has degree −∞ by convention. y

The previous definitionmakes sense not only over a field� but rather over any commutative
ring, for exampleℤ[-] is the ringofpolynomialswith integer coefficients. In concrete examples
we will use variables such as {-,., /} instead, for example

5 = 4-.3 − 5

42
.2 − 12-. + 14 ∈ ℚ[-,.], supp( 5 ) = {-.3 , -., .2 , 1}, deg 5 = 4.

10 ∈
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If G1 , . . . , G= ∈ � are elements of the base field, then we can evaluate a polynomial 5 as

5 (G1 , . . . , G=) =
∑



5
G

1

1 . . . G

=
= ∈ �.

Remark. In this way 5 defines a function 5 : �= → � and this function uniquely determines
5 as long as deg 5 > |�| (for example if � is infinite). Therefore, it is generally harmless to
identify polynomials with polynomial functions, but we will treat polynomials as “abstract
sums” most of the time.

Appendix A.1 defines some basic notions of ring theory; we will only need the polynomial
ring. Let � ⊆ �[-] be a set of polynomials; the ideal generated by � is the set of (polynomial)
linear combinations of elements of �:

〈�〉�[-] B
{
ℎ1 51 + · · · + ℎB 5B

�� B ∈ ℕ, 58 ∈ �, ℎ8 ∈ �[-] } .
If the ring �[-] is understood in the context, then the subscript will be omitted. Assuming
for a second that we fix a suitable representation of multivariate polynomials over� (we will
do this in section 1.7). The ideal membership problem is the following decision problem.

Definition 1.4 (Ideal membership problem, IM�).

• Input: ( 5 , 51 , . . . , 5B)multivariate polynomials from�[-1 , . . . , -=]

• Output: Decide whether 5 ∈
〈
51 , . . . , 5=

〉
y

Example 1.5. Amonomial ideal is an ideal � ⊆ �[-] generated by a set of monomials � ⊆ Mon= .
In this case, ideal membership is an easy task: y

Lemma 1.6. If � is an ideal generated by monomials �, then 5 ∈ � if and only each monomial

-� ∈ supp( 5 ) is divided by some -
 ∈ �.

Proof. Indeed, this is clearly sufficient, conversely write 5 ∈ � as 5 = ∑#
9=1 2 9-

�9-
 9 , 2 9 ∈ �,
-
 9 ∈ �. If -�9+
 9 doesn’t occur in 5 , then all such terms can be omitted from the sum, leaving
only terms -�9+
 9 occurring in 5 . If furthermore -�9+
 9 = -�:+
: , then we can combine the
two terms to (2 9 + 2:)-�9+
 9 so that we have exactly one summand for each term in 5 . This
presentation proves the claim. �

This yields a trivial polynomial time algorithm for deciding monomial ideal membership;
just compare the exponents of each term -� ∈ supp( 5 ) to each 
 and check if 
8 ≤ �8 for
8 = 1, . . . , =. We will see that ideal membership is, in general,much harder, but it is interesting
to restrict the polynomials to various classes of polynomials and explore their complexity.
Interesting classes include

• All polynomials (IM�)
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• Monomials -
 (the previous example)

• Binomials 0-
 + 1-� or even pure binomials -
 − -�

• Homogeneous polynomials
∑
|
 |=3 5
-


, this case will be denoted by IMh,�.

In the homogeneous case ideal membership can also be simplified: For a polynomial 5 denote
its homogeneous components by 5 (3) B

∑
|
 |=: 5
-


, then we have

Lemma 1.7. If � consists of homogeneous polynomials, then 5 ∈ 〈�〉 if and only if 5 (:) ∈ 〈�〉 for
: = 0, . . . , deg( 5 ). Furthermore, if 5 is homogeneous and

5 = ℎ1 51 + · · · + ℎB 5B , 58 ∈ �, ℎ8 ∈ �[-],

then the ℎ8 may be chosen to be homogeneous of degree deg ℎ8 = deg 5 − deg 58 .

The proof is similar to Lemma 1.6, see for example [19, Lemma 2.2.7]. Such degree bounds
can be used to find the ℎ8 , this will be exploited in chapter 2.
The idealmembership problem can be used to decidewhether a set of polynomial equations

51 = · · · = 5B = 0 has a solution. The following theorem holds true for any algebraically closed
field, for simplicity we specialize to the complex field.

Theorem 1.8 (Hilbert’s Nullstellensatz). A set of polynomials 51 , . . . , 5B ∈ ℂ[-] has a simultane-

ous zero in ℂ= if and only if 1 ∉
〈
51 , . . . , 5B

〉
.

If 1 =
∑B
8=1 ℎ8 58 and G ∈ ℂ= , then 1 =

∑B
8=1 ℎ8(G) 58(G), hence at least one of the 58 does

not vanish on G. The proof of the other direction is much more involved, see for example
[19, Theorem 3.5.2] or [24, Corollary 1.8]. This motivates the following variant of the ideal
membership problem:

Definition 1.9 (Nullstellensatz, HNST�).

• Input: ( 51 , . . . , 5B)multivariate polynomials from�[-1 , . . . , -=]

• Output: Decide whether 1 ∉
〈
51 , . . . , 5=

〉
y

Remark. One might ask why we don’t define HNSTℚ to ask about solutions in ℚ but rather in
ℂ. The reason is that this problem is computationally tractable (in the Turing model), while it
is not known if the existence of rational solutions is even decidable! The (negative) answer to
Hilbert’s tenth problem shows that the set{

5 ∈ ℤ[-1 , . . . , -=]
�� = ≥ 1 and 5 (G) = 0 for some G ∈ ℤ=

}
is undecidable. On the other hand, solvability in the ground field is NP� complete in the
Blum–Shub–Smale model of computation, in analogy to how SAT is NP-complete in the bit
model [5, Chapter 5].
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1.3 Polynomial division

We now review the familiar notion of polynomial division with remainder. Let 5 , 6 ∈ �[-]
be univariate polynomials, 6 ≠ 0, then there exist unique @, A ∈ �[-] satisfying

5 = 6@ + A, deg A < deg 6.

The polynomials 6, A can be obtained algorithmically: For a polynomial of the form

5 = 0=-
= + · · · + 01- + 00 , 0= ≠ 0

let lt( 5 ) B 0=-
= be its leading term (this notion will be formally introduced for multivariate

polynomials in a moment). The procedure is described in Algorithm 1.

Algorithm 1 Univariate polynomial division
Require: 5 , 6 ∈ �[-], 6 ≠ 0
Ensure: 5 = 6@ + A, deg A < deg 6
1: @ ← 0, A ← 5

2: while deg A ≥ deg 6 do ⊲ The equation f = gq + r is a loop invariant.
3: @0 ← lt(6)/lt(A)
4: @ ← @ + @0
5: A ← A − 6 · @0 ⊲ The degree of r strictly decreases.
6: end while

We wish to generalize this procedure to multivariate polynomial division. At first glance
there are two obvious obstacles:

• In order to even specify “quotient and remainder” of a division, we need to be able
to compare the degree of multivariate polynomials. The total degree is not an useful
measure of size here: Consider 5 = -., 6 = - +., then there do not exists polynomials
@, A ∈ �[-,.]with -. = (- + .)@ + A such that A has total degree < 2.

• In order to extend the univariate division algorithm we would like to talk about the
leading terms of a polynomial 5 . Again, there might be several valid choices, even of the
same total degree as 5 .

We can solve both problems at once by introducingmonomial orderings. Recall that monomials
are in natural bĳection with tuples of natural numbers:

ℕ= 3 
 = (
1 , . . . , 
=) ↦→ -
 = -
1

1 · · ·-

=
= ∈ Mon= .

Ifwe choose a “suitable” ordering on the setMon= , thenwe can talk about the largestmonomial
occurring in a polynomial 5 , and use this to define the leading term and degree deg 5 ∈ ℕ= .
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Clearly such an order should be a total order (also called a linear order), and it should be
compatible with the monoid structure ofMon= . This leads to the following definition

Definition 1.10 (Monomial ordering). Amonomial ordering ≺ is an order on the setℕ= (equiv-
alently, on the set of monomialsMon=) with the following properties:

(i) ≺ is a total order: For all 
, � ∈ ℕ= we have 
 � � or � � 
.

(ii) For 
, �, � ∈ ℕ= with 
 ≺ � we also have 
 + � ≺ � + �.

(iii) (0, . . . , 0) ≺ 
 for all 
 ∈ ℕ= \ {(0, . . . , 0)}. y

It turns out that under assumtion (i)+(ii), condition (iii) is equivalent to ≺ being a well-
ordering [23, Corollary 21.20]:

(iii’) ≺ is a well-order: Every non-empty set" ⊆ ℕ= has a minimal element with respect to ≺.

We can (andwill) assume that amonomial ordering sorts the variables themselves in descend-
ing order -1 � -2 � · · · � -= .
Example 1.11. The following are examples of monomial orderings:

(i) The lexicographic ordering ≺lex is defined as


 ≺lex � if and only if the first nonzero entry in 
 − � is negative.

In other words, -
 ≺lex -� if the number of -1’s in -
 is less than in -�, or they are
equal and the number of -2’s in -
 is less than in -�, or they are equal too and so on.

(ii) The graded lexicographic ordering ≺grlex is defined as


 ≺grlex � if and only if
∑
8


8 <
∑
8

�8 or
(∑

8


8 =
∑
8

�8 and 
 ≺lex �
)
.

In other words, the graded lexicographic ordering first sorts by total degree, and then
uses lexicographic ordering as a tie-breaker.

(iii) The graded reverse lexicographic order ≺grevlex is defined as


 ≺grlex � if and only if
∑
8


8 <
∑
8

�8 or
(∑

8


8 =
∑
8

�8 and − � ≺lex −

)
.

For example with - � . � / we have

.3 ≺lex -./ ≺lex -2 , -2 ≺grlex -./ ≺grlex .3 , -2 ≺grevlex .3 ≺grevlex -./. y
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From now on we will consider polynomial rings equipped with a monomial ordering,
denoted as �[-]≺ (omitting the subscript if no confusion may occur). We now generalize
the notions of degree and leading term to such polynomial rings. For this we add the formal
symbol −∞ to our set of multiindices with the properties

−∞ ≺ 
, −∞ + 
 = −∞ ∀
 ∈ ℕ= .

Definition 1.12. Let 5 =
∑


 2
-

 be a polynomial. If 5 = 0, then we define mdeg(0) B −∞,

otherwise 5 ≠ 0 and we define:

(i) The multidegree mdeg( 5 ) ∈ ℕ= of 5 is the largest exponent 
 among the terms with
respect to ≺.

(ii) If 
 B mdeg( 5 ), then we define the leading term of 5 as lt( 5 ) = 2
-

 with leading

coefficient lc( 5 ) B 2
 ∈ �× and leading monomial lm( 5 ) = -
 ∈ Mon= . y

Themultidegree enjoys properties similar to the usual degree: Let 5 , 6 be polynomials, then

• mdeg( 5 · 6) = mdeg( 5 ) +mdeg(6),

• mdeg( 5 + 6) ≤ max{mdeg( 5 ),mdeg(6)}, with equality ifmdeg( 5 ) ≠ mdeg(6),

• if 5 , 6 ≠ 0, then lt( 5 6) = lt( 5 ) · lt(6) and similarly for lm, lc.

With this notion we can describe a division algorithm for multivariate polynomials which is
very similar to algorithm 1. Our goal here is slightly different from before: In the univariate
case we searched for @, A with 5 = @6 + A with “small” remainder, measured by the degree.
Here we ask for the remainder to contain no terms divisible by the leading term of 6, which
is a weaker condition than having a smaller multidegree.

Algorithm 2Multivariate polynomial division (single divisor)
Require: 5 , 6 ∈ �[-1 , . . . , -=]≺, 6 ≠ 0
Ensure: 5 = @6 + A, lm(6) - C for all monomials C ∈ supp(A).
1: @ ← 0, A ← 0, ? ← 5

2: while ? ≠ 0 do
3: if lm(6) | lm(?) then
4: @0 ← lt(?)/lt(6)
5: @ ← @ + @0
6: ? ← ? − 6 · @0
7: else
8: A ← A + lt(?)
9: ? ← ? − lt(?)
10: end if
11: end while
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Lemma 1.13. Algorithm 2 terminates, more specifically mdeg(?) strictly decreases each iteration if

? ≠ 0. It produces @, A ∈ �[-] with 5 = @6 + A such that the leading term of 6 divides no term in A

and mdeg(@6) � mdeg( 5 ).

Proof. We first show thatmdeg(?new) ≺ mdeg(?); this is clear in the else-branch, as the leading
term is removed. In the other case

mdeg(?new) = mdeg(? − 6 lt(?)/lt(6))
� max{mdeg ?,mdeg(6) +mdeg(?) −mdeg(6)} = mdeg(?).

But lt(6 · @0) = lt(?), so we must have a strict inequality.
The assignments in line 5/6 and in line 8/9 preserve the loop invariant

5 = ? + @6 + A.

Also, @ is only incremented by monomials @0 such that mdeg(@0 · 6) = mdeg(?) � mdeg( 5 ),
so mdeg(@6) � mdeg( 5 ). Furthermore, the if-condition in line 3 ensures that only terms
indivisible by lt(6) are added to A in line 8. When the algorithm terminates we have ? = 0

and hence the claimed identities are ensured. �

The remainder is denoted as A = rem( 5 ; 6), it assigns any such 5 a (unique) representative
of 5 modulo

〈
6
〉
. This solves the divisibility problem for multivariate polynomials, as

6 | 5 if and only if rem( 5 ; 6) = 0.

Proof. If rem( 5 ; 6) = 0, then 5 = @6. Conversely if 6 | 5 , then 6 | 5 − @6 = A, i. e. A = 6ℎ.
Assume A ≠ 0, then this means lt(A) = lt(6) lt(ℎ), contradicting lm(6) - lm(A). �

1.4 The normal form algorithm and Gröbner bases
The previous observationmay be rephrased as a simple case of the idealmembership problem:
5 ∈

〈
6
〉
if and only if rem( 5 ; 6) = 0. In general, ideals in polynomials rings need not be

principal, but require several generators. For example � = 〈-1 , . . . , -=〉 cannot be generated
by less than = elements. In order to solve the ideal membership problem we would like to
extend the division algorithm to take as input both 5 and the generators 61 , . . . , 6B such that

5 ∈
〈
61 , . . . , 6B

〉
if and only if rem( 5 ; 61 , . . . , 6=) = 0.

This will turn out to be a more involved task and leads to the notion of Gröbner bases. We
first formalize the notion of a normal form.
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Definition 1.14 (Normal form, NF�). Let ( ⊆ �[-] and 5 ∈ �[-]. 5 is in normal form with
respect to ( if lm(6) - C for any C ∈ supp( 5 ) and 6 ∈ ( \ {0}.
The set of normal forms of 5 with respect to a finite set � = {61 , . . . , 6B} is the set NF�( 5 ) of

A ∈ �[-] such that

(i) A is in normal form with respect to �;

(ii) 5 = A +∑B
8=1 @8 68 for suitable @8 ∈ �[-]withmdeg(@8 68) � mdeg( 5 ). y

Notice thatmdeg(A) = mdeg( 5 −∑B
8=1 @8 68) � max≺{mdeg( 5 ),mdeg(@8 68)} = mdeg( 5 ).

In analogy to multivariate polynomial division with a single divisor we want to find a
normal form A together with the @1 , . . . , @B from the previous definition. This is actually not
much harder to achieve than in case B = 1, a slight modification of the previous algorithm
yields the normal form algorithm 3. The key idea is to check the condition lm(68) | lm(?)
against all 61 , . . . , 6B and then proceed in the same way.

Algorithm 3 The normal form algorithm
Require: 5 , 61 , . . . , 6B ∈ �[-1 , . . . , -=]≺, 61 , . . . , 6B ≠ 0
Ensure: 5 = @161 + · · · + @B 6B + A, lm(68) - C for all terms C ∈ supp(A) and all 8.
1: (@1 , . . . , @B) ← (0, . . . , 0), A ← 0, ? ← 5

2: while ? ≠ 0 do
3: if lm(68) | lm(?) for some 8 then
4: Choose such an 8 ∈ {1, . . . , B} ⊲ e. g. the smallest such i
5: @0 ← lt(?)/lt(68)
6: @8 ← @8 + @0
7: ? ← ? − @0 · 68
8: else
9: A ← A + lt(?)
10: ? ← ? − lt(?)
11: end if
12: end while

With this in mind the following lemma is proven exactly the same way as before.

Lemma1.15. Algorithm 3 terminates andmdeg(?) strictly decreases each iteration if ? ≠ 0. It produces

@1 , . . . , @B , A as in Definition 1.14.

Algorithm 3 allows us to define rem( 5 ; 61 , . . . , 6B) as before (if we always choose the least
possible 8 in line 4), but unfortunately this fails to solve the ideal membership problem in
general!

Example 1.16. Consider 5 = -.2 − -, 61 = -. + 1, 62 = .2 − 1 and ≺lex, then rem( 5 ; 61 , 62) =
−- − ., but 5 = - · 62 ∈

〈
61 , 62

〉
. Of course, this does not happen if we chose 8 = 2 in line 4

of the algorithm, indeed rem( 5 ; 62 , 61) = 0. y

We would like to consider generating sets of � behaving well with this ambiguity in the
division algorithm, it turns out that Gröbner bases have this property.
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Definition 1.17. The initial ideal of � ⊆ �[-]≺ is the monomial ideal

in(�) B
〈{

lm(6)
�� 0 ≠ 6 ∈ �

}〉
. y

We have the following characterizations:

Theorem 1.18 (Characterizations of Gröbner bases). Let � be an ideal and � = {61 , . . . , 6B} ⊆ �.
The following are equivalent:

(a) in(�) = 〈lt(�)〉

(b) For all 5 ∈ �[-] there is a unique A with 5 − A ∈ � such that no lt(68) divides any< ∈ supp(A).

(c) For all 5 ∈ �[-] we have 5 ∈ � if and only if rem( 5 ; 61 , . . . , 6B) = 0.

Moreover, if any of these properties is satisfied, then for any input 5 the result A of algorithm 3 is

independent of the choices of 8 in line 5.

Proof. (a)⇒(b): Algorithm 3 guarantees the existence of a normal form A ∈ NF�( 5 ) which
satisfies the condition by definition. Now consider two decompositions 5 = ℎ1 + A1 = ℎ2 + A2,
ℎ1 , ℎ2 ∈ �. Then A1− A2 = ℎ2− ℎ1 ∈ �, hence lm(A1− A2) ∈ in(�) =

〈
lm(61), . . . , lm(6B)

〉
. Assume

A1 ≠ A2, then by Lemma 1.6 some monomial in A1 − A2 is divisible by some lm(68), hence such
a monomial must occur in either A1 or A2, a contradiction.

(b)⇒(c): Let 5 ∈ �[-]. If rem( 5 ; 61 , . . . , 6B) = 0, then 5 ∈
〈
61 , . . . , 6B

〉
⊆ �. Conversely let

5 ∈ �, then theAlgorithmyields adecomposition 5 = @161+· · ·+@B 6B+A, A = rem( 5 ; 61 , . . . , 6B),
such that A the desired properties from (ii). But A′ = 0 also has these properties (recall 5 −0 ∈ �),
so by uniqueness we must have A = 0. This also shows the independence of choices in
Algorithm 3 in line 5.

(c)⇒(a): In order to show that in(�) =
〈
lm(61), . . . , lm(6B)

〉
it suffices to check that lm( 5 ) ∈〈

lm(61), . . . , lm(6B)
〉
for any 5 ∈ �. Write such a 5 as 5 = @161 + · · · + @B 6B (by assumption the

remainder is zero). Lemma 1.15 tells us that mdeg(@8 68) � mdeg( 5 ) for each 8, and we must
have equality for some 8, since otherwise mdeg(@161 + · · · + @B 6B) ≺ mdeg( 5 ). Pick such an 8,
then lm( 5 ) = lm(@8 68) = lm(@8) lm(68) ∈

〈
lm(61), . . . , lm(6B)

〉
. �

Definition 1.19 (Gröbner basis). A Gröbner basis of an ideal � ⊆ �[-] is a finite set � =

{61 , . . . , 6B} ⊆ � satisfying any of the equivalent conditions in Theorem 1.18, in particular,
〈�〉 = � by (c). y

Remark. Characterization (a) is often used in the literature as the definition of a Gröbner basis,
as it applies in the more general setting where � is replaced with an arbitrary commutative
ring [24, Remark 9.11] or a “non-global” monomial ordering is used [19, Section 1.2, 1.6].
Another reason is that we can prove existence of Gröbner bases easily, see the following
corollary.
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If we slightly modify the normal form algorithm 3, then independence of choice in said
algorithm is actually also equivalent to being a Gröbner basis. This leads to the notion of
confluence of rewrite relations and is, for example, explored in the book by Kreuzer & Robbiano,
where even more characterizations of Gröbner bases are presented [28, Theorem 2.4.1].

Corollary 1.20. Any ideal � ⊆ �[-] admits a Gröbner basis.

Proof. The set lm(�) generates the ideal in(�) (by definition). As the ring �[-] is Noethe-
rian (Hilbert’s basis theorem A.1), any generating set contains a finite generating subset
{lm(61), . . . , lm(6<)}. Then � = {61 , . . . , 6<} is a Gröbner basis of � by characterization
(a). �

Example 1.21. Any finite set of monomials � is a Gröbner basis for the ideal 〈�〉. The poly-
nomials 61 = -. + 1, 62 = .2 − 1 from example 1.16 are not a Gröbner basis (they violate
(c)). y

Theorem 1.18 and its proof have revealed that normal forms with respect to Gröbner bases
are unique, and suggests that there is a normal form with respect to the whole ideal �.

Theorem 1.22 (The normal form map NF�). Let � ⊆ �[-] be an ideal.

(i) For each 5 ∈ �[-] there exists a unique 5 ∗ such that 5 − 5 ∗ ∈ � and 5 ∗ is in normal form with

respect to �.

We denote this element as NF�( 5 ) = 5 ∗.

(ii) If � is a Gröbner basis of �, then NF�( 5 ) = {NF�( 5 )}, in particular, any two Gröbner bases of �

define the same (unique) normal form.

(iii) The map NF� : �[-] → �[-] is�-linear with kernel kerNF� = �.

We note that the mapNF� is notmultiplicative, for exampleNF〈G2−G〉(G2) = G = NF〈G2−G〉(G).

Proof. (i) Let � be a Gröbner basis of �, then by 1.18(a) being in normal form with respect
to � is equivalent to being in normal form with respect to �. Hence by 1.18(b) there is a unique
A ∈ �[-] in normal form with respect to � and with 5 − A ∈ �.

(ii) We just showed that the polynomial(s) in NF� satisfy the condition in (i).

(iii) For linearity consider 5 , 6 ∈ �[-], � ∈ �, 5 ∗ = NF�( 5 ), 6∗ = NF�(6). Then � 5 ∗ and
5 ∗ + 6∗ are also in normal form with respect to � (the monomials which occur must also occur
in 5 ∗ or 6∗). We also have

� 5 − � 5 ∗ = �( 5 − 5 ∗) ∈ � and ( 5 + 6) − ( 5 ∗ + 6∗) = ( 5 − 5 ∗) + (6 − 6∗) ∈ � ,

so NF�(� 5 ) = � 5 ∗ and NF�( 5 + 6) = 5 ∗ + 6∗. The fact that kerNF� = kerNF� = � is a
reformulation of Theorem 1.18(c). �
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We can characterize the normal form by a minimality condition: We can extend ≺ to finite
sets of monomials ", # ⊆ Mon= by looking for the largest element not in the other set

" ≺P # if and only if max≺(" \ #) ≺ max≺(# \").

The order ≺P is still a well-order [43, Lemma 2.4].

Lemma 1.23. Let � ⊆ �[-] be an ideal, 5 ∈ �[-] and set [ 5 ]≡� B
{
5 + ℎ

�� ℎ ∈ � }. Then NF�( 5 )
is the unique element of [ 5 ]≡� with minimal support (with respect to ≺P).

Proof. Consider a 5 ′ ∈ [ 5 ]≡� with minimal support ( 5 ′ exists since ≺P is a well-order). Any
reduction step in the normal form algorithm strictly decreases the support with respect to ≺P,
so by assumption 5 ′ = NF�( 5 ′)

5 ′− 5 ∈�
= NF�( 5 ). �

1.5 Reduced Gröbner bases and uniqueness
If� is aGröbner basis of some ideal �, then�∪{ 5 } is also aGröbner basis for any polynomial 5 .
Hence there are many Gröbner bases for the same ideal. A first step towards making Gröbner
bases unique is the observation that if 5 , 6 ∈ � with lm( 5 ) | lm(6), then � \ {6} is still a
Gröbner basis (see below). This leads to the following definition:

Definition 1.24 (Interreduced Gröbner basis). A set of polynomials ( is normalized if 0 ∉ (
and lc( 5 ) = 1 for all 5 ∈ (.
A Gröbner basis � is interreduced if it is normalized and for each 6 ∈ � we have 6 ∉〈

lm(� \ {6})
〉
. y

Lemma 1.25. Let � be a Gröbner basis of �.

(i) If there is a 6 ∈ � such that lm(6) ∈
〈
lm(� \ {6})

〉
, then � \ {6} is also a Gröbner basis of �.

(ii) Assume that � is normalized. Then � is interreduced if and only if it is minimal, i. e. it does not

properly contain a Gröbner basis of �. In particular, � contains an interreduced Gröbner basis.

(iii) Any two interreduced Gröbner bases �, �′ of � have the same length and lt(�) = lt(�′)

Proof. (i) Using the definition of a Gröbner basis, we have

in(�) = 〈�〉 =
〈
{lt(6)} ∪ lt(� \ {6})

〉
=

〈
lt(� \ {6})

〉
.

By Theorem 1.18(a), this is again a Gröbner basis of �.

(ii) If � is minimal, then by (i) it must be interreduced. Conversely, if �′ ( � is a Gröbner
basis for � and 6 ∈ � \ �′, then lm(6) ∈ in(�) = 〈lm(�′)〉.
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(iii) Let 6 ∈ �, then lm(6) ∈ in(�) = 〈lm(�′)〉. Since this is a monomial ideal, we have
lm(6′) | lm(6) for some 6′ ∈ �′ (Lemma 1.6). Repeating this argument with 6′ yields a 6′′ ∈ �
with lm(6′′) | lm(6′), so lm(6′′) | lm(6). As � is interreduced, we get that 6 = 6′′ and hence
lt(6) = lt(6′) = lt(6′′) (here we use that � and �′ are normalized). Thus 6 ∈ lt(�′), as 6 was
arbitrary we have lt(�) ⊆ lt(�′) and by symmetry lt(�′) ⊆ lt(�). Since all leading terms are
distinct (again by interreducedness) we have |� | = |lt(�)| = |�′ |. �

Example 1.26. If � is a monomial ideal generated by � = {-
1 , . . . , -
B }, then � is interreduced
if and only if none of the monomials divide each other. By Lemma 1.6 these monomials are
precisely the minimalmonomials in Mon= ∩ � with respect to divisibility. y

Unfortunately, interreduced Gröbner bases are not unique either, for example {-,.} and
{- + .,.} are both interreduced Gröbner bases for � = 〈-,.〉 (since they have the same
leading monomial). This indicates that the lower terms must also be considered, which leads
to the “correct” definition.

Definition 1.27 (Reduced Gröbner basis). AGröbner basis � is reduced if it is normalized and
for all 6 ∈ � and any < ∈ supp(6)we have < ∉

〈
lm(� \ {6})

〉
. y

Theorem 1.28. Any ideal � ⊆ �[-] admits a unique reduced Gröbner basis.

Proof. Existence:By theprevious lemma there exists an interreducedGröbnerbasis {61 , . . . , 6B}
for �. For 8 = 1, . . . , B define inductively

ℎ8 B rem(68; ℎ1 , . . . , ℎ8−1 , 68+1 , . . . , 6B).

We claim that lt(ℎ8) = lt(68) by induction on 8. By construction we can write

68 =

8−1∑
9=1

@ 9ℎ 9 +
B∑

9=8+1
@ 9 69 + ℎ8 , mdeg(@ 9ℎ 9),mdeg(@ 9 69) � mdeg(68). (1.5)

By induction lt(@ 9ℎ 9) = lt(@ 9 69) for 9 = 1, . . . , 8 − 1, but by interreducedness none of the terms
lt(@ 9 69) can equal lt(68) 9 = 1, . . . , 8−1, 8+1, . . . , B. In order for (1.5) to hold, wemust therefore
have lt(68) = lt(ℎ8).
Now �′ B {ℎ1 , . . . , ℎB} is a reduced Gröbner basis for �: By construction �′ ⊆ � and by the

claim 〈lt(�′)〉 = 〈lt(�)〉 = in(�), so �′ is a Gröbner basis for �. Clearly it is normalized, and
by construction no term in ℎ8 is divisible by any leading monomial of any other ℎ8 (coinciding
with the leading monomials of the respective 68).
Uniqueness: Let �, �′ be two reduced Gröbner bases for �. By the previous lemma we get
� = {61 , . . . , 6B}, �′ = {6′1 , . . . , 6′B} with lt(68) = lt(6′

8
). No monomial in 68 − 6′8 is divisible by

any lm(�): This is clear for lm(� \ {68}) by reducedness of � and �′, and lm(68) - lt(68 − 6′8),
as lm(68 − 6′>) ≺ lt(68). This shows that 68 − 6′8 coincides with its remainder rem(68 − 6′8 ;�),
which vanishes since 68 − 6′8 ∈ �. So 68 = 6′

8
, as 8 was arbitrary we get � = �′. �
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Thus ideals of polynomials are uniquely characterized by their reducedGröbner basis. They
can also be used to find the minimal size of a Gröbner basis for �:

Corollary 1.29. The reduced Gröbner basis of an ideal has minimal length (number of elements) and

minimal largest multidegree among all Gröbner bases of �.

Proof. Any Gröbner basis � of � can be transformed into the reduced Gröbner basis �0 by
following the steps in Theorem 1.28. These steps never increase the number or multidegree of
the elements, hence the claim follows. �

We use this uniqueness property to define a decision problem associated to Gröbner bases:

Definition 1.30 (Reduced Gröbner basis membership problem, GROEBM�).

• Input: (6, 51 , . . . , 5B)multivariate polynomials from�[-1 , . . . , -=]

• Output: Decide whether or not 6 is contained in the unique reduced Gröbner basis of
� =

〈
51 , . . . , 5=

〉
y

The normal form map NF� can also be used to characterize the unique reduced Gröbner
basis directly. We follow the notation of [30, Section 5].

Definition 1.31 ((Ir)reducible, minimally reducible). Let � ⊆ �[-] be an ideal.

(i) Apolynomial 5 ∈ �[-] is reducible with respect to � ifNF�( 5 ) ≠ 5 , andotherwise irreducible
with respect to �.

(ii) Amonomial< is calledminimally reducible with respect to � if it is reducible, but all proper
divisors <′ | < are irreducible with respect to �. y

A polynomial 5 is reducible with respect to � if and only if for any Gröbner basis � there is
a 6 ∈ � with lm(6) | lm( 5 ).
Theorem 1.32. The unique reduced Gröbner basis of � is given by the set{

< −NF�(<)
�� < ∈ Mon= is minimally reducible

}
⊆ �.

Proof. Let � be the reduced Gröbner basis of � and �′ the set defined in the theorem.
If 6 ∈ �, < = lt(6), then < − 6 is in normal form with respect to � (as � is reduced), so

NF�(<) = < − 6. In particular < is reducible and 6 = < −NF�(<). Assume that some proper
divisor<′ | < were reducible, i. e. lm(6′) | <′ for some 6′ ∈ �, then lm(6′) | < = lm(6), which
is impossible for � interreduced. We conclude 6 ∈ �′.
On the other hand, let < − NF�(<) ∈ �′, then lm(6) | < for some 6 ∈ �. Since < is

minimally reducible, we must have lm(6) = <. Applying the normal form algorithm 3 to <
yields the remainder < − 6, since no term of lt(6) − 6 is in 〈lt(�)〉 by reducedness of �. So
< −NF�(<) = 6 ∈ � as desired. �
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Thus, it is (in theory) possible to enumerate the reduced Gröbner basis by enumerating all
monomials < and calculating normal forms of (divisors of) <. This will be crucial in proving
an exponential space lower bound on the task of calculating the reduced Gröbner basis.

1.6 The case of binomial ideals
To illustrate the theory we have introduced so far, we apply it to binomial ideals. This serves
both as an interesting example as well as a fundamental ingredient in proving lower bound on
the length of Gröbner bases in chapter 3. We partially follow Koppenhagen & Mayr [27], for
a detailed exposition of binomial ideals and their properties consider the article by Eisenbud
& Sturmfels [15].
Let � = (01-
1 + 11-�1 , . . . , 0B-


B + 1B-�B ) and � = 〈�〉 be a binomial ideal; if all 08 = 1,
18 = −1, then we have a pure difference ideal. We start by showing that both the normal form
algorithm and the (reduced) Gröbner basis associated to � resp. � again produce binomials
and pure differences.

Lemma 1.33. Let < be a monomial and 5 a binomial.

(i) rem(<;�) is a term and rem( 5 ;�) is a binomial.

(ii) The reduced Gröbner basis of � consists of binomials.

(iii) NF�(<) is a term and NF�( 5 ) is a binomial.

If 5 and � consist of pure binomials, then the preceding statements hold true if “binomial” is replaced

with “pure binomial” and “term” by “monomial”.

Proof. (i) If ? is a monomial, then each time a reduction in line 4–7 is applied, the resulting
? is a term again, and even a monomial if � consists of pure binomials. If no lt(68) | ?, then
A = ? is the remainder.

Similarly, if ? is a binomial and lm(68) | lm(?), then ? − lt(?)
lt(68) · 68 is again a binomial, as

the leading terms in this subtraction cancel. On the other hand, if no lm(68) | lm(?), then in
line 9–10 we have A ← lt(?) = 0 ± -
 and ? ← ? − lt(?) = 1-�. From that point on ? is a
monomial and the previous discussion applies (with the additional constant factor 1) and the
result is a binomial.

Furthermore, if all binomials involved are actually differences of monomials, then the result
will again be a pure binomial (note that 1 = ±1 in this case).

(ii) We postpone the proof for a few pages until the introduction of Buchberger’s algorithm,
see example 2.7.

(iii) This follows from the previous two statements, as NF�( 5 ) = rem( 5 ;�′), where �′ is the
reduced Gröbner basis of �. �
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We now turn to the case of pure binomial ideals and draw a connection to congruence rela-
tions on monomials, that is, equivalence relations compatible with multiplication (Definition
A.4). We define -
 ≡� -� if and only if -
 − -� ∈ �. This makes sense for all ideals �, but for
pure a pure difference ideals we obtain a description of the normal form map, Gröbner basis
and initial ideal in terms of equivalence classes.

Theorem 1.34 (Koppenhagen & Mayr 1999 [27]). Let � be a pure difference ideal with reduced

Gröbner basis �.

(i) For < ∈ Mon= NF�(<) is the minimal monomial in the equivalence class [<]≡� (w.r.t. ≺).

(ii) If -
 − -� ∈ �, 
 � �, then -�
is the minimal monomial in [-
]≡� .

(iii) For any -
 ∈ in(�) there is a -� ≺ -

such that -
 − -� ∈ �.

(iv) Mon= ∩ in(�) consists of the monomials < which are not the minimal element in [<]≡� .

Proof. (i) By the previous Lemma,NF�(<) is amonomial which is by definition in [<]≡� . We
also know that the normal form is a polynomial of minimal multidegree with < −NF�(<) ∈ �
(Lemma 1.23), so NF�(<) is the unique minimal monomial in the class of <.

(ii) This is a direct consequence of Theorem 1.32 and statement (i).

(iii) Let � = {-
1 − -�1 , . . . , -
B − -�B } be the reduced Gröbner basis of �, consisting
of differences of monomials by the previous lemma. As -
 ∈ in(�) = 〈lt(�)〉, there is a
6 = -
8 −-�8 ∈ � with lt(6) = -
8 | -
. Let � B 
 − 
8 , � B �8 + �; then -�6 = -
 −-� ∈ �
has leading term -
.

(iv) Let -
 ∈ in(�), then (iii) yields a -� with -� ≡8 -
 and -� ≺ -
. Conversely, if < is
not the minimal element of [<]≡� , then by (i) NF�(<) ≺ <, so < − NF�(<) ∈ � has leading
monomial <. �

1.7 Representing polynomials
In order to perform algorithmic manipulation on polynomials we need to fix a way to repre-
sent polynomials and their coefficients over a (finite) fixed alphabet. Let enc:  → � be an
encoding,  ⊆ Σ∗. In order to do arithmetic calculations in the field of coefficients, we would
like to be able to perform the usual field operations +,−, ·, / at low computational cost. More
precisely, for 0, 1 ∈  , one can calculate 2, 3, 4 , 5 ∈  in polynomial time with

enc(2) = enc(0) + enc(1), enc(3) = − enc(0), enc(4) = enc(0) · enc(1),
enc( 5 ) = enc(0)−1 if enc(0) ≠ 0.
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Furthermore, equality of elements enc(0) = enc(1)must also be decidable in polynomial time.
This will be our standing assumption for the rest of the thesis. For example, if � is a finite

field, then we can calculate any of the arithmetic operations in constant time with a (large but
constant size) lookup table. Infinite fields pose a more interesting challenge.

Example 1.35. If� = ℚ thenwe canuse the following encoding scheme:We encode @ = 0/1 ∈ ℚ
with 1 > 0, as bin(0)/bin(1). We can then use integer arithmetic to calculate

0

1
+ 2
3
=
03 + 12
13

, − 0
1
=
−0
1
, . . .

and can test for equality using 0
1 =

2
3 if and only if 03 = 21. Notice that the denominators will

swell pretty quickly, so it might be well-advised to simplify the fraction if desired. y

Remark. Strictly speaking, this is not efficient enough for good upper bounds. Instead one
should require addition and multiplication to be in AC0 and NC1 respectively, in order to
obtain a well-endowed ring [43, Definition 3.14]. This is necessary in order to enable fast matrix
operations as in section 2.5. But we will only consider the integers and rational numbers,
which are in fact well-endowed, so we do not elaborate this further.

Suppose now that we have fixed a suitable encoding scheme for �. Then there are two
important choices to be made in order to encode polynomials from�[-1 , . . . , -=]:

(i) Are the exponents of the monomials encoded in binary or is a monomial represented by
a sequence of variables? The former is called binary exponent representation, the latter
unary representation.

(ii) Are all coefficients written down (up to the leading term), or only those in the support
of 5 ? The first case is a dense encoding, the second case is sparse encoding.

We will use spare polynomial encoding with binary exponent representation, although it is
remarkable that the lower bounds also hold true with unary exponent notation.

We now explain how to represent and calculate a monomial order. Robbiano showed
that any monomial order ≺ on Mon= can be represented by a finite set of weight vectors
, = (,1 , . . . ,,=), in the following sense: Let ,: = (F:,8)8 ∈ ℝ= , the weight vectors can be
interpreted as linear functions

,: : ℕ
= → ℝ, ,:(
) B

=∑
8=1

F:,8
8 .

Then, induces a monomial order with 
 �, � if and only if there is a : ∈ {1, . . . , =} with

,:(
) >,:(�) and for all 9 < : ,9(
) =,9(�).
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This is very similar to the definition of the lexicographic order≺lex, and in a sense allmonomial
orders can be understood as lexicographic orders with weights:

Theorem 1.36 (Robbiano 1985 [44]). For any monomial order ≺ there is a weight matrix , ∈
Mat(=×=,ℝ) with ≺, = ≺.
Example 1.37. In the case of ≺lex the weights have the simple form ,:(
) = 
: , so , is the
identity matrix. The graded lexicographic order can be represented by

,1(
) = 
1 + · · · + 
= = |
 |
,:(
) = 
:−1 , : = 2, . . . , =.

Similarly, for ≺grevlex the following weight functions may be used

,1(
) = 
1 + · · · + 
= = |
 |
,:(
) = −
=−:+2 , : = 2, . . . , =. y

Dubé, Mishra & Yap [13] gave a constructive proof of this theorem and also showed that the
entries of, may taken to be non-negative. In the previous example ≺grevlex can be represented
by,:(
) = 
: + · · · + 
= , : = 1, . . . , =.

In order to represent an ordering in a finite number of bits, we restrict ourselves to the case
where the weights are non-negative rational numbers, ∈ Mat(=×=,ℚ≥0). This is not a harsh
restriction, as for any ≺ and � ∈ ℕ there is a rational matrix ,̃ such that ≺,̃ coincides with
≺ on monomials of degree ≤ �.

Remark. The representation of monomial orders as weight matrices is mainly useful for the-
oretical considerations (for example in Chapter 2). In actual computer algebra systems it is
usually much faster to directly implement the monomial orders of interest.





2
Algorithms and upper bounds

In this chapter we describe two fundamentally different approaches to the task of computing
Gröbner bases and solving the idealmembershipproblem.Thefirst is Buchberger’sAlgorithm,
which uses so-called S-polynomials to enlarge a given set of generators to a Gröbner basis.
The second approach is based on degree bounds for the polynomials in an ideal membership
certificate or a reducedGröbner basis, and uses linear algebra techniques to obtain exponential
space algorithms. We also compare complexity-theoretic upper bounds results for different
classes of polynomials.
The material on Buchberger’s algorithm is standard to computational commutative algebra

texts, we follow [24, Chapter 9]. The content of the later sections is inspired by survey articles
of Mayr [32] and Mayr & Toman [35] together with the original literature.

2.1 S-Polynomials

We start with proving a criterion for a set� = {61 , . . . , 6B} to constitute a Gröbner basis of 〈�〉.
The greatest common divisor and least common multiple for monomials -
 , -� is defined
similarly to the integers as

gcd(-
 , -�) B -
max{
1 ,�1}
1 · · ·-max{
= ,�=}

= , lcm(-
 , -�) B -
min{
1 ,�1}
1 · · ·-min{
= ,�=}

= .

Definition 2.1 (S-Polynomial). Let 0 ≠ 5 , 6 ∈ �[-] be two polynomials. The S-polynomial is
defined as

Spoly( 5 , 6) B
lt(6)
C
· 5 −

lt( 5 )
C
· 6, C B gcd(lm( 5 ), lm(6)). y

Equivalently, using gcd(-
 , -�) · lcm(-
 , -�) = -
 · -�, we can write

Spoly( 5 , 6) B
lc(6)C′
lm( 5 ) · 5 −

lc( 5 )C′
lm(6) · 6, C′ B lcm(lm( 5 ), lm(6)).

Example 2.2. The S-polynomial of twomonomials is always zero. If 5 , 6 are differences ofmono-
mials or more generally binomials, then their S-polynomial is also a difference of monomials
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resp. a binomial. For example, if 5 = -
1 − -�1 , 6 = -
2 − -�2 with 
8 � �8 , then

Spoly( 5 , 6) = -
2

C
·(-
1−-�1)−-


1

C
·(-
2−-�2) = -
1+�2

C
−-


2+�1

C
, C B gcd(-
1 , -
2). y

The key property of the S-polynomial is that the leading terms of lt(6)
C · 5 and lt( 5 )

C · 6
cancel, as both equal lc( 5 ) lc(6)C′. With this notion we can formulate and prove Buchberger’s
criterion.

Theorem 2.3 (Buchberger’s criterion). Let � = (61 , . . . , 6B) be a finite list of polynomials. The

following are equivalent:

(a) � is a Gröbner basis of � = 〈�〉;

(b) For all 5 , 6 ∈ � we have 0 ∈ NF�(Spoly( 5 , 6));

(b’) For all 5 , 6 ∈ � we have rem(Spoly( 5 , 6);�) = 0.

Proof. We follow the proof given by Kemper [24, Theorem 9.12].

(a)⇒(b’)⇒(b): All S-polynomials of elements 5 , 6 ∈ � ⊆ � are linear combinations of
elements of� and hence lie in � = 〈�〉. By characterization 1.18(c) we have Spoly( 5 , 6) rem� =

0, and thus clearly 0 ∈ NF�(Spoly( 5 , 6)).

(b)⇒(a): Assume (b) but also that � is not a Gröbner basis. We will arrive at a contradiction
picking a minimal counterexample (with respect to the well-order ≺) and then construct an
even smaller counterexample; thus showing that no such counterexample can exist.
Step 1: Construct a minimal expression of a counterexample.

By 1.18(a) there is a 5 ∈ � with lm( 5 ) ∉ 〈lt(�)〉, since 5 ∈ � the set

� =
{
(ℎ1 , . . . , ℎB) ∈ �[-]B

�� 5 = ℎ161 + · · · + ℎB 6B }
is not empty. Consider themap� → ℕ= which assigns (ℎ1 , . . . , ℎB) themaximummultidegree
max8 mdeg(ℎ8 68)with respect to ≺. As ≺ is a well-order, this map takes its minimal value 
 for
some (ℎ1 , . . . , ℎB) ∈ �; let C B -
. Since

5 =
∑
8

ℎ8 68 , (2.1)

lm( 5 ) occurs in some supp(ℎ8 68), but not as its leading monomial (as lm( 5 ) ∉ 〈lm(�)〉), so

 � mdeg(ℎ8 68) � mdeg( 5 ). In particular, C does not occur in supp( 5 ), and so comparing
coefficients of C in (2.1) and using 
 � mdeg(ℎ8 68) yields

0 =

B∑
8=1

28 · lc(68), 28 B


lc(ℎ8) if lm(ℎ8 68) = C
0 otherwise.

(2.2)
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By construction of C we must have 28 ≠ 0 for some 8, after reordering the 68 we may assume
21 ,≠ 0.
Step 2: Apply (b) to the S-polynomials Spoly(68 , 61).

Let 8 ≥ 2 with 28 ≠ 0, then lm(61), lm(68) | C by (2.2) and hence C8 B lcm(lm(61), lm(68)) | C.
The S-polynomial is then

Spoly(68 , 61) =
lc(61)C8
lm(68)

· 68 −
lc(68)C8
lm(61)

· 61

and by the observation after the definition of S-polynomials we see lm(Spoly(68 , 61)) ≺ C8 . By
(b) 0 is a normal form of Spoly(68 , 61), hence by definition we have representations

Spoly(68 , 61) =
B∑
9=1

@8 , 9 69 , lm(@8 , 9 69) � lm(Spoly(68 , 61)) ≺ C8 , 9 = 1, . . . , B.

Let B8 B C/C8 · Spoly(68 , 61), we derive two expressions for B8 :

(i) Using C = lm(ℎ8) lm(68) = lm(ℎ1) lm(61)we see

B8 =
lc(61)C
lm(68)

· 68 −
lc(68)C
lm(61)

· 61 = lc(61) lm(ℎ8) · 68 − lc(68) lm(ℎ1) · 61.

(ii) The normal form representation of Spoly(68 , 61) from above together with the multide-
gree inequalities yield

B8 =

B∑
9=1

C

C8
@8 , 9 69 , lm

(
C

C8
@8 , 9 69

)
≺ C , 9 = 1, . . . , B.

Step 3: Construct a smaller representation (ℎ′1 , . . . , ℎ′B) ∈ �, leading to a contradiction.

Let 6 B
∑A
8=1 28 lm(ℎ8)68 , we can rewrite this sum in order to apply the previously obtained

identities:

6 =
1

lc(61)

(
B∑
8=2

28

(
lc(61) lm(ℎ8)68 − lc(68) lm(ℎ1)61︸                                      ︷︷                                      ︸

= B8 by (i)

)
+

B∑
8=1

28 lc(68)︸        ︷︷        ︸
= 0 by (2.2)

lm(ℎ1)61

)

=

A∑
8=2

28

lc(61)
· B8

(ii)
=

B∑
9=1

( B∑
8=2

28

lc(61)
C

C8
@8 , 9︸             ︷︷             ︸

C ℎ̃ 9

)
69 , lm(ℎ̃ 9 69) ≺ C , 9 = 1, . . . , B.

We thus have two combinations of 6 as a linear combination of the 68 , which can be combined
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to obtain a new representation (ℎ′1 , . . . , ℎ′B) ∈ �:

5 = 5 − 6 + 6 =
A∑
8=1

(
ℎ8 − 28 lm(ℎ8) + ℎ̃8︸                 ︷︷                 ︸

C ℎ′
8

)
68 .

It remains to how thatmax8 mdeg(ℎ′
8
68) ≺ 
. If 28 = 0, thenmdeg(ℎ8 68) ≺ 
 and hence

mdeg(ℎ′8 68) = mdeg(ℎ8 68 + ℎ̃8 68) � max{ℎ8 68 , ℎ̃8 68} ≺ 
.

On the other hand if 28 ≠ 0, then mdeg(ℎ8 − 28 lm(ℎ8)) = mdeg(ℎ8 − lt(ℎ8)) � mdeg(ℎ8) and

mdeg(ℎ′8 68) � max{mdeg(ℎ8 − 28 lm(ℎ8)), ℎ̃8} +mdeg(68) ≺ 
. �.

Corollary 2.4. Given a set of polynomials � = {61 , . . . , 6B} ⊆ �[-]≺, the question whether � is a

Gröbner basis of 〈�〉 is decidable.

Proof. By Buchberger’s criterion it suffices to verify rem(Spoly(68 , 69), �) = 0 for all 8 , 9. �

2.2 Buchberger’s algorithm

In this section we present Buchberger’s algorithm, historically the first algorithm calculating
the Gröbner basis of an ideal, introduced by Buchberger in his PhD thesis [8].

Algorithm 4 Buchberger’s algorithm
Require: 51 , . . . , 5B ∈ �[-1 , . . . , -=]≺
Ensure: � is a Gröbner basis of � =

〈
51 , . . . , 5B

〉
1: �← { 51 , . . . , 5B} \ {0}
2: % B { ( 58 , 59) | 1 ≤ 8 < 9 ≤ B }
3: while % ≠ ∅ do
4: Pick ( 5 , 6) ∈ %
5: % ← % \ {( 5 , 6)}
6: B ← Spoly( 5 , 6)
7: B∗ ← rem(B;�)
8: if B∗ ≠ 0 then
9: % ← % ∪

{
(B∗ , 6)

�� 6 ∈ � }
10: �← � ∪ {B∗}
11: end if
12: end while

Theorem 2.5 (Correctness of Buchberger’s algorithm). Algorithm 4 terminates after a finite

number of steps and calculates a Gröbner basis � of the ideal � generated by the input 51 , . . . , 5B .
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Proof. Termination: We first show that the branch in line 8–10 for B∗ ≠ 0 is only taken a
finite number of times. Indeed, if B∗ ≠ 0, then in particular lm(B∗) ∉ 〈lm(�)〉 and 〈lm(�)〉 (
〈lm(� ∪ {B∗})〉. So each pass of line 10 strictly increases the ideal 〈lm(�)〉 and by the Noether
property of�[-] any ascending chain of ideals must eventually become stationary (see A.1).
From this point on each pass through the loop decreases the size of % in line 5, so the algorithm
terminates with % = ∅.
Correctness: Let � be the final result of the algorithm and �0 the set at any point in the

algorithm. We have the following invariants:

• 〈�0〉 = � (as 51 , . . . , 5B ∈ �0, line 1).

• For 5 , 6 ∈ �0, B = Spoly( 5 , 6), either 0 ∈ NF�0(B) or � contains a normal form NF�0(B)
(line 10).

In particular this applies to �0 = �. If � contains a normal form A of B = Spoly( 5 , 6), then
0 = A − A is also a normal form of B with respect to �. Hence by Buchberger’s criterion 2.3 the
set � is a Gröbner basis of �. �

Example 2.6. We take the polynomials 61 = -. + 1, 62 = .2 − 1 from example 1.16 with ≺lex.
We have B1 = Spoly(61 , 62) = −- − . and B∗1 = rem(B; 61 , 62) = B1. Hence we add B∗1 to � and
consider the new pairs (B∗1 , 61) and (B∗1 , 62). We have

B2 = Spoly(B∗1 , 61) = −.2 + 1, B3 = Spoly(B∗1 , 62) = −.3 − -

Now B∗2 = rem(B2; 61 , 62 , B∗1) = 0 and B∗3 = rem(B3; 61 , 62 , B∗1) = 0, hence the algorithm termi-
nates and we obtain the Gröbner basis {-. + 1, .2 − 1,−- − .}. y

Remark. Consider a set of polynomials { 51 , . . . , 5B} ⊆ �[-] containing -2
8
− -8 for -8 ∈ -.

These polynomials enforce that any solution to this system takes values in {0, 1}. In this way
Boolean formulae and equations can be expressed using polynomial systems, and one can
techniques from commutative algebra to reason about such statements. For an interesting
example see the “Gröbner proof system” by Clegg, Edmonds & Impagliazzo [10], who use
Gröbner bases and Buchberger’s algorithm to produce proof certificates for tautologies.

If one is interested in a reduced Gröbner basis, then algorithm 5 can be applied after
producing an arbitrary Gröbner basis �:
The correctness of this algorithm follows from the results and proofs of Lemma 1.25 and

Theorem 1.28. For example, the Gröbner basis from the previous example can be reduced to
{- +.,.2 − 1}. As a first application, we fill the gap in the proof of lemma 1.33 as promised.

Example 2.7 (The reduced Gröbner basis of a binomial ideal). If � =
〈
51 , . . . , 5B

〉
is a set of bino-

mials, then any S-polynomial B formed from this set is also a binomial, and so is B∗ rem� by
Lemma 1.33(i). Hence Buchberger’s algorithm adds only binomials to � and thus produces
some Gröbner basis consisting of differences of monomials. Similarly, the algorithm reducing
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Algorithm 5 Reduction of a Gröbner basis
Require: � a Gröbner basis of �
Ensure: �′′ is the unique reduced Gröbner basis of �
1: �′← ∅
2: for all 6 ∈ � do
3: if 6 ≠ 0 and lm(6′) - lm(6) for all 6′ ∈ �′ then ⊲ Interreduction
4: �′← �′ ∪ {6/lc(6)} ⊲ Normalization
5: end if
6: end for
7: �′′← ∅
8: for all 8 = 1, . . . , |�′ | do ⊲ M′ = {g1 , . . . , gr }
9: ℎ ← rem(68;�′′ ∪ {68+1 , . . . , 6A}) ⊲ Reduction
10: �′′← �′′ ∪ {ℎ}
11: end for

this Gröbner basis will only delete or normalize elements from � and then introduce some re-
mainders which are again binomials. Hence the reduced Gröbner basis consists of binomials.
The same argument works for pure binomials and for homogeneous polynomials. y

Wealso note that the combination of Buchberger’s algorithmand the normal formalgorithm
yield:

Theorem 2.8. The ideal membership problem IM� and (reduced) Gröbner bases GROEBM� are de-

cidable (as long as the field operations are computable).

The run-time of Buchberger’s algorithm depends heavily on the number of Polynomials B
which have to be added to �. Also, the majority of the computation is spent calculating the
remainder of the B with respect to increasingly complicated sets �. A good implementation
uses various techniques to reduce the number of unnecessary normal form calculations, for
example [19, Exercise 1.7.2]:

Lemma 2.9 (Product criterion). If 5 , 6 ∈ �[-] with gcd(lm( 5 ), lm(6)) = 1, then

0 ∈ NF{ 5 ,6}(Spoly( 5 , 6))

and hence Spoly( 5 , 6) may be skipped in Buchberger’s algorithm.

Remark. One of the most widely used improvements of Buchberger’s algorithm are the algo-
rithms �4 and �5 by Faugère [16]. For some bounds on the complexity of �5 see for example
the work of Bardet, Faugère & Salvy [2].

2.3 Degree bounds
In this section we gather some upper bounds on the degrees of polynomials appearing in
the problems of our interest, following Mayr [32] and Mayr & Toman [35]. We start with the
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ideal membership problem IM�, let 5 , 51 , . . . , 5B ∈ �[-], then we are interested in bounds
depending on the following factors:

• B, the number of generators 51 , . . . , 5B .

• =, the number of variables in - = {-1 , . . . , -=}.

• 3′ B deg 5 , 38 B deg 58 , the degrees. Without loss of generality we may assume 31 ≥
· · · ≥ 3B and 3 B max8 38 .

In order to decide whether 5 ∈
〈
51 , . . . , 5B

〉
, one could try to systematically search the space

of polynomials (ℎ1 , . . . , ℎB) ∈ �[-]B in order to find a solution to

5 = ℎ1 51 + · · · + ℎB 5B , ℎ1 , . . . , ℎB ∈ �[-]. (2.3)

A first step in order to make this feasible is to bound the degree of the ℎ8 , historically the first
result is due to Hermann, see Mayr & Meyer for a short proof [33, Appendix].

Theorem 2.10 (Hermann 1926 [20]). If the equation (2.3) admits a solution, then there is a solution

with

deg ℎ8 ≤ 3′ + (B3)2
=

, 8 = 1, . . . , B.

In the next section we will see how this and the bounds below may be used to turn ideal
membership, normal form and Gröbner basis calculation into problems from linear algebra.
A natural question is to ask whether this degree can be improved, since a better bound

yields a system of linear equations with fewer variables and equations. In this generality, the
double-exponential nature of the Hermann bound is unavoidable in the following sense: For
any :, 3 ∈ ℕ there exist polynomials ( 5 , 51 , . . . , 5B), where B = 10: + O(1), the number of
variables is = = 10: +O(1) and the degree is O(3), such that any solution to (2.3) has at least
one ℎ8 with

deg(ℎ8) > = + 32:−1 .

This result is due to Mayr & Meyer [33], we will prove a variant of this in chapter 3. On the
other hand, if the 58 satisfy additional properties, then better bounds can be proved. The case
of homogeneous polynomials has already been mentioned in Lemma 1.7, there the degrees of
the ℎ8 are simply bounded by 3’.

Another important special case is the case 5 = 1, i. e. the Nullstellensatz case for HNST�.
Here a single exponential bound was proven by Brownawell for� = ℂ, which was improved
and extended to arbitrary fields by Kollár.

Theorem 2.11 (Kóllar 1988 [26]). If 1 ∈
〈
51 , . . . , 5B

〉
, then there exist ℎ1 , . . . , ℎB with 1 =

∑B
8=1 ℎ8 58

such that

deg ℎ8 ≤ deg(ℎ8 58) ≤ # B max{3, 3}
max{B,=}−1∏

8=1

max{3, deg 58} ≤ max{3, 3}max{B,=} .
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This result is sometimes called the effective Nullstellensatz, as it yields explicit bounds on the
degrees occurring in Hilbert’s Nullstellensatz.
Finally, we give an example on how the dimension of the ideal influences the degree bound,

for more on dimension see for example [19, Chapter 5].

Definition 2.12 (Dimension of an ideal). The dimension dim(�) of an ideal � ⊆ �[-] is the
largest integer < ∈ ℕ such that there exist variables -81 , . . . , -8< ∈ - with

� ∩�[-81 , . . . , -8< ] = (0). y

Theorem 2.13 (Dickenstein et al. 1991 [12]). Assume (2.3) admits a solution and the ideal � is of

dimension zero. Then there is a solution with

deg(ℎ8 58) ≤ =32= + 3= + 3 + deg( 5 ).

We now turn to degree bounds of Gröbner bases, let ≺ be a monomial order on Mon= . We
can reduce to the homogeneous case as follows: Let - = {-1 , . . . , -=} and add a new variable
-0.

Definition 2.14 ((De)homogenization). Let 5 ∈ �[-1 , . . . , -=] of degree 3, then its homoge-

nization is

h 5 =
∑


∈ℕ= , |
 |≤3
5
-

3−|
 |
0 -
1

1 · · ·-

=
= = -3

0 5 (
-1

-0
, . . . , -=-0

) ∈ �[-0 , . . . , -=].

If 6 ∈ �[-0 , . . . , -=] is homogeneous, then its dehomogenization is

a6 = 6(1, -1 , . . . , -=) ∈ �[-1 , . . . , -=]. y

We define an ordering onMon({-0 , . . . , -=}) via -
 ≺h -� if and only if

deg-
 < deg-� or
(
deg-
 = deg-� and -
1

1 · · ·-

=
= ≺ -

�1
1 · · ·-

�=
=

)
.

Lemma 2.15. Let � =
〈
51 , . . . , 5A

〉
⊆ �[-] be an ideal and � =

〈h 51 , . . . , h 5A〉 ⊆ �[-0 , . . . , -=]. If
61 , . . . , 6B is a homogeneous Gröbner basis of � with respect to ≺h, then a61 , . . . ,

a6B is a Gröbner basis

of �.

This is not a difficult result, but it requires additional concepts from commutative algebra,
see for example [37, Lemma 2.5] or [34, Lemma 7]. This shows that upper bound on the degree
of Gröbner bases elements of homogeneous ideals (in = + 1 variables) automatically yields
bounds on the degree of Gröbner bases of arbitrary ideals (in = variables). Some conditional
results in this direction were obtained by Möller & Mora [37], but the most influential result
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is the unconditional degree bound by Dubé:

Theorem 2.16 (Dubé 1990 [14]). Let � =
〈
51 , . . . , 5B

〉
⊆ �[-1 , . . . , -=] be an ideal and 3 =

max8 deg 58 . Then the reduced Gröbner basis of � consists of polynomials 68 of degree

deg 68 ≤ 2

(
32

2
+ 3

)2=−1
.

If the 58 are homogeneous, then the exponent can be improved to 2=−2.

The proof uses the Hilbert function of a homogeneous ideal and cone decompositions, for
an overview see the paper by Mayr & Ritscher [34], who also prove dimension-dependent
upper bounds.

Theorem 2.17 (Mayr & Ritscher 2013 [34]). Let� be an infinite field. Let � =
〈
51 , . . . , 5B

〉
( �[-]

be an ideal of dimension A generated by homogeneous 58 of degrees 31 ≥ · · · ≥ 3B . Then the reduced

Gröbner basis of � consists of polynomials 68 of degree

deg 68 ≤ 2

(
1

2
31 · · · 3=−A + 31

)2A−1
If the polynomials are not necessarily homogeneous, then a similar bound with exponent

2A can be achieved. The degree bound by Dubé will enable us to prove an exponential space
upper bound on the complexity of computing Gröbner bases.

2.4 From polynomials to linear algebra
Wecontinue tousenotation fromtheprevious sectionwith 5 , 51 , . . . , 5B ofdegrees 3′, 31 , . . . , 3B ,
3 B max8 38 in = variables. Furthermore, let ≺ be a monomial order, given by a weight matrix
, ∈ Mat(=×=,ℚ≥0) as in section 1.7. We will now describe how to translate the following
problems into problems of linear algebra:

(i) Decide whether 5 = ℎ1 51 + · · · + ℎB 5B for suitable ℎ8 ∈ �[-].

(ii) Calculate NF�( 5 ), where � =
〈
51 , . . . , 5B

〉
with respect to ≺.

In order to obtain concrete upper bounds on the space required by a Turing machine to solve
these problems, we work over the field of rational numbers � = ℚ from here on until the
end of this chapter. The input to these algorithms consists of the sequence of polynomials
5 , 51 , . . . , 5B and in second case the weight matrix, . The rational numbers and the exponents
of the monomials are encoded in binary (or fractions of binary numbers). Let ℓ be the length
of the input, then we have the following estimates

3′, 3 ≤ 2ℓ , =, B ≤ ℓ . (2.4)
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We first consider the case of ideal membership. Let � be a estimate of the degree of a set of
solution deg ℎ8 ≤ �, for example the Hermann bound � = 3′ + (B3)2= . We use the notation
5
 to indicate the coefficient of -
 in 5 . Then the solution of (i) depends on the finitely many
coefficients in

ℎ8 =
∑


∈ℕ= , |
 |≤�
ℎ8 ,
-


 , ℎ8 ,
 ∈ �.

A standard counting argument shows that the number of monomials of degree ≤ � in =

variables is
(
=+�
=

)
≤ (� + 1)= . Finding a solution to (i) is then equivalent to solving the

following enormous system of linear equations:

• Variables: @ B B ·
(
=+�
=

)
unknows ℎ8 ,
, indexed by {1, . . . , B} × { 
 ∈ ℕ= | |
 | ≤ � }.

• Equations: A B
(
=+�′
=

)
equations where �′ = 3 + �, corresponding to the coefficient of

-
 in (i)

5
 =
∑

�∈ℕ= , �≤


B∑
8=1

58 ,
−�ℎ8 ,� , 
 ∈ ℕ= , |
 | ≤ �′.

By construction the ideal membership problem is equivalent to solvability of this system of
linear equations. In order to represent this as amatrix, we choose an ordering of the sets","′

of monomials of degree ≤ � and ≤ �′ respectively, for example ≺lex. Then it makes sense to
talk about the 8-th monomial in each set, and the system of equations can be written as

A� = B, A ∈ Mat(A×@,ℚ), � ∈ ℚ@ , B ∈ ℚA .

In this presentation we have:

• B8 is the coefficient of the 8-th monomial in 5 (which is zero if 8 > 3′).

• Write 9 = : |" | + :′ − 1, 1 ≤ :′ ≤ |" |, then �9 is the coefficient of the :′-th monomial in
ℎ: .

• A8 , 9 consists of the coefficients of the 5: as follows: Let -
 be the 8-th monomial -� be
the ;-th monomial in 5: (as in the previous case), then A8 , 9 = 5
−�.

In the language of linear algebra, the equation A� = B has a solution � if and only if B is in
the linear span of the columns of A, or equivalently if the matrix [A|B] has the same rank as
A. This reduces the ideal membership to the task of computing a rank of a matrix. The size of
this matrix can be estimated in the input length as follows:

• The entries of A and A′ are coefficients of 5 , 51 , . . . , 5B , and hence of size ≤ ℓ .

• The degree � is bounded by

� = 3′ + (B3)2=
(2.4)
≤ ℓ + (ℓ2ℓ )2ℓ ≤ 22

3ℓ
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using the generous estimate ℓ ≤ 2ℓ .

• The number of equations A is bounded by

A =

(
�′ + =
=

)
≤ (� + 3 + 1)=

(2.4)
≤ (223ℓ + 2ℓ + 1)ℓ ≤ 22

5ℓ
.

• Similarly, the number of variables @ is bounded by

@ = B

(
� + =
=

)
≤ B(� + 1)=

(2.4)
≤ ℓ (223ℓ + 1)ℓ ≤ 22

5ℓ
.

Thus we have proven

Theorem 2.18. The ideal membership problem IMℚ can be reduced to the rank computation of two

matrices of size 22
5ℓ × 22

5ℓ
whose entries are coefficients of the input. Furthermore, the polynomials ℎ8

can be obtained as solutions to a system of linear equations of the same characteristics.

We now turn to the calculation of the normal form. Here a similar approach may be used,
namely we have the polynomial equation

ℎ0 = NF�( 5 ) = 5 +
B∑
8=1

58ℎ8 (2.5)

and we are looking for a solution with supp(ℎ0) minimal (Lemma 1.23). In order to do this we
need an estimate on degNF�( 5 ). Let

� = max { 0:,8 , 1:,8 | 0:,81:,8
in, }

be the largest natural number occurring in the weight matrix, and let � be a bound on the
degree of the reduced Gröbner basis of �. Kühnle & Mayr [30, Section 2], expanding on [13],
proved the following upper bound:

Theorem 2.19. For any 5 ∈ �[-] we have

degNF�( 5 ) ≤
(
(=�)=�2= deg( 5 )

)=+1
C #.

Remark. If a specific monomial order ≺ is considered, then better bounds are available. For
example, if ≺ is degree-dominated, i. e. deg-
 > deg-� implies -
 � -�, then of course
mdegNF�( 5 ) � mdeg 5 implies degNF�( 5 ) ≤ deg 5 .

We applying the Hermann bound to 5 −NF�( 5 ) =
∑B
8=1 ℎ8 58 to obtain

deg ℎ8 ≤ deg( 5 − deg ℎ0) + (B3)2
= ≤ # + (B3)2= C �̃.

We use a strategy similar to the ideal membership case to turn (2.5) into a system of linear
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equations, for additional details see [43, Chapter 6]. We introduce an extra factor 50 = 1 to
recreate the shape of the ideal membership equation

50 · ℎ0 + 51ℎ1 + · · · + 5BℎB = 5 {
[
A

���] · [�
�0

]
= B.

This time� contains the coefficients of ℎ1 , . . . , ℎB ,�0 contains the coefficients of ℎ0,A contains
the coefficients of 51 , . . . , 5B , � contains 0’s and 1’s for the coefficients of 50 and B contains the
coefficients of 5 .
We now sketch how this system can be used to find the normal form 5 ∗ = NF�( 5 ). We

know that there is some solution (for example ℎ0 = 5 ) when all monomials in ℎ0 are allowed.
The normal form is characterized as the unique polynomial 5 ∗ ∈ 5 + � with minimal support
supp( 5 ∗) with respect to ≺P (see Lemma 1.23). The key idea is to systematically remove
monomials from ℎ0 together with the corresponding row fromA and see whether the system
still has a solution. We order the columns of [�|�] so that the columns in � are in ascending
order with respect to the monomials in ℎ0, i. e. the lowest monomials 1, -= , . . . come first.
Then we have a maximal regular minor (an invertible square sub-matrix of maximal size)
corresponding to the minimal solution ℎ0. One can decide whether a given column indexed
by : is contained in this minor (i. e. if the corresponding monomial -
 is in supp( 5 ∗)) by
comparing the rank of the minor of the first : rows/columns to the rank of the first : − 1

rows/columns: If the rank is different, then -
 is indispensable, otherwise it is not in the
support.
The maximal degree of a monomial in (2.5) is bounded by max{#, �̃ + 3} = �̃ + 3, so the

number of equations is bounded by (�̃ + 3 + 1)= . Using similar estimates as before, we obtain
the following result.

Theorem 2.20. The computation of (elements of) the support suppNF〈 51 ,..., 5B〉( 5 ) can be reduced to

rank computations of matrices of size 22
O(ℓ ) × 22O(ℓ ) whose entries are coefficients of the input (or 0, 1).

Furthermore, the normal form itself can be obtained as solutions to a system of linear equations of the

same characteristics.

We note here that this is true even if the degree estimate for 3′ = deg 5 is not 2ℓ but rather
22

O(ℓ ) , this will become important when enumerating a Gröbner basis in algorithm 6.

2.5 Fast linear algebra on PRAMs

In this section we briefly introduce a the PRAM model for parallel computation, for details
and a modern treatment see for example the book by Parhami [40]. Since we will only use
abstract results about the complexity on PRAMs, only an overview of the model is given.

A PRAM (parallel random access machine) consists of
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• a set of global registers, containing arbitrary integers,

• a number of processors %0 , . . . , %?(=)−1 (depending on the input size), each with their
own local registers,

• a finite program consisting of arithmetic operations, branching and read/write access
to local or global memory.

Each processor runs on the same program with the knowledge of its id 0 ≤ 8 < ?(=) and
the number ?(=). The input is contained in the global register, for example if the input is a
matrix � ∈ Mat(=×=,ℤ), then the global registers contain the =2 coefficients. The execution is
performed synchronously, and read/write conflicts are handled “properly”.
The efficiency of an algorithm is expressed both in the number ?(=) of processors used, as

well as the number of steps C(=) taken until each processor halts. A central result relating the
PRAMmodel to (deterministic) Turing machines is the Parallel Computation Thesis.

Theorem 2.21 (Fortune &Wyllie 1978 [17]). Let C(=) ≥ log(=).

(i) If ! ∈ SPACE(C(=)), then ! is accepted by a PRAM in parallel time O(C(=)).

(ii) If ! is accepted by a PRAM in parallel time C(=), then ! ∈ SPACE(C(=)2).

In particular, parallel time complexity is polynomially related to sequential space complexity.

Thus, in order to obtain space-efficient algorithms for problems such as rank computation,
we can employ efficient parallel algorithms. Of particular relevance are the following results
due to Csanky.

Theorem 2.22 (Csanky 1976 [11]). Given an integer = × = matrix, the tasks of

(i) matrix inversion

(ii) solving a system of linear equations

(iii) computing the determinant

(iv) computing the coefficients of the characteristic polynomial

can be solved in parallel time O(log2(=)) using =O(1) processors.
Ibarra, Moran & Rosier extended this list to include matrix rank calculation.

Theorem 2.23 (Ibarra, Moran & Rosier 1980 [22]). The problem of calculating the rank of a = × =
matrix can be solved in parallel time O(log2 =) using O(=4) processors.

Remark. The papers cited here use the arithmetic machine model, i. e. directly manipulating
integers (or rational numbers). Some care has to be taken in order to translate these results to
the bit model, Pan describes some appropriate methods [39].
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2.6 Upper bounds on ideal membership
We finally apply the space-efficient linear algorithms from the previous section to the ideal
membership and normal form problems.

Theorem 2.24 (Mayr 1989 [31], IMℚ ∈ EXPSPACE). There exists a deterministic algorithm which

on input 5 , 51 , . . . , 5B decides whether there exist ℎ1 , . . . , ℎB with 5 =
∑B
8=1 ℎ8 58 , using no more than

exponential working space.

Proof sketch. Using polynomial space we can clear denominators of the input polynomials
5 , 51 , . . . , 5B and hence may assume that all polynomials have integer coefficients. We first
describe a parallel algorithm for this task.

Theorem 2.23 describes an algorithm for matrix rank calculation in parallel time O(log =),
where = is the size of the matrix. The matrices A, A′ from Theorem 2.18 have size 22

O(ℓ ) and
hence there is a parallel algorithm calculating the rank ofA in time 2O(ℓ ) using 22O(ℓ ) processors.
Notice that we cannot write down these matrices explicitly (in exponential space), so instead
each time this parallel algorithm requests an entry ofA (by indexing it), we calculate it “on the
fly” from the input polynomials. The time required to do this is negligible, since the entries
are coefficients of the 58 which can be indexed efficiently.
Now apply the parallel computation hypothesis (Theorem 2.21) to turn this exponential

parallel time algorithm into an exponential space algorithm. �

With some additional care one can extend this algorithm to output the solution in the same
space bounds, for details see Theorem 4 in the work of Mayr [31].

Theorem 2.25.With notation as in the previous theorem, if a solution exists, then the algorithm can

write it to an output tape in exponential work space.

Notice however that the size of the ℎ8 themselves may be double-exponential by the Her-
mann bound and the results of chapter 3, hence it is important to distinguish the work tape
from the output tape. A similar argument proves the analogous statement for the normal
form, see also [43, Theorem 6.2].

Theorem 2.26. There is an exponential space algorithm which on input 5 , 51 , . . . , 5B computes the

normal form NF〈 51 ,..., 5B〉( 5 ).
Again, the size of the normal form may exceed exponential space, so care has to be taken if

this algorithm is used as a subroutine.
If the polynomials are of a specific type, then we can use the other bounds from section 2.3

to give better estimates on the degrees of the ℎ8 . This leads to matrices of single exponential
space, and we conclude:

Theorem 2.27 (IMh,ℚ ,HNSTℚ ∈ PSPACE). In the situation of Theorem 2.24, if

(i) the polynomials 51 , . . . , 5B are homogeneous or
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(ii) 5 = 1 (the “Nullstellensatz” case),

then the corresponding problem can be solved in polynomial space.

While the homogeneous ideal membership problem IMh,ℚ is indeed hard for PSPACE (and
hence complete), for the problem HNSTℚ much better results are available:

Theorem 2.28 (Koiran 1996 [25]). Under the assumption of the Generalized Riemann Hypothesis

(GRH) we have HNSTℚ ∈ RPNP ⊆ PH, in fact, HNSTℚ ∈ AM = BP · NP.

For the definition the Arthur-Merlin class see for example [1, Section 8.2]. Since HNSTℚ is
NP-hard, this implies the surprising result that (under the GRH assumption) P ≠ NP if and
only if HNSTℚ ∉ P. For details and improvements (weakening the GRH assumption) see the
work of Rojas [45]. An overview over known complexity bounds for several variants of ideal
membership is presented by Mayr & Toman [35, Table 1].

2.7 Computing a Gröbner basis in EXPSPACE

We finally present an algorithm computing the reduced Gröbner basis of an ideal � =〈
51 , . . . , 5=

〉
in exponential space. It is important to distinguish the work tape from the output

tape, since the output may consist of double-exponentially many polynomials, each of which
might contain double-exponentially many terms. The key to algorithm 6 is to enumerate the
possible leading monomials one by one, and then comparing them to their normal forms in a
sufficiently space-efficient way.

Algorithm 6 Enumerating the reduced Gröbner basis
Require: 51 , . . . , 5B ∈ �[-1 , . . . , -=]≺,, a weight matrix for ≺
Ensure: Yields all elements of the reduced Gröbner basis � of

〈
51 , . . . , 5B

〉
1: 3← max{deg 51 , . . . , deg 5B}
2: � ← 2

(
32

2 + 3
)2=−1

⊲ The Dubé bound 2.16
3: for all 
 ∈ ℕ= , |
 | ≤ � do
4: < ← -


5: if < = NF〈 51 ,..., 5B〉(<) then
6: continue in line 3 ⊲ m is not reducible
7: end if
8: for 8 ∈ { 9 | 
 9 > 0 } do
9: <′← -
1

1 · · ·-

8−1
8
· · ·-
=

=

10: if <′ ≠ NF〈 51 ,..., 5B〉(<
′) then

11: continue in line 3 ⊲ m is not minimally reducible
12: end if
13: end for
14: yield < −NF〈 51 ,..., 5B〉(<) ⊲ m is minimally reducible
15: end for
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Theorem 2.29. Algorithm 6 enumerates the reduced Gröbner basis of � =
〈
51 , . . . , 5B

〉
in exponential

work space and double-exponential time.

Proof. Correctness: By Theorem 1.32, the reduced Gröbner basis � consists of polynomials
of the form < − NF�(<) where < is a monomial which is minimally reducible. The Dubé
bound gives a upper bound on the degree of the elements of � (Theorem 2.16), i. e. of <. The
algorithm iterates through all possible leading terms < (line 3) and checks if < is reducible
(line 5-8) and if any divisor <′ | < is irreducible (line 11-14). It suffices to check this for <′

with deg<′ = deg< − 1, so in line 16 the algorithm has verified that < is minimally reducible
and it yields the corresponding element.
Space requirement: Let ℓ be the input size, then =, B ≤ ℓ and 3 ≤ 2ℓ . With this we have

� ≤ 22
O(ℓ ) , which fits into the working memory of exponential size.

We can enumerate themonomials< of degree ≤ � in any orderwe like. In order to do this in
exponential space, use = binary counters 
1 , . . . , 
= from 0 to� and then take< = -
1

1 · · ·-
= .
This requires O(= log�) space.

We use the normal form algorithm from the previous section on input (<, 51 , . . . , 5B ,,);
this requires exponential space in ( 51 , . . . , 5B ,,) (!) by the remark after Theorem 2.20. We can
not afford to write down the resulting polynomial in its entirety, but we can check (term by
term) whether it coincides with <. This technique is applied in line 5 and 10, while in line 14
we can write the result (with an additional minus sign) to the output tape.
Time requirement: The number of configurations of an algorithmworking in space 2O(=) is

bounded by 22
O(=) , and hence its time requirement is at most double-exponential. �

Corollary 2.30 (GROEBMℚ ∈ EXPSPACE). There is an exponential space algorithm decidingwhether

6 is contained in the reduced Gröbner basis of

〈
51 , . . . , 5B

〉
.

Proof. Indeed, modify algorithm 6 as follows:

• In line 15, instead of writing 6′ B < − NF〈 51 ,..., 5B〉(<) to the output, compare it to 6, if
they coincide then accept.

• After line 17, reject.

This algorithm has essentially the same space requirements and decides GROEBMℚ. �

Remark. This algorithm is worst-case optimal in the sense that GROEBMℚ is EXPSPACE-
hard and there exist inputs 51 , . . . , 5B such that the corresponding reduced Gröbner basis
� indeed has double-exponentially many elements. On the other hand, this algorithm is
“uniformly impractical” in the sense that even if � consists of few elements, then algorithm 6
still requires exponential space (as � is extremely large, and the normal form algorithm also
uses exponential space on all inputs).
Ritscher improved this approach using S-polynomials and by increasing � only as far

as necessary to obtain a more space efficient algorithm [43]. For the class of pure binomial
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ideals Koppenhagen & Mayr [27] devised an algorithm using combinatorial tools. While this
algorithm requires exponential space (this is necessary, see chapter 3), it does not make use of
the parallel computation hypothesis.

For low-dimensional ideals better bounds are known.

Theorem 2.31 (Krick & Logar 1991 [29]). If � =
〈
51 , . . . , 5B

〉
⊆ �[-] is an ideal of dimension ≤ 1,

then a Gröbner basis can be calculated in time 2O(=) assuming unit cost arithmetic of�.





3
Lower bounds

In this chapter we prove an exponential space lower bound for the ideal membership problem
and the reducedGröbner basismembership problem. For thiswe introduce the notion of Thue
systems, which are essentially presentations of semigroups. The key result is that there is a
family of commutative Thue systems which can produce words of double exponential length
in the size of the presentation. The chain of reductions from a generic EXPSPACE-problem
to Gröbner bases is displayed in Figure 3.1. We also introduce the concept of Church-Rosser
systems, which are a string-replacement analogue of Gröbner bases. These notions will lead
to examples of ideals with Gröbner bases of double-exponential length and degree.
The primary source for most of the chapter is the original work by Mayr & Meyer [33] and

Huynh [21].

Figure 3.1: The chain of complexity-theoretic reductions.

Remark. In the literature, for example [33] and [32], the type of reduction is not polynomial
timemany-one reductions. Instead,more restrictive log-lin reductions are used: The reduction
function 5 may use logarithmic space and | 5 (G)| ∈ O(|G |). With this notion, the problems
considered here are not complete for EXPSPACE =

⋃
:≥1 SPACE(2O(=: )), but rather ESPACE B

SPACE(2O(=)). This has the advantage that if � is a ESPACE-hard problem with respect to log-
lin reductions, then there is a � > 0 such that � ∉ SPACE(2�=), proving exponential ressource
lower bounds [33, Section 2] (this is essentially an application of the space hierarchy theorem
[1, Theorem 4.8]).
In this thesis we only consider polynomial time reductions for simplicity, although the

interested reader will have no difficulty in verifying that the reductions EBC ≤ CSG ≤ IM� ≤
GROEBM� are actually log-lin reductions.
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3.1 Thue systems

We start by introducing a decision problem which is closely related to ideal membership: The
wordproblem forfinitelypresented commutative semigroupsCSG.Wepresent it in the general
context of string rewriting systems (SRS), a concept closely related to formal grammars.

Definition 3.1 (String rewriting system, Thue system). A string rewriting system or semi-Thue

system consists of an alphabet Σ together with a finite set of production rules P ⊆ Σ∗ × Σ∗,
written as

P = {
1 → �1 , . . . , 
B → �B}.

A Thue system is semi-Thue system such that ifP includes the rule 
→ �, thenP also includes
the reverse rule � → 
. A production (
 → �) ∈ P can be applied to two strings G, H ∈ Σ∗ if
there is a decomposition

G = �
�, H = ���, �, � ∈ Σ∗ ,

in symbols G ⇒P H. Let⇒∗P be the reflexive and transitive hull of⇒P , i. e. G ⇒∗P H if and only
if G can be rewritten into H using a finite sequence of rules from P . Two Thue systems (Σ,P),
(Σ,P′) are equivalent if⇒∗P and⇒∗P′ coincide. y

If P is a Thue system, then this is an equivalence relation, and even a congruence relation
(see Definition A.4, in essence this means that the set of equivalence classes again form a
monoid). Hence we get a monoid Σ∗/(⇒∗P ) generated by Σ where two strings coincide if and
only if they can be derived from each other. The equivalence class of G is denoted as [G]P
Example 3.2. In order to indicate how expressive SRS are, we sketch how to simulate any
Turing machine using string rewriting rules, for details see the original paper by Post [42].
Consider a 1-tape Turingmachine"with states / = {I1 , . . . , I=} over {0, 1,�}.We can encode
a configuration of the machine as a string over / ∪ {0, 1,�, 4} as

40−;0−;+1 . . . 0−1I0001 . . . 0A4, 0−; , . . . , 0A ∈ {0, 1,�}, I ∈ /,

where I is the current state, the head is on tape symbol C0 and 4 is the first tape cell which
has not been visited yet in each direction. If �"(I, 0) = (I′, 0′, L), then this transition can be
described by the four production rules

1I0 → I′10′ (1 ∈ {0, 1,�}), 4I0 → 4I′�0′,

and similarly for a move to the right. In this way one can construct a string rewriting system
which mimics the behavior of " in a precise way when starting with the string 4I0G4. This
easily implies that the statement G ⇒∗P H for given (P , G, H) is undecidable; even for fixed
P if a universal Turing machine " is used. It turns out that if " is deterministic, then this
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translation still works if the reverse rules are included, so string equivalence with respect to a
Thue system is also undecidable (in fact RE-complete). y

In this sense Thue systems are too powerful to be useful as a complexity-theoretic lower
bound, since Gröbner bases and ideal membership are computable (even in EXPSPACE).
But if we move from strings (with non-commuting letters) to commutative strings, then the
corresponding Thue systems do become decidable.

Definition 3.3 (Σ⊕, Commutative Thue system). Let Σ be a finite alphabet, then Σ⊕ is the free
commutative monoid over Σ

Σ⊕ B Mon(Σ) � Σ∗/∼, D ∼ E if and only if |D |G = |E |G ∀G ∈ Σ.

A commutative Thue system is a Thue system (Σ,P) defined over commutative strings Σ⊕.
Convention: From now on only commutative Thue systems will be considered. When speci-
fying P as a list of rules of the form


→ � (♥)

we implicitly always add the converse rules, too. Wewrite �
(♥)
⇒ �′ for a forward application of

the rule and �
(♥)
⇐ �′ for an application of the reverse rule, but we stress that⇒P is a symmetric

relation. If the concrete derivation is not important, then we simply write 
 ≡P �. If the Thue
system is understood from the context, then we omit the subscript. y

Remark. In the literature commutative Thue systems are defined as “ordinary” Thue systems
containing the rules GH → HG for all G, H ∈ Σ, which is of course equivalent to our definition.

Commutative Thue systems can be understood as “monomial replacement systems”; this
insight is a key ingredient in the reduction to the ideal membership problem. They also
coincide with finite presentations of commutative semigroups in the following sense:

Example 3.4 (Commutative Thue systems “are” finite commutative monoid presentations). If P is a
commutative Thue system over Σ, then " B Σ⊕/(⇒∗P ) is a monoid generated by the classes
of elements of Σ, and commutativity of the strings ensures that " is commutative. This
commutative monoid coincides with the finitely presented monoid 〈Σ | P〉, since the relation
⇒∗P is the congruence relation generated by P (Lemma A.6).

Conversely, if 〈Σ | R〉 is a finitely presented monoid, then by adding the reverse rules we
get a commutative Thue system P such that Σ⊕/(⇒∗P ) � 〈Σ | R〉. y

We finally define the word problem for finitely presented commutative semigroups.

Definition 3.5 (Word problem for commutative semigroups, CSG).

• Input: (Σ,R, 
, �), where Σ is a finite set of symbols, R a list of generating congruences
{(
8 , �8)}B8=1 ⊆ Σ⊕ × Σ⊕ and 
, � ∈ Σ⊕.

• Output: Decide whether 
 ≡R � in the commutative semigroup 〈Σ | R〉.
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If the input is restricted to congruences where both sides have the same length, then the
corresponding problem is denoted by CSGh y

In other words, we want to decide whether 
 ⇒∗P �, where P is the commutative Thue
system obtained fromR.

A first hardness result is the following construction similar to example 3.2, appearing in
the survey of Mayr [32, Theorem 17]. Let " be a deterministic single-tape Turing machine
working in space 5 (=), so the following portion of the initial tape content

� . . .�︸ ︷︷ ︸
5 (=)

G1G2 . . . G= � . . .�︸ ︷︷ ︸
5 (=)

of size # B |G | + 2 5 (|G |) contains all cells ever visited in the course of computation of " on
G. We can index the cells by 1, . . . , # , let

Σ",= B & ∪
{
B1,8

�� 1 ∈ {�, 0, 1}, 8 = 1, . . . , #
}
∪

{
?8

�� 8 = 1, . . . , #
}

then a configuration of" in state I onposition 9with symbol 18 in tape cell 8 can be represented
as a string of length # + 2 over Σ",= as

I?B1 . . . B# ∈ Σ⊕",=
, I ∈ /, ? ∈ {?1 , . . . , ?# } B8 = B18 ,8 , 8 = 1, . . . , #. (3.1)

Intuitively, we create # copies for each symbol in the working alphabet of " so that the
presence of the 8-th copy indicates that the corresponding symbol is currently in cell 8, and ? 9
indicates that the head is on cell 9. Let 
G be the encoding of the initial configuration of " on
input G and �G = Ia?1B�,1 . . . B�,# , where Ia is the unique accepting state of ".

Lemma 3.6. With the preceding notation there is a commutative Thue system P",= over Σ",= such

that 
G ⇒∗P",=
�G if and only if G ∈ !(").

Proof. We define P",= to contain the following rules:

(i) If �"(I, 0) = (I′, 0′, L), then add I?8B0,8 → I′?8−1B0′,8 for 8 = 2, . . . , # .

(ii) If �"(I, 0) = (I′, 0′,R), then add I?8B0,8 → I′?8+1B0′,8 for 8 = 1, . . . , # − 1.

(iii) Add IaB0,8 → IaB�,8 and Ia?8 → Ia?1 for all 8 = 1, . . . , # and 0 ∈ {0, 1}.

It is clear that any string 
G ⇒∗P",=
F is of the form (3.1) since all rules preserve the structure.

Furthermore, an application of the rulesM B (i)∪ (ii) corresponds to a (valid) transition of a
configuration of " into the next one.

Assume G ∈ !("), then after a finite number of steps themachine" reaches a configuration
in state Ia, so 
G ⇒∗M Ia? 9B1 . . . B# . Using the rules from (iii) we can “clean up” the string to
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derive �G as desired:

Ia? 9B1 . . . B# ⇒ Ia?1B1 . . . B# ⇒ Ia?1B�,1 . . . B# ⇒ · · · ⇒ Ia?1B�,1 . . . B�,# = �G .

Conversely, assume 
G ⇒∗P",=
�G and consider a repetition-free derivation


G = �0 ⇒ �1 ⇒ · · · ⇒ �< = �G .

As �G contains Ia, there is a minimal <0 ≥ 0 such that �<0 contains Ia.
Claim: In this derivation �0 ⇒∗P= �<0 only (forward) rules fromM are applied.

Indeed, rules from (iii) and their converse are not applicable by minimality of <0. Assume
that a converse rule from M is used in some �:−1 ⇒P �: and choose : maximal with this
property. �: ≠ �<0 , as Ia does not occur on any left hand side in M (Ia is a final state), so
�: ⇒P �:+1 applies a forward rule from M by maximality of :. We are in the following
situation:

�:−1 ⇐M �: using I′′?ℎB0′′,8 ← I?8B0,8 , �: ⇒M �:+1 using I?8B0,8 → I′? 9B0′,8 .

For any configuration there is (at most) a single applicable rule fromM corresponding to the
deterministic transition �"(I, 0). In this situation the rule is determied by �: as both share I,
?8 and therefore B0,8 , so the same production is applied and the reverse and forward application
cancel each other. Thus �:−1 = �:+1, but the derivation was assumed to be repetition-free, so
no reverse rule could have been applied in the first place, proving the claim.
We have established that 
G = �0 ⇒∗P",=

�<0 consists of forward rules fromM correspond-
ing to the behavior of " on G. Since �<0 contains the accepting state, we see that G ∈ !(")
and the proof is complete. �

If the function 5 is bounded by a polynomial, then this yields a polynomial-time reduction
from !(") to the word problem for commutative semigroups.

Theorem 3.7 (CSGh is PSPACE-hard). If � ∈ PSPACE, then � ≤Pm CSGh, in particular CSG and

CSGh are PSPACE-hard.

Proof. Let � ∈ PSPACE be a language over {0, 1} and let " be a deterministic 1-tape Turing
machine deciding � in space bounded by 5 (=) = 2 · =: . Let (Σ",= ,P",=) be the commutative
presentation from the previous lemma (i. e. containing the rules (i)–(iii)) for # = 5 (=) =
= + 22=: . Notice that by construction, all rule are homogeneous. The map

5 (G) B (Σ",|G | ,P",|G | , 
G , �G)

can be computed in deterministic polynomial time and reduces � to CSGh by Lemma 3.6. �
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It turns out that CSG is not in PSPACE, in contrast to CSGh, but rather EXPSPACE-hard. Our
approach here does not generalize to this case, as we need a variable for each tape cell and
such an alphabet cannot be written down by a polynomial-time algorithm. On the other hand,
non-homogeneous rules allow the derivation strings of superpolynomial length (compared
to the input string and the set of rules), see section 3.4. Thus our next step is to find a model
of computation whose configurations can be encoded with long strings from Σ⊕ for small Σ.

3.2 Counter machines
It turns out that a convenient model of computation to be simulated by commutative semi-
group presentations are Counter machines. A classical reference is Minsky’s book [36, Chapter
11 and 14], where these machines are called program machines (and use a slightly different in-
struction set). Informally, these are finite automata together with a fixed number of counters.
The counters can be INCreased, DECreased or used to Branch the program flow on a Zero. More
formally:

Definition 3.8 (Counter machine). A counter machine with : ≥ 1 counters is a tuple � =

(&, �, @0 , @a)where

• & is a finite set of states

• � is a transition function

� : & \ {@a} → ({INC1 , . . . , INC: , DEC1 , . . . , DEC:} ×&) ∪ ({BZ1 , . . . , BZ:} ×& ×&)

• @0 ∈ & is the initial state and @a ∈ & is the final/accepting state. y

A configuration of � is described by the current state and the content of the : counters, i. e. a
tuple in&×ℤ: . The transition function is used to define the (unique) successive configuration
as follows: Let (@, 21 , . . . , 2:) be the current configuration, @ ≠ @a.

(i) If �(@) = (op9 , @′), op ∈ {INC, DEC} then the next configuration is

(@, 21 , . . . , 2:) `� (@′, 2′1 , . . . , 2′:), 2′8 =


2 9 + 1 if 8 = 9 and op = INC

2 9 − 1 if 8 = 9 and op = DEC

28 if 8 ≠ 9

(ii) If �(@) = (BZ9 , @′, @′′), the next configuration is

(@, 21 , . . . , 2:) `�

(@′, 21 , . . . , 2:) if 2 9 = 0

(@′′, 21 , . . . , 2:) if 2 9 ≠ 0



3.2 Counter machines 47

As usual, we denote the transitive and reflexive closure of the transition relation as `∗
�
.

Example 3.9 (Multiplication and division by 2). In this example we assume that counter 1 holds
a non-negative integer and counter 2 is empty.

(i) We can move the content of counter 1 to counter 2 (emptying the former) and transition
from state @ to @′ with the following instructions:

@ ↦→ (BZ1 , @′, 0), 0 ↦→ (INC2 , 1), 1 ↦→ (DEC1 , @).

This has the effect of (@, #, 0) `∗ (@′, 0, #).

(ii) We can similarly double the content of counter 1 if we increase twice instead of once:

@ ↦→ (BZ1 , @′, 2), 2 ↦→ (INC2 , 3), 3 ↦→ (INC2 , 4), 4 ↦→ (DEC1 , @).

This has the effect of (@, #, 0) `∗ (@′, 0, 2#). Using the copy instructions from (i) we can then
move the result back to counter 1.

(iii) Using the same trick we can also halve the first counter and branch into @even or @odd
depending on the remainder:

@ ↦→ (BZ1 , @even , 5 ), 5 ↦→ (DEC1 , 6), 6 ↦→ (BZ1 , @odd , ℎ), ℎ ↦→ (DEC1 , 8), 8 ↦→ (INC2 , @).

This has the effect of (@, 2#, 0) `∗ (@even , 0, #) and (@, 2# + 1, 0) `∗ (@odd , 0, #) and we can
again move the result back if desired. y

We say that the counter machine � accepts an input # ∈ ℤ if and only if

(@0 , # , 0, . . . , 0) `∗� (@a , 0, . . . , 0).

Lemma 3.10 (Counter machines are Turing complete). For any Turing machine " on the input

alphabet Σ = {0, 1} there exists a 3-counter machine � such that " halts on G ∈ {0, 1}∗ if and only if

� accepts the binary number # = 1G.

A leading 1 is necessary to discriminate different strings that would otherwise describe the
same binary number, for example 0 vs 00. The proof uses stack machine as an intermediary
machine model, for our purposes, this is a finite state machine together with (in our case) two
stacks (1 , (2. Depending on the current state and the top symbols of the stacks (including
observing an empty stack #), the machine transitions into a unique successor state and can
push and pop

1 single elements from both stacks:

�( : & × {0, 1, #}2 → & × ({(1 , (2} × {.pop, .push(0), .push(1)})∗
1A pop operation on an empty stack has no effect.
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Figure 3.2: How to represent the tape of a Turing machine with two stacks.

Proof of Lemma 3.10. Let " = (/, {0, 1},�, �" , I0 , Ia) be the Turing machine in question, so
�" : / × {0, 1,�} → / × {0, 1} × {L,R}.
Step 1: The behavior of " can be simulated by two stacks.

We translate " and G into a stack machine as follows: The set of states is / × {0, 1} If the
tape content is . . .�0001 . . . 0:� . . . with head at position 8, then (1 contains the left portion
(08−1 , 08−2 , . . . , 00 , #), (2 the right portion (08 , . . . , 0: , #), see Figure 3.2. We translate �" into �(
as follows:

�"(I, 8) = (I′, 8′,R) { �((I, 2, 8) = (I′, (1.push(8′); (2.pop)
�"(I, 8) = (I′, 8′, L) { �((I, 2, 8) = (I′, (1.pop; (2.pop; (2.push(8′); (2.push(2))

(if 2 = # thenomit the last push). The starting configuration is(1 = (#) and(2 = (G1 , G2 , . . . , G= , #).
Step 2: The behavior of a single stack can be simulated by two counters.

A stack with content (01 , . . . , 0B , #) is represented by a counter 2 with value 10B0B−1 . . . 01
in binary. Pushing a 0/1 is performed by doubling using a second empty counter 2′ as in
Example 3.9 and adding 1 if desired. Peeking at the stack corresponds to extracting the lowest
bit, we implement this as in Example 3.9 together with a check if the counter has value 1 (i. e.
represents the empty stack). A pop is performed by checking if the stack is nonempty (2 ≠ 1)
and then dividing by 2.

Step 3: Translating " into a counter machine �.
Two stacks can be simulated using three counters if 21 , 22 hold the actual data and 23 is used
as storage for the stack operations as described in step 2. Thus it is straightforward (although
a bit tedious) to translate the stack machine behavior �( from step 1 into a transition function
for a counter machine. At the start of computation we initialize the second counter (with a
single increment) and then “flip” the content of counter 21 to 22 in order to have the leftmost
bit of the input as the least significant bit of the value of 22 (compare step 2), then counter
21 and 22 precisely represent the initial configuration of the stack machine. Finally we add
instructions to empty all counters if the state Ia is reached, and then transition to @a. �

Remark. In the sequel we only need this result for :-counter machines for some (fixed) : > 0

(although the construction of P� is somewhat simpler if : ≤ 4, see below), the lemma shows
that 3 counters suffice. It turns out that 2-counter machines are already universal, but only if
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the input is encoded in a very specific way [36, Theorem 14.1-1].

The computation of � on input # ∈ ℕ is said to be bounded by = ∈ ℕ if the counters of
all intermediate configurations (I0 , # , 0, . . . , 0) `∗� (I, 21 , . . . , 2:) are in the range 0 ≤ 2 9 ≤
=. Notice that the construction in the previous lemma has the following property: If " is
operating in space 5 (=), then the constructed counter machine will have its counters bounded
by 2 5 (=)+1, as this is a bound on the number 1), where ) is the (binary) number spelled out
on the tape.

Theorem 3.11 (EBC is EXPSPACE-complete). The language of exponentially bounded counter
machines EBC is EXPSPACE-complete:

• Input: � = (&, �� , @0 , @a), a 3-counter-machine

• Output: Decide whether � accepts 0 and has computation bounded by 22
|& |

Proof. Step 1: EBC is in EXPSPACE.
A Turing machine can easily simulate the configuration transitions. Each counter and the

current state is stored as a binary number on a separate tape and the instructions INC, DEC, BE
can be executed using only the cells belonging to the counters. If the computation of � is
bounded by 22

|& | , then the space resources of this Turingmachine are bounded by 3 ·2|& |+ |& |,
which is exponential in the input length of �.
Step 2: � ≤Pm EBC hard for all � ∈ EXPSPACE.
Let" be a 1-tapemachine deciding �which visiting at most 22 |G |: cells on the working tape

on input G for some fixed 2, : > 0. In order to show � ≤Pm EBC we use the 3-counter machine
constructed in the previous lemma. For G ∈ {0, 1} let �G be the following 3-counter machine:

(i) Starting from @0 use $(|G |) instructions to count 21 to the value 1G using the binary
representation and the doubling algorithm from example 3.9.

(ii) Then add the instructions from Lemma 3.10 to simulate the behavior of ".

(iii) Artificially enlarge the set of states & (if necessary) in order to ensure 2|& | ≥ 22 |G |
: + 1.

Then the computation of �G is bounded by 22
2 |G |:+1 ≤ 22

|& | and �G accepts 0 if and only if
G ∈ !("). Step (ii) only depends on " and not on G, so the map G ↦→ 〈�G〉 can be computed
in polynomial time. �

Remark. It may seem kind of arbitrary to consider the computation bounded by 22
|& | . Indeed,

if we require � to have its computation bounded by 2|& | instead, then this problem becomes
PSPACE-complete.
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3.3 Simulating counter machines with CSG

We now describe how to encode the behavior of a counter machine using commutative Thue
systems. Let � be a counter machine whose computation is bounded by the number e, then a
configuration of � is encoded over Σ′

�
= & ∪ {�1 , �1 , �2 , �2 , �3 , �3} as

rep(@, 21 , 22 , 23) B @�211 �
e−21
1 �222 �

e−22
2 �233 �

e−23
3 ∈ Σ′�

⊕ . (3.2)

This is essentially a unary representation of the counter values. The initial configuration is

 B @0�

e
1�

e
2�

e
3 and the terminal configuration is � B @a�

e
1�

e
2�

e
3. We translate the function ��

into congruence rules P′
�
as follows:

(INC) If ��(@) = (INC8 , @′), then add the rule @�8 → @′�8 .

(DEC) If ��(@) = (INC8 , @′), then add the rule @�8 → @′�8 .

The 8-th counter is zero if and only if the configuration string contains �4
8
and nonzero if and

only if it contains �8 . Thus we can define

(BZ) If ��(@) = (BZ8 , @′, @′′), then add the rules @�e
8
→ @′�e

8
and @�8 → @′′�8 .

Notice that the application of any rule to strings of the form (3.2) yields again a string of this
form.

Lemma 3.12. Let Σ′
�
,P′

�
, 
, � be as above, then � accepts 0 and has computation bounded by e if and

only if 
 ≡P′
�
� in the commutative semigroup 〈Σ′

�
| P′

�
〉.

Proof. Assume first that � has its computation bounded by 4. If (@, 21 , 22 , 23) `� (@, 2′1 , 2′2 , 2′3),
then rep(@, 21 , 22 , 23) ⇒P′

�
rep(@′, 2′1 , 2′2 , 2′3), hence by induction we obtain that (@0 , 0, 0, 0) `∗�

(@a , 0, 0, 0) implies 
⇒∗P′
�

�.
Conversely assume 
⇒∗P′

�

� and consider a repetition-free derivation


 = �0 ⇒P′
�
�1 ⇒P′

�
· · · ⇒P′

�
�< = �.

The same argument as in the proof of Lemma 3.6 shows that this derivation only uses forward
rules for (INC), (DEC), (BZ). This sequence of derivations hence describes the configuration
transitions of � and witnesses that � accepts 0 with computation bounded by e. �

Unfortunately, this does not immediately allow us to obtain a polynomial-time reduction
EBC ≤Pm CSG, since 
, � and P′

�
would have to contain the expression �22

=

8
where = B |& |.

We use the following result which will be proved in the next section:

Theorem 3.13 (Mayr & Meyer, 1982 [33]). For given = there exists a commutative semigroup

presentation 〈Σ= | P=〉 of length O(=) with the following properties:
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(i) Σ= contains (, �, �8 , �8 , 8 = 1, . . . , 4 among other symbols.

(ii) The only words containing ( or � and derivable from (�8F, F ∈ {�1 , . . . , �4}⊕ are (�8F and

��8�
22
=

8
F.

(iii) Similarly, the only words containing ( or � and derivable from ��8F are ��8F and (�8F
′
with

F = F′�22
=

8
.

With this we can “compress” the presentation P′
�
to (Σ� ,P�)where Let

Σ� B Σ= ∪ Σ′� ¤∪ { @↑, @↓ | @ ∈ & with ��(@) = (BZ9 , . . . ) } ¤∪ {@0,0 , . . . , @0,3 , @a,0 , . . . , @a,3}.

Let e= B 22
= , then Σ� contains the following symbols with specific purpose:

• Σ� contains Σ= to create the strings of double-exponential length.
{ P� contains P= .

• Σ� contains the symbols from Σ′
�
encoding the configurations of �.

{ P� contains P′
�
except for the (BE) rules @�e=

8
→ @′�e=

8
.

• For each branch-on-zero state @ ∈ & Σ� contains two auxiliary “states” whose purpose
is to verify that the configuration contains �22

=

8
by breaking down this string (@↓) and

then building it back up and transitioning to the successor state (@↑)
{ P� contains for each @ ∈ & with ��(@) = (BE8 , @′, @′′) the rules

@ → @↓��8 (↘)

@↓(�8 → @↑(�8 ( x)

@↑��8 → @′. (↗)

• Finally,Σ� contains @0,0 , . . . , @a,3 to expand the initial and collaps the final configuration.
{ P� contains the rules

@0,0 → @0,1(�1 (00)

@0,1��1 → @0,2(�2 (01)

@0,2��2 → @0,3(�3 (02)

@0,3��3 → @0 (03)

@a → @a,3��3 (a3)

@a,3(�3 → @a,2��2 (a2)

@a,2(�2 → @a,1��1 (a1)

@a,1(�1 → @a,0. (a0)

We first note that this new presentation P� still behaves as P′
�
.
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Lemma 3.14.We have the following equivalences:

(i) @0,0 ≡P� @0�
e=
1 �

e=
2 �

e=
3 = rep(@0 , 0, 0, 0) and @a,0 ≡P� @a�

e=
1 �

e=
2 �

e=
3 = rep(@a , 0, 0, 0).

(ii) If rep(@, 21 , 22 , 23) ≡P′
�
rep(@′, 2′1 , 2′2 , 2′3), then rep(@, 21 , 22 , 23) ≡P� rep(@′, 2′1 , 2′2 , 2′3).

Proof. (i) This is a consequence of (00)–(03) and Theorem 3.13:

@0,0
(00)⇒ @0,1(�1

(3.13)
⇒∗ @0,1��1�

e=
1

(01)⇒ @0,2(�2�
e=
1

(3.13)
⇒∗ @0,2��2�

e=
1 �

e=
2

(02)⇒ @0,3(�2�
e=
1 �

e=
2

(3.13)
⇒∗ @0,3��3�

e=
1 �

e=
2 �

e=
3

(03)⇒ @0�
e=
1 �

e=
2 �

e=
3

The second derivation is completely analogous with (a0)–(a3) instead.

(ii) P� inherits all rules from P� except for @�e=
8
→ @′�e=

8
. If this rules is applied in a

derivation (say with 8 = 1) to rep(@, e= , 22 , 23) ⇒P′
�
rep(@′, e= , 22 , 23), then we have

rep(@, e= , 22 , 23) = @�e=
1 �

(↘)
⇒ @↓��1�

e=
1 �

(3.13)
⇒∗ @↓(�1�

( x)
⇒ @↑(�1�

(3.13)
⇒∗ @↑��1�

e=
1 �

(↗)
⇒ @′�e=

1 � = rep(@′, e= , 22 , 23). �

The difficult part is to prove that the inverse is also true: An equivalence of configurations
by P� implies the equivalence by P′

�
. Consider the set of all possible configurations

, =
{
rep(@, 21 , 22 , 23)

�� @ ∈ &, 0 ≤ 21 , 22 , 23 ≤ e=
}
.

Lemma 3.15. (i) Any derivation @0,0 ⇒∗P� @a,0 contains rep(@0 , 0, 0, 0) and rep(@a , 0, 0, 0).

(ii) For all F, F′ ∈, we have F ≡P� F′ if and only if F ≡P′� F.
With this result we can finally prove the promised hardness result for CSG.

Theorem 3.16 (CSG is EXPSPACE-hard). The map � ↦→ (Σ� ,P� , @0,0 , @a,0) defines a polynomial-

time many-one reduction EBC ≤Pm CSG. In particular, CSG is EXPSPACE-hard.

Proof. The map can clearly be computed in polynomial time (provided this is true for P= ,
which we will see in the next section). If � ∈ EBC, then rep(@0 , 0, 0, 0) ≡P′

�
rep(@a , 0, 0, 0) by

Lemma 3.12 and consequently @0,0 ≡P� @a,0 by Lemma 3.14. Conversely, if @0,0 ≡P� @a,0, then
by Lemma 3.15 and again Lemma 3.12 � ∈ EBC. �

Proof of Lemma 3.15. (i) Any derivation @0,0 ⇒∗P� @a,0 must replace @0,0, the only rule allow-
ing for this is (00), introducing @0,1(�1. Only the rules (00)–(03) and P= are applicable until
the first word containing some @ ∈ & is produced (which will be @0 by (03)).
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In order to apply (01) the previous rules from P= must create a string containing �, by 3.13
the only possibility being ��1�

e=
1 . If the derivation is repetition-free, then the only applicable

rule now is (01), so the derivation has the form

@0,0
(00)⇒ @0,1(�1 ⇒∗P= @0,1��1�

e=
1

(01)⇒ @0,2(�2�
e=
1 .

Repeating this argument two more times shows that the word @0�e=
1 �

e=
2 �

e=
3 must occur in the

derivation @0,0 ⇒∗P� @a,0. Essentially the same reasoning starting from @a,0 and using (a0)–(a3)
shows that @a�e=

1 �
e=
2 �

e=
3 is contained in the derivation, too.

(ii) Thebackward implicationwasproven inLemma3.15, so assume 
 = rep(@, 21 , 22 , 23) ≡P�
rep(@′, 2′1 , 2′2 , 2′3) = �. We proceed by induction on the length of a derivation, the case of length
0 being trivial. Consider a shortest (necessarily repetition-free) derivation


 = �0 ⇒P� �1 ⇒P� · · · ⇒P� �A = �

and let �< ⇒PA �<+1 be the first step using one of the “new” rules (↘),. . . ,(a0). Then all
previous steps in the derivation �0 , . . . , �: consists of rules from P′

�
(the rules from P= cannot

be applied in the absence of �8), so �: ∈, and rep(@, 21 , 22 , 23) ≡P′
�
�< .

The only rules possibly applicable to �< are (↘),(↗),(03),(a3), as all other rules require the
presence of symbols not in �< ∈, .

(03) Then �< contains state @0 which is replaced by @0,3, and hence the only rules applicable
to �<+1 containing @0,3��3 are rules from P= . Theorem 3.13 tells us that P= can only be
used to produce @0,3(�3, furthermore, the maximum number e= of �3’s are removed in
this process (and so the string contains neither �3’s nor �3’s). Then the only applicable
rule is (02) and we can repeat this argument twice to arrive at @0,1(�1. Now the only
applicable rule replaces this with @0,0 at which point no rule can be applied.

(a3) The same line of reasoning prohibits the occurrence of this rule in a repetition-free
derivation.

(↘) Again only rules from P= can be applied to �<+1 and by applying Theorem 3.13 twice
we must have

�< = @�
e=
8
F

(↘)
⇒ �<+1 = @↓��8�

e=
8
F ⇒∗P= @↓(�8F

( x)
⇒ @↑(�8F ⇒∗P= @↑��8�

e=
8
F

(↗)
⇒ @′�e=

8
F = �<+;

where @′ is determined by ��(@) and F determined by �< . Hence �< ≡P′
�
�<+; ∈, .

(↗) The same argument yields �< ≡P′
�
�<+; ∈, for some ; ≥ 1.

By induction �:+; ≡P′
�
� and thus 
 ≡P′

�
�. �
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3.4 Producing words of double-exponential length

In this section we prove Theorem 3.13, we follow the exposition by Bayer & Stillman [4]. Let
e= B 22

= . The alphabet Σ= consists of 10(= + 1) characters

Σ= B
=⋃
A=0

�A , �A B {BA , 5A , 1A,1 , 1A,2 , 1A,3 , 1A,4 , 2A,1 , 2A,2 , 2A,3 , 2A,4}.

Definition 3.17 (Level of a word, box). The symbols in �A are defined to be of level A. A word
F ∈ Σ⊕= is said to be of level A if all symbols in F are of level ≥ A and

|F |BA + |F | 5A = 1,

4∑
8=1

|F |2A,8 = 1, |F |B 9 = |F | 59 = 0 for 9 > A.

The set of level A/≤Awords is Lvl(A)/Lvl(≤A), ifF ∈ Lvl(A), then denote by box(G) the (unique)
combination of B/ 5 and 28 in G. y

Notice that not all words are assigned a level. In order to ease notation, when fixing A we
use (, �, �8 , �8 to denote the symbols of level A and B, 5 , 18 , 28 for level A − 1 respectively. The
defining relations in P= are defined inductively as follows: P0 contains the four rules

B020,8 → 5020,81
2
0,8 , 8 = 1, . . . , 4. (O8)

For A ≥ 1 define PA to contain PA−1 and the ten rules

(→ B21 (A)

5 21 → B22 (B)

5 22�812 → 5 22�8�813 8 = 1, . . . , 4 (C8)

5 2211 → 5 2314 (D)

B23 → B22 (E)

B23 → 5 24 (F)

B24 → � (G)

The rules move words (of a given level) around in the boxes, this can be visualized as in figure
3.3. We first verify that the string ��8�e=

8
(from level A = =) can actually be derived from (�8

in the commutative Thue system defined by P= over Σ= .

Lemma 3.18. For A = 0, . . . , = and 8 = 1, . . . , 4 we have

BA28 ,A ⇒∗P= 5A28 ,A1
eA
8 ,A
. (V)
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Figure 3.3: Rules (A)–(G),(V) in the context of boxes.

Proof. We proceed by induction on A, the case A = 0 (and e0 = 2) follows by applying (O8).
Now considering level A ≥ 1, we assume the induction hypothesis (IH8) B28 ⇒∗P= 5 281

eA−1
8

for
8 = 1, . . . , 4. We can “exchange” 11 for �eA−1

8
14 in the presence of B22�8 as follows:

B22�811
(IH2)
⇒∗ 5 22�8111eA−12

(C8 )
⇒∗ 5 22�8�eA−1

8
111

eA−1
3

(D)
⇒ 5 23�8�

eA−1
8

1
eA−1
3 14

(IH3)
⇐∗ B23�8�eA−1

8
14

(E)
⇒ B22�8�

eA−1
8

14

If we repeat this sequence of derivations eA−1-many times except for the final application of
(E), then we obtain

B22�81
eA−1
1 ⇒∗P= B23�8(�

eA−1
8

14)eA−1 . (	)

With this in mind we can finally prove the assertion, following figure 3.3

(�8 ��8�
eA
8

B21�8 B22�81
eA−1
1 B23�8�

eA
8
1
eA−1
4 B24�8�

eA
8

5 21�81
eA−1
1 5 24�8�

eA
8
1
eA−1
4

(A)

(IH1)
(B)

(	)

(F)
(IH4)

(G)

�

Remark. The derivation (�8 ⇒∗P ��8�
eA
8
in the proof is extremely long, this is not a surprise,

as we need to derive a string of length 22
= and each individual rule only increases the length

of the string by at most 2 symbols. To be precise, let ℓ= denote the length of above derivation,
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then ℓ0 = 1 and

ℓ= = 3 + 2ℓ=−1 + e=−1 · (2 + e=−1 + 2ℓ=−1) > 22
= + 22=−1 · 2ℓ=−1

For example, the derivation (�8 ⇒∗P4
��8�

65536
8

requires 3 658 397 steps.

Wenowprove that this is the only (repetition-free) derivation from (�8 .Weuse the following
notation: If (Σ,P) is a commutative Thue system, then let G(P) be the infinite undirected graph
with vertices Σ⊕ and edges (
, �) for each derivation 
 ⇒P �. With this notation we want to
prove that the component of (�8 in G(P=) consists of a simple path from (�8 to ��8�e=

8
.

For this, consider a simplified version of G(PA): The homomorphism ?A : Σ
⊕
= → Σ⊕= is defined

on the generators E ∈ Σ= as

?A(E) =

E E ∈ ΣA−1 ∪ {BA , 5A}
� otherwise.

ThenQA = ?A(PA) differs from PA simply in the level A-rule (C8) which is replaced by the single
rule

5 2212 → 5 2213. (C̃)

Applying the homomorphism ?A to the derivation from Lemma 3.18, we immediately obtain

Lemma 3.19.We have BA ⇒∗QA
5A .

Theorem 3.20 (Bayer & Stillman [4]). Let F ∈ Lvl(A).

(i) If F ⇒∗PA G, then G ∈ Lvl(≤A). If (⇒∗QA
G, then G ∈ {(, �} or G ∈ Lvl(≤A − 1)

(ii) The component of F in G(PA) and the component of ( in G(QA) contains no cycles.

(iii) If G, H ∈ Lvl(≥A) are distinct and G ⇒∗PA H, then there is a unique simple path in G(PA)
connecting G and H and there is a � ∈ Σ⊕= such that {G, H} = {�(�8 , ���8�eA

8
}. There is a

unique simple path in G(QA) connecting ( and �.

We first do some preliminary work. Fix once again a level A and consider the map

� : Lvl(A − 1) → ℕ ×ℕ, G ↦→ (|G |11 + |G |14 , |G |12 + |G |13).

In the derivation of Lemma 3.18 the values of �(G) were determined by box(G) as in table 3.1,
we now prove that this is true for any derivation.
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21 22 23 24

B (0, 0) (4 , 0) (4 , 0) (0, 0)
5 (4 , 0) (4 , 4) (4 , 4) (4 , 0)

Table 3.1: Values of � on the boxes, 4 B eA−1.

Lemma 3.21. Let F ∈ Lvl(A) and assume Theorem 3.20(i)+(iii) is true in the case A − 1. If there is a

single G0 ∈ Lvl(A − 1) ∩ [F]PA such that the value �(G0) is according to box(G0) in table 3.1, then this

is true for all G ∈ Lvl(A − 1) ∩ [F]PA . The same is true for G(QA).

Proof. Consider a simple path in G(PA) from G0 to G ∈ Lvl(A − 1). This path is an alternating
sequence of segments of rules PA \ PA−1 and of segments contained in G(PA−1).

• Rules (A) or (G) do not appear on the path, as this would result in a word without 2 9 ,8
for 9 ≤ A − 1, and no rule of PA can be applied (except for (A) or (G) again but the path
is simple).

• Rules (B)–(F) preserve being of level A − 1 and also preserve correctness of table 3.1.

• Segments in G(PA−1) preserve being of level ≤ A − 1 by Theorem 3.20(i) and must end in
a word of level A − 1. Theorem 3.20(iii) then shows that the start and end of this segment
also respect the values in Table 3.1.

Thus, since the statement is true for G0 and is preserved along the path, it holds true for G.
The proof for G(QA) is essentially the same, as rule (C̃) also respects the table. �

Proof of Theorem 3.20. We proceed by induction on A, starting with A = 0. The arguments
for G(QA) only depend on the induction hypothesis for G(PA), hence the start only needs to
consider P0.
If F contains 20,8 and B0 or 50, then there is at most one applicable rule, namely (O8) in one

direction. This rule clearly preserves the property of being of level 0. Since there is at most
one applicable rule, we immediately get that the component of F is either a single word or a
pair of words separated by one application of (O8), this proves both (ii) and (iii).
Now let A ≥ 1 and assume that the Theorem is proven for the case A − 1.

(i) Depending on whether F contains ( or �, the rule (A) or (G) is the only applicable rule
and yields a neighbor G0 of level A − 1. This word has box(G0) ∈ {B21 , 5 24} and no 18’s, hence
Lemma 3.21 holds true.

Let G be any word of level ≤ A − 1 in the component of F. Any rule from PA−1 applied to
G leads to words of level ≤ A − 1 by induction hypothesis (i). Any rule from P= \ PA−1 or (C̃)
either leads to

• a word F′ of level A − 1 (in the case of (B)–(F),(C̃)) or
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• a word F′ containing ( or � and no symbols of level ≤ A − 1 except possibly 11 , . . . , 14
(in the case of (A) or (G)). In this case we must have box(G) ∈ {B21 , 5 24} and Lemma 3.21
tells us that G contains no 18 , so F′ is of level A. Furthermore, in this case G is the only
neighbor of F′.

Thus the words on any simple path in G(PA) or G(QA) from F

F ⇒ G0 ⇒∗ G ⇒ F′

are all of level ≤ A − 1 except possibly the last one being of level A (G is the only neighbor of
F′, hence such a word cannot appear inside simple path). This proves (i) for G(PA), in G(QA)
we start at F = (, then F′ must be a single ( or � as no rule of QA introduces other symbols
of level ≥ A.

(ii) Consider a simple cycle C in a component of ( in G(QA), i. e.

G0 ⇒PA G1 ⇒PA · · · ⇒PA G< = G0 , < ≥ 2, G8 ≠ G 9 for 0 ≤ 8 < 9 ≤ < − 1.

Step 1: Translate into a statement purely about words of level A − 1.

The cycle C does not contain ( or � (having only a single neighbor), hence by (i) all G8 are in
Lvl(≤A − 1). At least one of the G8 must be of level A − 1, since otherwise no edges stemming
from QA \ PA−1 are used and C is a cycle on a component of a level A − 1 word inside G(PA−1),
contradicting the induction hypothesis (ii) for G(PA−1).

Let H0 , H1 , . . . , H: = H0 ∈ Lvl(A − 1) be all words in C of level A − 1 (in order of appearance).
As in the proof of Lemma 3.21 we see that H 9 is joined to H 9±1 by either a rule (B),(C̃),(D)–(F)
from QA \ PA−1 or B28 ⇒PA−1 5 281

eA−1
8

(V) by hypothesis (iii).
Step 2: Put the H8 into boxes and observe the transitions.

Hence no H 9 is in box B21 or B24, as words in these boxes have only one outgoing edge (case
(V)). By extension, no H 9 is in box 5 21 or 5 24, since otherwise one of H 9±1 would necessarily be
in box B21 or B24. Hence all H 9 lie in boxes {B22 , 5 22 , 5 23 , B23}. We must have a sort of circular
traversal of the boxes for the following reason:

• If box(H 9) ∈ {B22 , B23 , 5 23}, then by inspection of (B)–(F),(V)

{box(H 9−1), box(H 9+1)} =

{B23 , 5 22} if box(H 9) ∈ {B22 , 5 23}
{B22 , 5 23} if box(H 9) = B23.

• If box(H 9) = 5 22, then by Lemma 3.21 |H 9 |12+ |H 9 |13 = eA−1. The only applicable rule within
the box is (C̃), trading 12 for 13. The other rules are (D) (to box 5 23) and case (V) (to box
B23, only applicable if |H 9 |12 = eA−1). If (D) leads to, say, H 9+1, then the vertical rule (V) is
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only applicable if |H 9+1 |13 = eA−1, hence H 9 must be part of a sequence

H;
(V)
⇒ H;+1

(C8 )⇒ . . .
(C8 )⇒ H 9

(C8 )⇒ . . .
(C8 )⇒︸                        ︷︷                        ︸

eA−1 applications of (C8 )

HA−2
(D)
⇒ HA−1

(V)
⇒ HA .

Step 3: Derive a contradiction from these observations.

These considerations show that the sequence of H8’s must loop around the four boxes in a
fixed direction, say B22 { 5 22 { 5 23 { B23 { B22. Along such a loop, rule (D) is the only
rule affecting 14 and it strictly increases the number |H 9 |14 . But this is clearly impossible in a
closed cycle, hence the component of ( in G(QA) contains no cycle.

Assume there is a simple cycle C in G(PA), then the homomorphism ?A maps this to a cycle
?A(C) in G(QA). ?A(C) is in the component of ?A(F) ∈ {(, �}, but this is the same component
(Lemma 3.19). As any rule in PA involves symbols not deleted by ?A , ?A(C) is a non-trivial cycle
in G(QA), a contradiction.

(iii) The existence of a path ( ⇒∗QA
� is Lemma 3.19, uniqueness is immediate from (ii), as

distinct simple paths can be patched together to form am non-trivial cycle.

Let G, H ∈ Lvl(≥A) be distinct with G ⇒∗PA H, the uniqueness of such a path is again a
consequence of (ii). Since there is some rule from PA applicable to G, we must have G ∈ Lvl(A),
the same is true for H. We must have ?A(G) ≠ ?A(H), since otherwise the path from G to H

is mapped to a nontrivial cycle in G(QA), contradicting (ii). Without loss of generality, let
?A(G) = (, ?A(H) = �.

Let box(G) = (�8 , then box(H) = ��8 , as all rules of PA preserve the level A symbol �8 . The
image of the path in G(QA) is a path from ( to �, hence the unique sequence of derivations
from Lemma 3.19. This information together with the presence of �8 (and no other � 9) allows
us to conclude that the path from G to H uses the sequence of derivations from Lemma 3.18.
In particular, if G = �(�8 , then H = ���8�

e=
8
. �

Theorem 3.13 is now an easy consequence:

Proof of theorem 3.13. The presentation 〈Σ= | P=〉 is of length $(=)with 10(=+1) variables and
10= + 4 relations of length ≤ 9 (the longest being (C8)).

If (�8 ⇒∗P= F such that F contains �, then F is of level = and Theorem 3.20(iii) says that

(�8 = �(�8 , F = ���8�
e=
8
= ��8�

e=
8
.

The proof of the second claim in Theorem 3.13 is analogous. �

Remark. While we mostly care about P= and the derivation (�8 ⇒∗PA ��8�
e=
8
, the structure of

G(QA) is used crucially in the final step of the argument. This is one explanation to why we
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took the extra mile to introduce QA and prove statements for both graphs. Another reason is
that QA is useful for proving degree lower bounds on the ideal membership, see below.
We also remark that this construction has been dramtically improved byYap from 10=+O(1)

variables down to only 2= + O(1) [47]. Furthermore, if rule (O8) contains 130,8 instead of 12
0,8
,

then the same construction yields a commutative Thue system which can count to 32= [4].

3.5 Hardness of the ideal membership problem
We now reduce CSG to the ideal membership problem (over an arbitrary field �). Let
(Σ,P , 
, �) be a tuple as in Definition 3.5, Σ = {G1 , . . . , G=}, P = {
8 ≡ �8}8=1,...,B . To a word

 ∈ Σ∗ we associate the monomial -
 B -

|
 |G1
1 · · ·- |
 |G== . The corresponding input to IM� is

the set of polynomials ( 5 , 51 , . . . , 5B)with

5 B -� − -
 , 58 B -�8 − -
8 , 8 = 1, . . . , B.

As these polynomials have coefficients in {−1, 0, 1}, these polynomials are defined over any
field (or ring).

Theorem 3.22. With the preceding notation, the following statements are equivalent:

(a) 
 ≡P �;

(b) 5 ∈ �ℤ B
〈
51 , . . . , 5B

〉
ℤ[-];

(c) 5 ∈ �� B
〈
51 , . . . , 5B

〉
�[-] for any field�.

Proof. (a)⇒(b): Consider a derivation of length #


 = �0 ⇒P �1 ⇒P · · · ⇒P �# = �.

Each step corresponds to an application of a rule 
8: ≡ �8: from P such that

�:−1 = $:
8: , �: = $:�8: , $: ∈ Σ⊕ , : = 1, . . . , #.

Thus we get a telescoping sum

-� − -
 =

#∑
:=1

-$:
(
-�8: − -
8:︸        ︷︷        ︸

= 58:

)
∈ �ℤ.

(b)⇒(c): Any ℤ[-]-linear combination is valid over an arbitrary field�.

(c)⇒(a): This is the most difficult implication. Our strategy is to consider the fields ℚ and
�? = ℤ/?ℤ (? prime) first, and then generalize to arbitrary fields.
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Step 1.� = ℚ. Consider a linear combination

5 =
∑
:

6: 58: , 6: ∈ ℚ[-]. (3.3)

Let 3 ∈ ℕ>0 be a common denominator of all coefficients of all 6: , then 36: ∈ ℤ[-]. By
artificially increasing the number of summands in (3.3), we may assume that all 36: are
monomials with coefficient ±1, for example

36: = 3-. − 2.2 + 2 { -. + -. + -. − .2 − .2 + 1 + 1.

Thus we obtain a (potentially much larger) sum

3-� − 3-
 =

#∑
:=1

(−1)�:-$: · (-� 9: − -
 9: ). (3.4)

We claim that there is a derivation 
 ⇒∗P � of length at most # . Indeed, since the term
-
 occurs on the left side of (3.4), this monomial must occur in one of the summands, i. e.
±-$< (-� 9< − -
 9< ) = -�1 − -
. Removing this summand yields

3-� − (3 − 1)-
 − -�1 =

#∑
:=1, :≠<

(−1)�:-$: (-� 9: − -
 9: ). (3.5)

such that 
⇒P �1 by application of the rule 
 9< ≡ � 9< . If �1 = � then we are done, otherwise
apply the same reasoning to the monomial -�1 to inductively obtain �2 , �3 , . . . . This process
ends after at most #0 ≤ # steps with �#0 = �, since each step removes a summand from (3.4).

Step 2. � = �? . Here nearly the same proof applies: Take a linear combination as in
(3.3), this time over �?[-], then we can interpret the 6: as some polynomials with integer
coefficients (being unique modulo ?). We can again rewrite this sum as in (3.4), this time with
3 = 1 (no need to kill denominators). Then the same replacement scheme yields a sequence

⇒P �1 ⇒P �2 . . . . The left hand side always reads -� −-�8 at each step, so no cancellation
can happen (even mod ?) unless �9 = � after at most # steps and we obtain a derivation

⇒∗P �.

Step 3. � arbitrary. Any field contains either ℚ or some �? , its so-called prime field. All
polynomials considered are defined over the prime field, so Lemma A.2 shows that 5 ∈ ��
already implies �ℚ or ��? respectively, so by the previous two cases 
 ≡P �. �

This shows that the equivalence relation ≡P is basically the relation ≡� from Lemma 1.34
on monomials. In this way we get a reduction from commutative semigroups to polynomial
ideals.
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Theorem 3.23 (CSG reduces to IM�).We have CSG ≤Pm IM� for any field� (and even for� = ℤ).

This is also true for the homogeneous variants, i. e. CSGh ≤Pm IMh,�.

Proof. Indeed, the previous theorem shows

(Σ,P , 
, �) ∈ CSG if and only if ( 5 , 51 , . . . , 5B) ∈ IM�.

Moreover the reduction mapping is computationally trivial, regardless of the encoding of
coefficients (the only coefficients required are two constants ±1) or monomials (the total
degree is bounded).
For the second statement it suffices to notice that the 51 , . . . , 5B are homogeneous ifP consists

of homogeneous congruence rules. �

Together with the previous hardness results and the upper bounds from section 2.6 we see:

Corollary 3.24. The problem IM� is EXPSPACE-hard and CSG, IMℚ are EXPSPACE-complete. The

homogeneous variant IMh,� is PSPACE-hard and CSGh, IMh,ℚ are PSPACE-complete.

It is interesting to consider the analogous problem in the context of algebraic complexity
theory. Bürgisser has adapted these techniques to prove an analogous results for algebraic
circuits.

Theorem 3.25 (Bürgisser 1998 [9]). For any infinite field � there is a constant 2 such that any

sequence of algebraic circuits (C=)=∈ℕ deciding IM� has depth(C=) ≥ 22= for = � 0.

Remark. Recall the Hermann bound which states that if 5 =
∑B
8=1 ℎ8 58 , then the ℎ8 may be

chosen of degree ≤ deg( 5 )+ (B ·max8 deg 58)2
= . The results from the previous section show that

this bound is asymptotically tight as follows: We have seen that there is a unique derivation
( ≡Q= � which contains words of length > e=−1. This corresponds to a polynomial equation
( − -� =

∑
9 ℎ8 58 and the proof of 3.22 shows that the degree of any term ℎ8 58 gives a upper

bound on the length of words in the derivation. Thus, any such ℎ8 must have degree double-
exponential in =, for details see the paper by Bayer & Stillman [4, Theorem 2.4].

3.6 Church-Rosser systems
We return to the topic of Gröbner bases. The previous section gave a connection between
commutative semigroup presentations and binomial ideals. We now extend this connection
and define a notion analogous to Gröbner bases, following the paper by Huynh [21]. Fix a
monomial order ≺ on Σ⊕ � Mon= and consider a commutative Thue system P .

Definition 3.26 ((Ir)reduciblewords). LetP� B { (; , A) ∈ P | ; � A }. Aword G ∈ Σ⊕ is reducible
with respect to P if G ⇒P� H for some H ∈ Σ⊕, and irreducible otherwise. The transformation
G ⇒P� H is called a reduction step. y
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Notice that if G ⇒P� H, then by the defining property of a monomial order, G � H. As ≺ is
a well-order, any sequence of reduction steps must be of finite length and hence every word
is equivalent to an irreducible word with respect to P . Of course, such an irreducible word is
generally not unique, similarly to how normal forms of polynomials are not unique. But we
have seen that this does not happen for Gröbner bases (Theorem 1.18(b)), so we use this to
define an analogous notion for commutative Thue systems.

Definition 3.27 (Church-Rosser system, reduced). A commutative Thue-system (Σ,P) is a
Church-Rosser system if for any two words D ≡P E, both irreducible with respect to P , we have
D = E.
A Church-Rosser system is reduced if for all (; , A) ∈ P both ; and A are irreducible with

respect to P \ {(; , A), (A, ;)}. y

We use the notation from the previous section to translate commutative Thue systems into
ideal generators.

Theorem 3.28. Let P be a commutative Thue system and

� =
{
-
 − -�

�� (
, �) ∈ P , 
 � �
}
⊆ �[-].

Then P is a Church-Rosser system if and only if � is a Gröbner basis of � B 〈�〉. Furthermore, P is

reduced if and only if � is reduced.

Proof. Assume first that � is a Gröbner basis. Let D, E ∈ Σ⊕, D ≡P E, both D, E irreducible with
respect to P . Then -D and -E are in normal form with respect to � (compare Definition 1.14),
and hence NF�(-D) = -D , NF�(-E) = -E , as � is a Gröbner basis. Theorem 1.34 tells us that
both -D and -E are the unique minimal element of their equivalence classes with respect to
≡� . But by assumption D ≡P E, by Theorem 3.22 we have [-D]≡� = [-E]≡� , and so they must
coincide.
Nowassume thatP is aChurch-Rosser system.Let-D ∈ in(�) andassumeDwere irreducible

with respect to P . Theorem 1.34 yields a � ≺ D such that -D − -� ∈ �. Theorem 3.22 implies
that � ≡P D, and after applying a finite number of reduction steps we obtain �⇒∗P≺ E with E
irreducible, too. So D ≡P E and both are irreducible, by the Church-Rosser property we have
D = E, which contradicts D � � � E. Hence there is a (; , A) ∈ P≺ with lm(- ; − - A) = - ; | -D ,
and � is a Gröbner basis by characterization 1.18(a).
It is immediate from the definitions that � is reduced if and only if P is reduced. �

Corollary 3.29. For every congruence relation ∼ on Σ⊕ there exists a unique Church-Rosser system

P with ≡P = ∼.

Proof. There exists some commutative semigroup presentation P0 with ∼ = ≡P0 by Rédei’s
theorem A.7. Let � =

〈
{-
 − -� | (
, �) ∈ P0 }

〉
and let � be the reduced Gröbner basis of
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�. Then P = { (; , A) | - ; − - A ∈ � } is a Church-Rosser system equivalent to P0 Uniqueness
follows immediately from the uniqueness of reduced Gröbner bases. �

We now translate some notation and results form the polynomial world to the land of Thue
systems. Fix a commutative Thue system P

Definition 3.30. For a word D ∈ Σ⊕ let NFP (D) be the minimal word in [D]≡P with respect to
≺. We define the sets

*P = { D ∈ Σ⊕ | NFP (D) = D } , �P B Σ⊕ \*P . y

We denote the minimal elements of a set � ⊆ Σ⊕ with respect to string containment by
min�.

Lemma 3.31. Let P be a reduced Church-Rosser system.

(i) �P is the set of elements reducible with respect to P .

(ii) Min�P = { ; | (; , A) ∈ P }

Proof. As P is a Church-Rosser system, a string D ∈ Σ⊕ is irreducible with respect to P if and
only if it is minimal in its congruence class [D]P , i. e. in*P . This proves the first statement, the
second statement is a direct translation of Theorem 1.32. �

3.7 The size of a reduced Gröbner basis
In this sectionwe restrict ourselves to a degree-dominatingmonomial order ≺with the property

|D | < |E | =⇒ D ≺ E.

For example ≺grlex and ≺grevlex have this property, but ≺lex does not.
Theorem 3.32 (Huynh 1986 [21]). For each = there exists an ideal �= generated by O(=) differences
of monomials of total degree O(1) with the following properties:
Any Gröbner basis of �= has at least 22

=
elements and the maximal total degree of its elements is at

least 22
=
.

By Corollary 1.29 the equivalence of reduced Church-Rosser systems and reduced Gröbner
bases of pure difference ideals, it suffices to prove the analogous statement for Church-Rosser
systems:

Theorem 3.33. For each = there exists a commutative Thue system R= generated by O(=) rules of
length O(1) with the following properties:
The reduced Church-Rosser system generating the same congruence as R= has at least 2

2=
elements

and the maximal length of one side of the rules is 22
=
.
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To prove this, we follow the strategy of Huynh [21], but we simplify the construction of a
system R= with the following property:

Lemma 3.34. Let D = A(�3�
4
1�

5

2 ∈ Σ⊕ with 4 + 5 = e= . Then D is notminimal in [D]R= with respect

to ≺, but any proper substring D′ | D is the minimal element of [D′]R= .

We first show that this property implies the theorem.

Proof of Theorem 3.33. Consider the e=+1 distinct words D: B A(�3�
:
1�

e=−:
2 , : = 0, . . . , e= , each

of length e= + 2. By Lemma 3.34 each D: ∈ �R= is a minimal element of this set, and hence by
Lemma 3.31 we have

{D0 , . . . , De= } ⊆ { ; | (; , A) ∈ P }

where P is the reduced Church-Rosser system equivalent to R= . Hence |P | > e= and P
contains rules of length > e= . �

We now constructR= : Recall the construction of (Σ= ,P=) from section 3.4, then the alphabet
is Σ= ¤∪ {A, A′, A′′, �̄1 , �̄2} andR= consists of P= and the additional rules

A��3�1 → A��3�̄1�4 A��3�2 → A��3�̄2�4 (R)

A��3 → A′��1 (R′1)

A′(�1 → A′��3 (R′2)

A��3 → A′′��4 (R′′1 )

A′′(�4�̄2 → A′′(�4�̄1. (R′′2 )

The rules and their intended behavior is visualized in figure 3.4. The proof of Lemma 3.34
makes use of the properties of P= from Theorem 3.13, and the additional fact that in the
derivation (V8) (�8 ⇒∗ ��8�e=

8
any intermediate expression has length ≥ 3.

A′(�3 A′(�1 A(�3 A′′(�4

A′��3 A′��1 A��3 A′′��4

(R′2)
+�e=3

(R′′2)

−�e=3 −�e=1
(R′1) (R′′1)

(R)

−�e=4

Figure 3.4: A visualization of the rules inR= .
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Proof of Lemma 3.34. Let D = A(�3�
4
1�

5

2 and assume first that 4 + 5 = e= , then

D
(V3)⇒ A��3�

4
1�

5

2�
e=
3

(R)
⇒∗ A��3�̄

4
1�̄

5

2�
e=
3 �

e=
4

(R′′1)⇒ A′′��4�̄
4
1�̄

5

2�
e=
3 �

e=
4

(V4)⇐ A′′(�4�̄
4
1�̄

5

2�
e=
3

(R′′2)
⇒∗ A′′(�4�̄

e=
1 �

e=
3

(V4)⇒ A′′��4�̄
e=
1 �

e=
3 �

e=
4

(R′′1)⇐ A��3�̄
e=
1 �

e=
3 �

e=
4

(R)
⇐∗ A��3�

e=
1 �

e=
3 .

This shows that all such D are equivalent to A��3�
e=
1 �

e=
3 . We then have

A��3�
e=
1 �

e=
3

(R′1)⇒ A′��1�
e=
1 �

e=
3

(V1)⇐ A′(�1�
e=
3

(R′2)⇒ A′��3�
e=
3

(V3)⇐ A′(�3

and since |D | = e= + 3 > 3, we have D � A′(�3, so D is not minimal in its equivalence class.
Now consider any proper substring D′ of D. If D′ does not contain A, then only rules from

P= , leading to strictly longer words. If D′ does not contain ( or �3, then no rule is applicable
at all and [D′]R= = {D′}, so D′ is trivially minimal. Hence we may assume D′ = A(�3�

4
1�

5

2 ,
4 + 5 < e= . In order to prove minimality it suffices to show that for any E ≠ D′ with E ≡R= D

′

we have |E | > |D′ |, as this implies E � D′.
Consider a repetition-free derivation from D′ to E, the prefix of E is the substring of E of the

form (A |A′ |A′′)(( |�)(�1 | . . . |�4) (the structure of R= easily implies that + contains at most one
such word). Then P= (in the form of Theorem 3.13) and (R)–(R′′2 ) imply that the only possible
transitions between words of different prefixes behave as displayed in Figure 3.4.
First assume that the derivation uses (parts of) (V1) or (V4), and let E′ be word in the

derivation prior to the first such step. The rules (R),(R′1),(R
′′
1 ) and the transformation (V3)

leave the numbers

=E = |E |�1 + |E |�2 + |E |�̄1 + |E |�̄2 , =̄E = |E |�̄1 + |E |�̄2 − |E |�4

invariant, so =E′ = =D = 4 + 5 < e= , =̄E′ = 0. In particular |E′ |�1 , |E′ |�4 < e= , so neither (V1) nor
(V4) can ever be completely applied.

The derivation D ⇒∗ E necessarily starts by following the unique derivation in P= from
A(�3�

4
1�

5

2 to D′′ B A��3�
4
1�

5

2�
e=
3 . Any intermediate word is strictly longer than D′. We have

|D′′ | = |D | + e= , and it is not hard to see that (R),(R′1),(R
′′
1 ) and parts of the derivations (V1),

(V4) only lead to words of length > |D′′ | − e= ≥ |D |. We conclude that E = D′ or |E | > |D′ | and
hence D′ is minimal in its equivalence class. �

In chapter 2 we have seen that upper bounds on the degree of Gröbner bases of homogeneous

ideals lead to upper bounds on the degree of arbitrary ideals (Lemma 2.15). Conversely, lower
bounds for arbitrary ideals also apply to homogeneous ideals, in particular Theorem 3.32 also
holds for homogeneous ideals. Mayr & Ritscher also gave some lower bounds depending on
the dimension of the ideal.

Theorem3.35. There are amonomial ordering and a family of ideals �A,= ⊆ �[-1 , . . . , -= of dimension
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dim(�A,=) ≤ A, for all A, = ∈ ℕ, A ≤ =, which are generated by generated byO(=) polynomials of degrees

bounded by 3 such that each Gröbner basis has a maximal degree of at least 3(=−A)2
(1/2−�)A

for any � > 0

and sufficiently large 3, A ∈ ℕ.

This shows that the upper bound from Theorem 2.17 is somewhat tight, in particular the
degree of Gröbner bases may be loosely described as 2=Θ(1)2Θ(A) .

3.8 Hardness results of Gröbner bases
We finally prove some results on the complexity of Gröbner bases. Fix a monomial order ≺
which is degree-dominating.

Theorem 3.36. Any algorithm which on input � = ( 51 , . . . , 5B) computes the reduced Gröbner basis �

of � = 〈�〉 with respect to ≺grlex uses in the worst case at least space 2Ω(=) and time 22
Ω(=)

in the length

of �. This is independent of the base field�, the encoding of field elements or whether binary or unary

exponent representation of the monomials is used. This also holds true when restricting homogeneous

ideals.

Proof. Indeed, the polynomials from Theorem 3.32 are differences of monomials and hence
use coefficients {0, 1,−1}. Furthermore, the terms have bounded degree 30, so dense or sparse
encoding of the monomials does not change the input length up to a constant factor.
The output consist of ≥ 22

=
= e= different polynomials, so the algorithm requires at least

e= steps and passes through at least e= different configurations of the work tape. This implies
that at least 2= work tape cells have to be visited in order to represent e= different internal
configurations. �

This lower bound matches the space and time requirements of Theorem 2.29 (for� = ℚ).

Remark. We have seen that the size of the output of the Turingmachine dictates a lower bound
on the resources used by saidmachine. This is however not enough to prove that the individual
elements of the output are hard to describe. For example, consider the function

�(=) = (0, 1, 2, . . . , 2= − 1),

where numbers are encoded in binary. Then the length |�(=)| is exponential in = and hence
double-exponential in |bin(=)|, but on the other hand it is computationally trivial to decide
whether< ∈ ℕ is part of the list �(=). This is not true in the case of the reduced Gröbner basis,
as shown next.

Theorem 3.37 (GROEBM� is EXPSPACE-hard). The problem to decide whether a given polynomial

6 is a member of the reduced Gröbner basis of

〈
51 , . . . , 5B

〉
is hard for EXPSPACE, regardless of the

specified monomial order ≺.
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Proof. The reduction EBC ≤Pm CSG ≤Pm IM� shows that IM� is EXPSPACE-hard even when
restricting to the following subset �:

• The polynomials 5 , 51 , . . . , 5B are differences of monomials of positive degree.

• The polynomial 5 whosemembership has to be decided is of the form 5 = G−H, G, H ∈ -.

After renumbering the variables we may assume that G′ � H for all G′ ∈ - \ {H}, i. e. H
is the smallest variable with respect to ≺. This implies that H is also the smallest monomial
different from 1: Anymonomial< contains some variable G′, and hence< � G′ � H. Moreover
1 ∉ [<]≡� for anymonomial< ≠ 1, since the 58 have positive degree (in Thue system language:
No rule is applicable to the empty string).
Let � =

〈
51 , . . . , 5B

〉
be an ideal generated by pure differences and � the reduced Gröbner

basis of �. With this notation we claim

G − H ∈
〈
51 , . . . , 5B

〉
if and only if G − H ∈ �.

If G − H ∈ �, then surely G − H ∈ �, as � ⊆ �. Conversely, assume G − H ∈ �, then Theorem 1.34
shows that NF�(G) = H as H ≡� G and H is the smallest monomial inMon= \ {1}. The monomial
G is minimally reducible with respect to � (Definition 1.31), as it is reducible (NF�(G) = H ≠ G),
but its only proper divisor 1 is irreducible. Then Theorem 1.32 shows that G − H ∈ �.

Thisproves� ≤Pm GROEBM�,where the reduction function is the identitymap, soGROEBM�

is EXPSPACE-hard, too. �

Combining this with the exponential space algorithm for reduced Gröbner basis member-
ship from chapter 2 yields the following completeness result:

Corollary 3.38. The problem GROEBMℚ is EXPSPACE-complete.

Remark. The hardness result of GROEBM� is implicitly contained in the literature, although
not mentioned explicitly (to the knowledge of the author). The phrase “Gröbner bases are
EXPSPACE-complete” mostly refers to the results of Theorem 2.29 and 3.36.

We close our discussion on the complexity of Gröbner bases with a recent result due to
Rolnick & Spencer which shows that Gröbner bases are hard to approximate. Let 1 ≥ � > 0 be
a constant and define the �-Fractional Gröbner problem as follows:

• Input: � = { 51 , . . . , 5B} ⊆ �[-] polynomials

• Output: (�′, �), where �′ ⊆ � with |�′ | ≥ � · |� | and � is a Gröbner basis of 〈�′〉

Theorem 3.39 (Rolnick & Spencer 2018 [46]). For infinite fields �, the �-Fractional Gröbner

problem is NP-hard for every fixed � > 0. This is true for any monomial order and even when the

polynomials are of degree ≤ 3.
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The authors remark that this holds true even if polynomial time is measured not only in the
size of the input, but also on the output [46, Theorem 3]. This is remarkable, since we know
that Gröbner bases may become exceedingly large even for small inputs.





Conclusion

In this thesis we discussed the polynomial ideal membership and its connection to Gröbner
bases. We have seen howGröbner bases can be constructed using Buchberger’s algorithm and
how the multivariate division algorithm calculates normal forms which can be used to ideal
membership. Although this approach is successful in many cases, especially with improved
algorithms such as Faugère’s �5 algorithm, the worst-case complexity points to the limitations
of Gröbner bases.
We have seen that both the ideal membership problem IMℚ as well as the reduced Gröbner

basis membership problem GROEBMℚ are EXPSPACE-complete, in particular both problems
are computationally very involved in their full generality. While it is intuitively clear that
Gröbner bases must be at least as complex as the problem they are trying to solve (in an
appropriate sense), the other results surveyed here suggest that they are sub-optimal in many
important cases. Namely, the ideal membership problem for homogeneous polynomials IMh,ℚ

is PSPACE-complete, but Gröbner basis computation for homogeneous ideals still requires
exponential space in the worst case. Even worse, the number and degree of elements in a
Gröbner basis of a homogeneous ideal may be double-exponential in the number of variables
and generators of the ideal. Still, in many practical cases Gröbner bases are a good first choice
for problems in computer algebra.
There are many other interesting topics related to the ideas presented here, we would like

to point to three particular ones.

• Whenpresentedwith a problem involvingGröbner basis computation, it is oftendifficult
to estimate whether the computation will be a matter of minutes or months. Hence an
important question is:Whatproperties of an idealmake theirGröbner basis complicated?
This is particularly important for applications in computational algebraic geometry,
where many problems can be reduced to a Gröbner basis computation of some sort.
We have seen that the number of variables and the dimension play a role both for the
complexity of the ideal membership as well as the size of the reduced Gröbner basis. An
important piece of the puzzle is the regularity of the ideal, a notion which is explored in
the paper by Bayer & Mumford [3].

• Gröbner bases provide an approach to calculate normal forms of polynomials with
respect to an ideal. If the system of polynomials has a finite number of solutions and
is sufficiently general, then the set of solutions is closely connected to the quotient ring
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ℂ[-]/
〈
51 , . . . , 5B

〉
, for example its dimension over ℂ is the number of solutions. Normal

forms provide a way to compute effectively in this ring, see for example the truncated

normal form by Telen [38]. For an analysis of the performance of several normal form
algorithms see the work of Parkinson et. al [41].

• While symbolic computations on systems of polynomial equations are important, for
many applications approximations to solutions are sufficient, especially for large sys-
tems. One of the most successful techniques is homotopy continuation, where a system of
equations with known solutions is continuously transformed into the target system, and
the solution paths are tracked. A particular implementation, which allows for certifying
zeros (i. e. providing a certificate that a given approximate zero corresponds to an actual

solution in ℂ=) is HomotopyContinuation.jl [6].

https://www.juliahomotopycontinuation.org/
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Appendix

A.1 Commutative Algebra
All rings in this thesis are assumed to be commutative and with unity. An ideal of a ring is an
additive subgroup � ⊆ � closed under multiplication with elements from �, i. e. 0 · 5 ∈ � for
0 ∈ �, 5 ∈ �. If � ⊆ � is a subset, then the ideal generated by � is

〈�〉� =
{
01 51 + · · · + 0< 5<

�� 08 ∈ �, 58 ∈ � }
,

this is the smallest ideal � containing � and � is a generating set of �. If � = { 51 , . . . , 5<} then
we write

〈
51 , . . . , 5<

〉
B 〈�〉. An ideal of the form

〈
5
〉
is a principal ideal.

A ring � isNoetherian if one of the following equivalent conditions is satisfied [24, Thm. 2.9]

(i) Any generating set of an ideal contains a finite generating set.

(i’) Every ideal of � admits a finite generating set.

(ii) � satisfies the ascending chain condition on ideals: Any chain of ideals �0 ⊆ �1 ⊆ �2 ⊆ . . .
eventually becomes stationary: �=0 = �= for all = ≥ =0.

(iii) Any nonempty set of ideals in � has a maximal element with respect to inclusion.

Themost important ring for ourpurposes is the ringofpolynomials in a set of indeterminates
over a field�[-1 , . . . , -=]. A classical result asserts that this is a Noetherian ring.

Theorem A.1 (Hilbert basis theorem). If � is a Noetherian ring, then so is �[-]. In particular

�[-1 , . . . , -=] is a Noetherian ring.

Proof. See for example [24, Thm. 2.11] or [19, Thm. 1.3.5] �

If � ⊆ � are rings and � ⊆ �, then in general 〈�〉� ∩ � ) 〈�〉, but we have equality in the
following special case:

Lemma A.2. Let � ⊇ � be two fields, 5 , 51 , . . . , 5B ∈ �[-], then we have

5 ∈
〈
51 , . . . , 5:

〉
�[-] =⇒ 5 ∈

〈
51 , . . . , 5:

〉
�[-]
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Proof. � is a vector space over �, we can choose1 a basis {18}8∈� containing 180 = 1 ∈ �. This
then also constitutes a basis of the free module �[-] over�[-]. Now consider an expression

5 =

B∑
:=1

6: 5: , 6: ∈ �[-].

We can write 6: =
∑
8∈� 68:18 with finitely many nonzero 68: ∈ �[-], then the former equation

becomes

5 · 180 = 5 =

B∑
:=1

(∑
8∈�

68:18

)
59 =

∑
8∈�

( B∑
:=1

68: 5:

)
18 .

Comparing the coefficient of the basis element 180 = 1 in this equation yields

5 =

B∑
:=1

680: 5: ∈
〈
51 , . . . , 5:

〉
�[-] . �

A.2 Commutative semigroups

A semigroup is a set together with an associative binary operation (�, ∗), as usual we will
omit the operation, i. e. write 01 instead of 0 ∗ 1. A monoid is a semigroup with a neutral
element �; one can always adjoin a neutral element to a semigroup if desired and since we
will only consider monoids, we use these notions exchangeably. Our binary operation will be
commutative inmost interesting cases, hence we are really studying “commutativemonoids”.

ExampleA.3 (Free (commutative)monoids). Themostwell-knownsemigroup in computer science
is the free monoid Σ∗ over a finite alphabet Σ, consisting of strings of letters from Σwith string
concatenation as the composition.
Similarly, the free commutative monoid over the alphabet Σ = {G1 , . . . , G=} is the set of

(commuting) monomials

Mon(Σ) =
{
G311 · · · G

3=
=

��� 31 , . . . , 3= ≥ 0
}
.

This semigroup is isomorphic to the commutative monoid of integer vectors (ℕ= ,+). y

A homomorphism of semigroups is a map of sets 5 : � → � with 5 (01) = 5 (0) 5 (1) for
0, 1 ∈ �, in the case of monoids we also require that 5 (��) = �� .

Remark. Notice that the concept of “kernel of a homomorphism” from group theory is not
well-behaved in this general situation. For once, the kernel of 5 : � → � is usually defined
as 5 −1(��), and � needn’t have a neutral element. And even if both � and � have neutral
elements, then we may have 5 −1(��) = {��} even though 5 is not injective! Consider for

1This can be easily done for finite extension of�, and is always possible assuming the axiom of choice.
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example
5 : ℕ2 → ℕ, 5 (01 , 02) B 01 + 02 ,

then 5 −1(0) = {(0, 0)}, but in general = ∈ ℕ has precisely = + 1 preimages

5 −1(=) = {(0, =), (1, = − 1), . . . , (=, 0)} ⊆ ℕ2.

The previous example show that the naive definition of a kernel fails tomeasure the number
of preimages in any meaningful way. But we can still define the following:

Definition A.4 (Congruence relation). A congruence relation on a semigroup � is an equiva-
lence relation ≡ ⊆ � × � (i. e. reflexive, symmetric and transitive) such that for 0, 0′, 1, 1′ ∈ �

0 ≡ 0′ and 1 ≡ 1′ =⇒ 01 ≡ 01′. y

If 5 : �→ � is a homomorphism of semigroups, then

0 ≡ 5 1 :⇔ 5 (0) = 5 (1)

defines a congruence relation on �. Conversely, if ≡ is a congruence relation on �, then the
set of equivalence classes �/≡ forms a semigroup (with [0]≡[1]≡ B [01]≡) and the surjective
homomorphism

� : �→ �/≡, 0 ↦→ [0]≡

defines the same equivalence relation ≡� = ≡.

Definition A.5 (Commutative semigroup presentation). A semigroup presentation is a pair
Σ,R, where - is a set of generators and R ⊆ Σ⊕ × Σ⊕ is a set of relations. The congruence
relation ≡R generated by R is the smallest congruence relation on Σ⊕ containing R. The
commutative semigroup 〈Σ | R〉 is the quotient of Σ⊕/≡R.
The presentation is finite if both - and R are finite. A commutative semigroup is finitely

presented if it is isomorphic to 〈Σ | R〉 for some finite presentation. y

Lemma A.6. If R is a set of relations, then G ≡R H if and only if there is a (possibly empty) sequence

G = G0 , G1 , . . . , G= = H such that

G8−1 = �8
8 , G8 = �8�8

for suitable �8 ∈ Σ⊕ and (
8 , �8) or (�8 , 
8) in R.

Proof. ≡R contains R, by symmetry all (�, 
) for (
, �) ∈ R and by reflexivity all (�, �),
� ∈ Σ⊕. Since it is a congruence relation, it contains all pairs (G8−1 , G8) = (�8
8 , �8�8) and hence
by transitivity also (G, H) as in the lemma.
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Conversely, it is easy to see that the relation

G ≡′ H if there exists a sequence as above

is already a congruence relation, so the two relations coincide. �

It turns out that every finitely generated commutative monoid is in fact finitely presented!

TheoremA.7 (Rédei). If � is finitely generated, i. e. we have a surjective homomorphism 5 : Σ⊕ � �

for a finite set Σ, then ≡ 5 is generated by finitely many relations.

We can sketch a elegant and short proof due to Freyd [18]. If � is a monoid, then its
monoid ring ℚ[�] is the ℚ-algebra whose underlying vector space has � as a basis and
the multiplication is defined by � on this basis and extended by bilinerarity. For example,
ℚ[{G1 , . . . , G=}⊕] is just the polynomial ring in = variables.

Proof (sketch). Let # B Σ⊕ ×Σ⊕. Assume that ≡ 5 is not finitely generated, then there exists an
infinitely ascending sequenceR1 ( R2 ( . . . contained in# such that≡R8

( ≡R8+1 for all 8. Let
�8 B Σ⊕/≡R8

, then this gives rise to a chain of surjective but non-bĳective homomorphisms

# � �1 � �2 � . . . .

These maps yield surjective ring homomorphisms ℚ[Σ⊕] � ℚ[�8], let �8 be the kernel. By
construction �1 ( �2 ( . . . is a strictly increasing chain of ideals in ℚ[Σ⊕] � ℚ[-1 , . . . , -|Σ|],
but this contradicts the Noetherian property of polynomial rings (Hilbert’s basis theorem
A.1)! �
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List of Symbols

�@ the finite field of order @ (unique up to isomorphism)
ℕ,ℤ,ℚ,ℝ,ℂ the natural numbers (with 0), the integers, the rational

numbers, the real numbers and the complex numbers
- a set of variables {-1 , . . . , -=}
Mon= ,Mon(() the set of monomials in = variables and in (
supp( 5 ) the monomials occurring in a polynomial 5
IM� the ideal membership problem over the field�
HNST� the decision problem to Hilbert’s Nullstellensatz
≺, ≺P a monomial order and the induced order on finite sets
≺lex , ≺grlex , ≺grevlex the lexicographic, graded lexicographic and graded re-

verse lexicographic order
lt( 5 ), lm( 5 ), lc( 5 ) the leading term, leading monomial and leading coeffi-

cient of a polynomial 5
mdeg( 5 ) the multidegree of a polynomial 5
rem( 5 ; 61 , . . . , 6B) the remainder of 5 with respect to 61 , . . . , 6B
in(�) the initial ideal generated by leading terms of �
NF�( 5 ),NF�( 5 ) the set of normal forms of 5 with respect to a set � or an

ideal �
GROEBM� the membership problem for reduced Gröbner bases of

polynomials over�
≡� , [ 5 ]≡� the congruence relation defined by the ideal � and the

equivalence class of 5
,, ≺, a weight matrix and the associated monomial order
gcd(-
 , -�), lcm(-
 , -�) the greatest commondivisor and least commonmultiple

of two monomials
Spoly( 5 , 6) the S-polynomial of 5 , 6
h 5 , a6 the homogenization of 5 and dehomogenization of 6
P ,⇒P ,≡P a Thue system and the derivation relations
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`� , `∗� the configuration transition relation for a (counter) ma-

chine � and its transitive reflexive closure
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