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Abstract

A chopped ideal is obtained from a homogeneous ideal by considering only the genera-
tors of a fixed degree. We investigate cases in which the chopped ideal defines the same
finite set of points as the original one-dimensional ideal. The complexity of computing
these points from the chopped ideal is governed by the Hilbert function and regularity.
We conjecture values for these invariants and prove them in many cases. We show that
our conjecture is of practical relevance for symmetric tensor decomposition.

1 Introduction
Let k be an algebraically closed field of characteristic 0, and let S = k[x0, . . . , xn] be the
polynomial ring in n+1 variables with coefficients in k. With its standard grading, S is the
homogeneous coordinate ring of the n-dimensional projective space Pn = Pn

k . For a tuple of
r points Z = (z1, . . . , zr) ∈ (Pn)r, let I(Z) be the associated vanishing ideal, that is

I(Z) = ⟨{ f ∈ S homogeneous | f(zi) = 0 for i = 1, . . . , r }⟩S.

If the set of points Z ∈ (Pn)r is general, the Hilbert function hS/I(Z) : t 7→ dimk(S/I(Z))t is

hS/I(Z)(t) = min{hS(t), r} (1)

where hS(t) =
(
n+t
n

)
is the Hilbert function of the polynomial ring S. Here, the word general

means that (1) holds for all Z in a dense Zariski open subset of (Pn)r. We also have, for
general Z, that the ideal I(Z) is generated in degrees d and d + 1, where d is the smallest
integer such that the minimum in (1) equals r [IK99, Thm. 1.69].

This work focuses on a modification I⟨d⟩ of the ideal I(Z), called its chopped ideal in degree
d. This is defined as the ideal generated by the homogeneous component I(Z)d, that is the
set of elements of degree d in I(Z). In particular I⟨d⟩ ⊆ I(Z), and strict inclusion holds if
and only if I(Z) has generators in degree d+ 1. An elementary dimension count shows that
there is a range for r for which this happens, see (4).

If r < hS(d)− n and Z is general, the saturation (I⟨d⟩)
sat of the chopped ideal with respect

to the irrelevant ideal of S coincides with the ideal I(Z). This is proved in Theorem 2.2. In

Keywords. Hilbert function, Hilbert regularity, syzygy, liaison, tensor decomposition
2020 Mathematics Subject Classification. 13D02, 13C40, 14N07, 65Y20

1



other words, I(Z) and I⟨d⟩ both cut out Z scheme-theoretically. In particular, I(Z) and I⟨d⟩
coincide in large degrees, and they have the same constant Hilbert polynomial, equal to r.

In cases where (I⟨d⟩)
sat = I(Z) and I⟨d⟩ ̸= I(Z), there is a range of degrees d < t < d + e

with the property that hS/I⟨d⟩(t) > hS/I(Z)(t). The goal of this work is to determine this
saturation gap, and understand the geometric and algebraic properties that control it. We
illustrate this phenomenon in a first example.

Example 1.1 (n = 2, d = 5). Let Z be a set of 17 general points in the plane P2. The lowest
degree elements of I(Z) are in degree 5 and, a priori, I(Z) can have minimal generators in
degree 5 and 6. It turns out that I(Z) is generated by four quintics. In particular, its chopped
ideal I(Z)⟨5⟩ coincides with I(Z). We provide a simple snippet of code in Macaulay2 [GS]
to compute I(Z), its chopped ideal, and the corresponding Hilbert functions: in this case,
line 4 returns true and the two Hilbert functions coincide.

loadPackage "Points" 1

I = randomPoints(2,17); 2

Ichop = ideal super basis(5,I); 3

I == Ichop 4

for t to 10 list {t, hilbertFunction(t,I), hilbertFunction(t,Ichop)} 5

This uses the convenient package Points.m2 to calculate the ideal I(Z) [SSS+]. Now let Z
be a set of 18 general points in P2. In this case I(Z) is generated by three quintics and one
sextic. The chopped ideal I⟨5⟩ is the ideal generated by the three quintics. Changing 17 into
18 in line 2 provides the code to compute the chopped ideal of I(Z). Now, line 8 returns
false and the two Hilbert functions are recorded below:

t 0 1 2 3 4 5 6 7 8 9 . . .
hS/I(Z)(t) 1 3 6 10 15 18 18 18 18 18 . . .
hS/I(Z)⟨5⟩(t) 1 3 6 10 15 18 19 18 18 18 . . .

We observe that the Hilbert polynomials are the same: they are equal to the constant 18.
However, the Hilbert function of S/I⟨5⟩ overshoots the Hilbert polynomial in degree 6, and
then falls back to 18 in degree 7. This specific example is explained in detail in Section 3.1.
More generally, the goal of this work is to better understand this phenomenon for all r. ⋄

We will see that the problem of understanding the Hilbert function of the chopped ideal of a
set of points is related to several classical conjectures in commutative algebra and algebraic
geometry, such as the Ideal Generation Conjecture and the Minimal Resolution Conjecture.
Besides this, our motivation comes from computational geometry. In the most general set-
ting, one is given a system of homogeneous polynomials with the task of determining the finite
set of solutions Z. In a number of applications, the given polynomials generate a subideal of
I(Z). Often, this subideal is the chopped ideal I⟨d⟩. This happens, for instance, in classical
tensor decomposition algorithms, see Section 6. In order to solve the resulting polynomial
system using normal form methods, such as Gröbner bases, one constructs a Macaulay ma-
trix of size roughly hS(d + e), where e is a positive integer such that hS/I⟨d⟩(d + e) = r; see
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[EM99, Tel20] for details. Hence, it is important to answer the following question:

“What is the smallest e0 > 0 such that hS/I⟨d⟩(d+ e0) = r?” (2)

Example 1.1 analyzes two cases for d = 5 in P2: if r = 17 then the answer is e0 = 1, and
for r = 18 the answer is e0 = 2. Interestingly, this means that finding 18 points from their
vanishing quintics using normal form methods is significantly harder than finding 17 points.

The following conjecture predicts the Hilbert function of the chopped ideal I⟨d⟩.

Conjecture 1 (Expected Syzygy Conjecture). Let Z be a general set of r points in Pn and
let d be the smallest value for which hS(d) ≥ r. Then for any e ≥ 0

hI⟨d⟩(d+ e) =


∑
k≥1

(−1)k+1 · hS(d+ e− kd) ·
(
hS(d)− r

k

)
e < e0

hS(d+ e)− r e ≥ e0

(3)

where e0 > 0 is the smallest integer such that the summation is at least hS(d+ e0)− r.

The heuristic motivation for this conjecture is that, generically, the equations of degree d
of a set of points are as independent as possible. More precisely, their syzygy modules are
generated by the Koszul syzygies, as long as the upper bound hI⟨d⟩ ≤ hI(Z) allows for it.

Our contribution is a proof of Conjecture 1 for many small values of n, r, and in several
infinite families of pairs (n, r).

Theorem 1.2. Conjecture 1 is true in the following cases:

• Theorem 4.1: rd,max = hS(d)− (n+ 1) for all d in all dimensions n;

• Theorem 3.5: rd,min = 1
2
(d+ 1)2 when d is odd, in the case n = 2;

• Lemma 2.7: r ≤ 1
n

(
(n+ 1)hS(d)− hS(d+ 1)

)
and n ≤ 4 and more generally whenever

the Ideal Generation Conjecture holds;

• Theorem 5.1: In a large number of individual cases in low dimension:

n 2 3 4 5 6 7 8 9 10
r ≤ 2343 ≤ 2296 ≤ 1815 ≤ 1272 ≤ 908 ≤ 767 ≤ 479 ≤ 207 ≤ 267

We discuss the role of the Ideal Generation Conjecture mentioned in Theorem 1.2 in Section 2.
We propose a second conjecture, implied by Conjecture 1, which pertains to question (2).
For Z ∈ (Pn)r, let I⟨d⟩ = ⟨I(Z)d⟩S and define γn(d, Z) := min { e ∈ Z>0 | hS/I⟨d⟩(d+ e) = r }.

Conjecture 2 (Saturation Gap Conjecture). Let n, d, r ∈ Z>0 be integers with r < hS(d)−n.
For general Z, the value γn(d, Z) = γn(d, r) only depends on n, d, r and it is given explicitly by

γn(d, r) = min

{
e ∈ Z>0

∣∣∣∣∣ hS(d+ e)− r ≤
n−3∑
k=1

(−1)k+1hS(d+ e− kd)

(
hS(d)− r

k

)}
.
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The fact that the general value γn(d, r) in Conjecture 2 only depends on n, d, r is a conse-
quence of a standard semicontinuity argument, see Proposition 5.2. We call this quantity the
saturation gap. It measures the gap between degrees at which the chopped ideal I⟨d⟩ agrees
with its saturation (I⟨d⟩)

sat = I(Z). Theorem 1.2 guarantees that Conjecture 2 holds in all
listed cases. Moreover, Corollary 4.5 provides an upper bound for γn(d, r) for every n, d, r.

The paper is organized as follows. Section 2 sets the stage for the study of chopped ideals.
It proves some preliminary results and explains the relations to other classical conjectures in
commutative algebra and algebraic geometry. Section 3 is devoted to the case of points in
the projective plane. It includes a detailed explanation of the case of 18 points in P2, the first
non-trivial case, and two results solving Conjecture 1 in extremal cases. Section 4 concerns
the proof of Conjecture 1 for the largest possible number of points r = hS(d)−(n+1) for given
n, d. Moreover, we provide an upper bound for the saturation gap for any number of points.
Section 5 contains a computational proof for the remaining cases in Theorem 1.2. Finally,
Section 6 discusses symmetric tensor decomposition and its relation to Conjecture 2. The
computations in the final two sections use Macaulay2 [GS] and Julia; the code to replicate
the computations is available online at https://mathrepo.mis.mpg.de/ChoppedIdeals/.

2 Chopped ideals
Definition 2.1 (Chopped ideal). Let I ⊆ S be a homogeneous ideal and d ≥ 0. The chopped
ideal in degree d associated to I is I⟨d⟩ := ⟨Id⟩S.

The notation I⟨d⟩ goes back to [HH99], where the authors study ideals whose chopped ideals
have linear resolutions.

2.1 The chopping map

Denote by UgenHF ⊆ (Pn)r the dense Zariski open subset of (Pn)r consisting of r-tuples
satisfying (1). We focus on the chopped ideals I⟨d⟩ where I = I(Z) for some Z ∈ UgenHF.
Moreover, we are interested in the case where Z can be computed from its chopped ideal.
To this end, we determine the values of r for which I(Z) and I⟨d⟩ define the same subscheme
of Pn. Given a set of homogeneous polynomials J ⊆ S, let V(J) ⊆ Pn denote the subscheme
of Pn that they define.

Theorem 2.2. Let d ≥ 1, let Z be a general set of r ≤ hS(d) points in Pn and I⟨d⟩ := I(Z)⟨d⟩.

(i) If r = hS(d)− n, then V(I⟨d⟩) is a set of dn reduced points.

(ii) If r ≥ hS(d)− n, then V(I⟨d⟩) is a complete intersection of codimension hS(d)− r.

(iii) If r < hS(d)− n, then V(I⟨d⟩) is the reduced scheme Z.

For the proof, we consider a geometric interpretation of the operation of chopping an ideal.

Definition 2.3 (Chopping map c). For given d with hS(d) ≥ r, the chopping map is

c : UgenHF → Gr(hS(d)− r, Sd), Z 7→ [I(Z)d].
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The chopping map is a morphism of varieties. In fact, there is a commutative diagram
involving the Veronese embedding νd : Pn ↪→ P(S∨

d )

P(S∨
d )

r ⊇ (Vd,n)
r Gr(r, S∨

d )

(Pn)r ⊇ UgenHF Gr(hS(d)− r, Sd).

∼=

span

(νd)
×r

c

For a linear space T ⊆ Sd, the scheme V(T ) ⊆ Pn is the intersection νd(Pn)∩P(T⊥) ⊆ P(S∨
d )

under the identification induced by the Veronese embedding, see, e.g. [Lan12, Prop. 4.4.1.1].
Notice that c is invariant under permutation of the factors of (Pn)r, therefore it induces a
map on the quotient c̃ : UgenHF/Sr → Gr(hS(d)− r, Sd).

Theorem 2.4 (Geometry of the chopping map). Let r, n, d > 0 be integers with r ≤ hS(d).

(i) If r ≥ hS(d)−n, then c is dominant, with general fiber of dimension nr− r(hS(d)− r).

(ii) If r ≤ hS(d) − n, then c is generically finite. More precisely, the induced map c̃ has
degree

(
dn

r

)
if r = hS(d)− n, it is generically injective otherwise.

Proof of Theorem 2.2 and Theorem 2.4. First consider the case r = hS(d) − n = 1 +
codim νd(Pn). A general linear space Λ ∈ Gr(r, S∨

d ) intersects νd(Pn) in a non-degenerate set
of reduced points [Har92, Prop. 18.10]. Picking r points on νd(Pn) spanning Λ, we see that
the map c is dominant. Furthermore, Λ∩νd(Pn) consists of deg Vd,n = dn reduced points. By
genericity, any subset of r points span Λ, hence c̃−1(Λ⊥) consists of

(
dn

r

)
points in UgenHF/Sr.

Next, let r > r′ where r′ = hS(d)− n, and let U ′ ⊆ (Pn)r
′ be the open set from the previous

case. For any set of r points Z ∈ UgenHF and containing a subset Z ′ belonging to U ′, we
must have dimV(I(Z)d) = #(Z \ Z ′). Indeed, modulo I(Z)d, there are #(Z \ Z ′) linearly
independent elements in I(Z ′)d: if dimV(I(Z)d) > #(Z \Z ′) then these additional equations
could not cut out the 0-dimensional set of points Z ′, in contradiction with the previous part
of the proof. Since S is graded Cohen-Macaulay, this implies that a basis of I(Z)d is a
regular sequence [Mat87, Thm. 17.4]. This shows that for any generic enough Z, the variety
V(I(Z)d) is a complete intersection of dimension r− (hS(d)−n). Proving that the chopping
map is dominant is done exactly as in the previous case, the claim about the fiber dimension
is a dimension count.

Finally, consider r < hS(d)−n. We give a proof valid in characteristic 0. The classical Multi-
secant Lemma [Rus16, Prop. 1.4.3] states that a general k-secant plane to a non-degenerate
projective variety X ⊆ PN is not a k + 1-secant for k < codimX. Applying this to the
Veronese variety, for a general set of r < hS(d)− n points Z, we have

νd(V(I(Z)d)) = νd(Pn) ∩ P(I(Z)⊥d ) = νd(Pn) ∩ ⟨νd(Z)⟩P = νd(Z).

This shows that V(I(Z)d) = Z for general Z. In particular, c̃ is generically injective.

This answers our question on when Z can be recovered from the chopped ideal.
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Corollary 2.5. With notation as before, for general Z the following are equivalent:

(i) V(I(Z)d) = Z, as reduced schemes;

(ii) (I⟨d⟩)
sat = I(Z), where ·sat denotes saturation with respect to ⟨x0, . . . , xn⟩S;

(iii) r < hS(d)− n or r = 1 or (n, r) = (2, 4).

Proof. By the projective Nullstellensatz, we have J sat = I(V(J)), this shows the equivalence
of (i) and (ii). If r < hS(d) − n, then by Theorem 2.2 V(I(Z)⟨d⟩) = Z. If r ≥ hS(d) − n,
then V(I(Z)⟨d⟩) is a complete intersection, which, for general Z, only happens if Z is a single
point or four points in P2.

Inspecting the proof of Theorem 2.2 and 2.4, we make a useful technical observation.

Remark 2.6. For n, d, r such that hS(d)−n ≤ r < hS(d) and Z general, a general collection
of polynomials f1, . . . , fs ∈ I(Z)d is a regular sequence when s ≤ hS(d) − r. If s = n =
hS(d)− r, then this complete intersection is reduced according to Theorem 2.2(i).

2.2 The saturation gap and expected syzygies

From now on, for fixed n, r, set d := min { t | hS(t) ≥ r }. Let Z be a set of r general points
in Pn, with vanishing ideal I = I(Z). The degree d is the Hilbert regularity of Z (or S/I(Z))
defined for a finite graded S-module M by

regH(M) := min { d ∈ Z | hM(t) = HPM(t) for t ≥ d } .

The minimal generators of I = I(Z) are in degrees {d, d + 1} [IK99, Thm. 1.69] and the
operation of chopping the ideal in degree d is trivial unless I has generators in degree d+ 1.
The number of minimal generators in degree d is hI(d) = hS(d)− r by assumption (1), while
the minimal generators in degree d+ 1 span a complement of S1Id in Id+1. The linear space
S1Id is the image of the multiplication map µ1 : S1 ⊗k Id → Id+1; the expected dimension of
this image is

min{hS(1) · hI(d), hI(d+ 1)} = min{(n+ 1) · (hS(d)− r), hS(d+ 1)− r}.

which is always an upper bound and is achieved if and only if µ1 has maximal rank. This
leads to the following long standing conjecture [GM84].

Conjecture 3 (Ideal generation conjecture). Let n, r, d ≥ 1 be integers such that r ≤ hS(d).
There is a Zariski dense open subset Uigc ⊆ (Pn)r such that, for Z ∈ Uigc, the number of
minimal generators of I(Z) in degree d+ 1 is max{0, hS(d+ 1)− r − (n+ 1) · (hS(d)− r)}.

From this we see that I(Z) has generators in degree d+1 if hS(d+1)−r−(hS(d)−r)(n+1) > 0,
or equivalently

r >
(n+ 1)hS(d)− hS(d+ 1)

n
.
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This bound is sharp assuming the ideal generation conjecture, which is known to hold for
n ≤ 4 or r large, see Section 2.3. In fact, using Corollary 2.5, we can pinpoint the range in
which the chopped ideal cuts out Z in a non-saturated way.

Lemma 2.7. Let n, d be positive integers. If

(n+ 1)hS(d)− hS(d+ 1)

n
< r < hS(d)− n, (4)

then a general set of r points in Pn has Hilbert regularity d, V(I(Z)d) = Z but I⟨d⟩ ⊊ I. If
the Ideal Generation Conjecture holds for n, d, then the lower bound is tight.

Remark 2.8. Note that (n+1)hS(d)−hS(d+1)
n

≥ hS(d − 1). In particular, in the interesting
range, equations of degree d are equations of minimal degree.

In light of the Ideal Generation Conjecture, our Conjecture 1 is a natural generalization; it
claims that the multiplication map µe : Id ⊗k Se → Id+e has the largest possible rank. To
give a formal upper bound on the rank of µe, we introduce the lexicographic ordering on
functions h, h′ : Z≥0 → Z:

h ≤lex h
′ if and only if inf { t | h(t) < h′(t) } ≤ inf { t | h(t) > h′(t) } .

In other words, h <lex h
′ if h(t) = h′(t) for t < t0 and h(t0) < h′(t0). This is a total order on

functions h, and a pointwise inequality h(t) ≤ h′(t) for all t ≥ 0 implies h ≤lex h
′.

An important theorem of Fröberg [Frö85] asserts the following lower bound.

Theorem 2.9. For any ideal J ⊆ S of depth 0 generated by s ≥ n+ 1 elements in degree d
one has

hS/J(t) ≥lex fröd,s(t) :=

{∑
k≥0(−1)khS(t− kd)

(
s
k

)
if t < t0

0 if t ≥ t0,

where t0 ≥ 0 is the first value for which the summation becomes nonpositive.

The Fröberg Conjecture predicts that equality is achieved for general J . If the conjecture
holds (for particular n, d, s) the lex-inequality is upgraded to a pointwise inequality for all
such ideals J :

hS/J(t) ≥ fröd,s(t) for all t ≥ 0.

In our situation this leads to the following theorem.

Theorem 2.10. If I ⊆ S has dimension 1, degree r < hS(d) − n and Hilbert function
(1), then

hS/I⟨d⟩(t) ≥lex

{
fröd,hI(d)(t) if t < t1

r if t ≥ t1,

where t1 = inf { t > d | fröd,hI(d)(t) ≤ r }. More precisely, if hS/I⟨d⟩(t
′) ≤ r for some t′ > d,

then hS/I⟨d⟩(t) = r for t ≥ t′.
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Proof. By [Frö85, Lem. 1], hS/I⟨d⟩(t) ≥ hS/J(t) where J is generated by hI(d) general forms
of degree d. Applying Fröberg’s Theorem 2.9 from above to J , which has dimension and
depth 0, we obtain hS/I⟨d⟩ ≥lex fröd,hI(d). Furthermore, if hS/I⟨d⟩(t

′) ≤ r for some t′ > d, then
(I⟨d⟩)t′ = It′ . Since the minimal generators of I(Z) are in degree at most d+ 1 ≤ t′, we have
(I⟨d⟩)t = It for t ≥ t′ and hence hS/I⟨d⟩ sticks to r from that point on.

Conjecture 1 predicts that for Z general, the Hilbert function hS/I(Z)⟨d⟩ satisfies Theorem 2.10
with equality, which then is upgraded to a pointwise lower bound. In particular, the multi-
plication map µe : Id⊗k Se → Id+e is either surjective onto Id+e, or it achieves the maximum
possible dimension from Theorem 2.10:

hI⟨d⟩(d+ e) =
∑
k≥1

(−1)k+1 · hS(d+ e− kd) ·
(
hS(d)− r

k

)
until this sum falls below hI(d+ e), from which point on hI⟨d⟩(d+ e) = hS(d+ e)− r.

2.3 Related open problems in commutative algebra

In this section, we give an overview of several conjectures in the study of ideals of points,
related to Conjecture 1 and Conjecture 2. Let Z be a set of r general points in Pn, let
I = I(Z) be the vanishing ideal and let d be the Hilbert regularity of Z.

The multiplication map It ⊗ Se → It+e is surjective for t ≥ d + 1 because all generators of
I(Z) are in degrees d and d+1. The already mentioned Ideal Generation Conjecture (IGC)
stated in Conjecture 3, predicts that µ1 : Id⊗S1 → Id+1 has full rank: in other words, either
µ1 is surjective or I has exactly hS(d + 1) − (n + 1)(hS(d) − r) generators of degree d + 1.
This is related to Conjecture 1, which predicts that µe : Id ⊗ Se → Sd+e has the expected
rank, and its kernel arises from the Koszul syzygies of the degree d generators of I.

The Minimal Resolution Conjecture (MRC) [Lor93] is a generalization of the IGC which
predicts the entire Betti table of the ideal I. Consider the minimal free resolution of S/I,
regarded as an S-module:

0 S/I S F1 · · · Fpd(S/I) 0, Fi =
⊕
j

S[−j]βi,j .

A consequence of [IK99, Lem. 1.69] is that, for i ≥ 1, there are at most two nonzero Betti
numbers; they are βi,d+i−1 and βi,d+i. The IGC predicts that either β1,d+1 = 0 or β2,d+1 = 0.
The MRC predicts all values βi,j.

Notice that if β2,d+1 = 0, then β1+i,d+i = 0 for every i ≥ 1 as well; in this case the values
β1,d, β1,d+1, together with the exactness of the resolution, uniquely determine the other βi,j.
This is expected to be the case in the range of (4). In particular, in this range the MRC and
the IGC are equivalent and, in a sense, Conjecture 1 is a generalization of both.

The MRC is known to be true for n = 2 [GM84, GGR86], for n = 3 [Bal87] and for n = 4
[Wal95]. Moreover, it has been proved in an asymptotic setting [HS96] and in a number of
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other sporadic cases, for which we refer to [EP96]. It is however false in general [EPSW02].
There are no known counterexamples to the IGC.

We record here the statement in the case of P2, where the Hilbert-Burch theorem dictates
the structure of the minimal free resolution of S/I [Eis05, Thm. 3.2, Prop. 3.8].

Proposition 2.11 (Minimal resolution conjecture in P2). For a general collection of r points
Z ⊆ P2 with regH(Z) = d, the minimal free resolution of S/I(Z) has the form

0 S/I(Z) S
S[−d]β1,d⊕

S[−(d+ 1)]β1,d+1

S[−(d+ 1)]β2,d+1⊕
S[−(d+ 2)]β2,d+2

0.B

Here β1,d = hS(d) − r, β1,d+1 = max{0, hS(d + 1) − (n + 1)β1,d − r}, β2,d+1 + β2,d+2 =
β1,d + β1,d+1 − 1 and β1,d+1 · β2,d+1 = 0.

For a proof of this particular case, see for example [Sau85, Prop. 1.7]. In the paper the proof
goes via polarization of monomial ideals. One might expect a similar approach would yield
Conjecture 1 in P2. This is not the case, as we will show in Theorem 5.3.

The already mentioned Fröberg’s Conjecture [Frö85] predicts the Hilbert function of the
ideal generated by generic forms. Conjecture 1 states that chopped ideals of general points
satisfy Fröberg’s conjecture for as many values of t ∈ Z≥0 as they possibly can.

2.4 Castelnuovo-Mumford Regularity

We discussed relations of Conjecture 1 with the IGC and the MRC, which have a more
cohomological flavour. This raises questions about other cohomological invariants of chopped
ideals. We prove a statement regarding the Castelnuovo-Mumford regularity of I⟨d⟩. For a
finite graded S-module M , this is defined as regCMM = max { j − i | βi,j(M) ̸= 0 }, where
βi,j are the graded Betti numbers of M .

Theorem 2.12. Let J ⊆ S be a one-dimensional graded ideal, then

regCM S/J = max{regH S/J − 1, regH S/J
sat}. (5)

Applying this theorem to a chopped ideal of a general set of points, we obtain:

Corollary 2.13. Let n, r, d satisfy (4). Then for a general set of r points

regCM S/I⟨d⟩ = regH S/I⟨d⟩ − 1.

The Conjecture 2 predicts the Hilbert regularity of I⟨d⟩, hence this conjecture is directly
related to Castelnuovo-Mumford regularity.

Proof of Theorem 2.12. The proof relies on local cohomology. Let m = ⟨x0, . . . , xn⟩S. The
0-th local cohomology group measures non-saturatedness as

H0
m(S/J) =

{
x+ J ∈ S/J

∣∣ mkx ⊆ J, k ≫ 0
}

= J sat/J.
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The dimension of a finite S-module M can be characterized as the largest i ≥ 0 with
Hi

m(M) ̸= 0 [Eis05, Prop. A1.16] so all cohomology groups Hi
m(S/J) vanish for i ≥ 2.

We next provide a description of the remaining first local cohomology group. Let I = J sat

and let Z = ProjS/I ⊆ Pn be the scheme defined by I. The quotients S/I and S/J have
the same higher local cohomology. The comparison sequence for local and sheaf cohomology

0 S/I
⊕
d∈Z

H0(Pn,OZ(d))︸ ︷︷ ︸
∼= kdegZ

H1
m(S/I) 0.

shows that H1
m(S/I)d is the cokernel of (S/I)d ↪→ H0(Pn,OZ(d)). Introducing the notation

end(N) := sup { t ∈ Z | Nt ̸= 0 }, this shows that end(H1
m(S/J)) + 1 = regH S/I =: d.

Now the Castelnuovo-Mumford regularity can be expressed in terms of local cohomology:

regCMM = max
i

end(Hi
m(M)) + i.

See [Eis05, Thm. 4.3]. For M = S/J using vanishing in degree i ≥ dimS/J = 1, this gives

regCM S/J = max{end(I/J), d}. (6)

To relate this to the maximum in equation (5), we distinguish two cases. If end(I/J) ≥ d,
then hS/J(t) > hS/I(t) for some t ≥ d, so end(I/J) = regH S/J−1. Otherwise end(I/J)+1 ≤
d, then regH S/J ≤ regH S/I and the maximum in (6) is attained at d.

3 Points in the plane
When n = 1, Z is a set of points on the projective line. In this case I(Z) is a principal ideal
and it always coincides with its chopped ideal. In particular, Conjecture 1 and Conjecture 2
hold trivially, as well as the IGC and the MRC.

This section studies the case n = 2, that is when Z ∈ (P2)r is a collection of r general points
in the plane. Figure 1 shows the saturation gaps for some values of r. In each case we use
the chopped ideal I⟨d⟩ in degree d = min { t | hS(t) ≥ r }. The gap is only plotted in cases
where I⟨d⟩ defines Z scheme-theoretically, following Corollary 2.5. Since the IGC is known
to be true in P2, Lemma 2.7 provides exactly the range where I⟨d⟩ ̸= I(Z), and they both
define the set Z as a scheme:

d(d+ 2)

2
< r <

(d+ 2)(d+ 1)

2
− 2. (7)

If d < 5, this range is empty and the corresponding gaps in Figure 1 have length 1. For d = 5,
the only integer solution to (7) is r = 18. This is the leftmost length-two gap in Figure 1.
Hence, the simplest interesting chopped ideal is that of three quintics passing through 18
general points in the plane, first encountered in Example 1.1. In Section 3.1, we thoroughly
work out this instructive example. For d ≥ 5, write

rd,min :=

⌊
d(d+ 2)

2

⌋
+ 1 and rd,max =

(d+ 2)(d+ 1)

2
− 3
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Figure 1: Saturation gaps for chopped ideals of points in the plane.

for the extremal values in the range (7). Section 3.2 proves Conjecture 1 for r = rd,max, and
Section 3.3 proves it for r = rd,min, when d is odd. Throughout this section, S = k[x0, x1, x2].

3.1 Quintics through eighteen points

Let Z = (z1, . . . , z18) ∈ (P2)18 be a configuration of 18 general points in P2. Equation (1)
guarantees that Z has no equations of degree 4 and exactly 3 = 21−18 equations of degree 5.
Hence I(Z)5 = ⟨f0, f1, f2⟩k for three linearly independent elements fi ∈ S5, and the chopped
ideal is I⟨5⟩ = ⟨f0, f1, f2⟩S.

Notice that hS/I⟨5⟩(6) ≥ 28 − 3 · 3 = 19 and equality holds if and only if the three quintics
f0, f1, f2 do not have linear syzygies. Since the IGC is true for n = 2, this is indeed the case.
Moreover, Example 1.1 shows experimentally that hS/I⟨5⟩(7) = 18, so the saturation gap is
2. The minimal resolution of I(Z) according to Proposition 2.11 is

0 I(Z)
S[−5]3⊕
S[−6]

S[−7]3 0.B

The minimal generators of I(Z) are the maximal minors of the Hilbert-Burch matrix B,
which is a 4× 3-matrix with three rows of quadrics and one row of linear forms. As a result,
the maximal minors are three quintics, spanning the linear space I(Z)5, and one sextic, which
is an element of I(Z)6 \ (I⟨5⟩)6. The existence of the sextic is predicted by Theorem 2.10 and
the gap γn(d, r) = γ2(5, 18) = 2 agrees with Conjecture 2.

Note that the missing sextic is uniquely determined modulo the 9-dimensional linear space
(I⟨5⟩)6 ⊆ I(Z)6. We provide a way to compute an element of I(Z)6 \ (I⟨5⟩)6 from Z.

Proposition 3.1. Let Z ⊆ P2 be a set of 18 general points and let Z = Z1 ∪̇Z2 be a partition
of Z into two sets of 9 points. Let f1, f2, f3 ∈ I(Z)5 ⊆ S5 be linearly independent and let
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gi ∈ I(Zi)3 \ {0} ⊆ S3. Then g = g1g2 ∈ I(Z) and g /∈ I⟨5⟩.

The proof of Proposition 3.1 is deferred to Appendix A.

It was observed in Example 1.1 that (I⟨5⟩)7 = I(Z)7. This is equivalent to the following
result, which is a consequence of the more general Theorem 3.3 and Theorem 3.5.

Proposition 3.2. Let Z ⊆ P2 be a set of 18 general points and let f0, f1, f2 ∈ I(Z)5 ⊆ S5

be linearly independent. Then f0, f1, f2 have no quadratic syzygies. That is, hS/I⟨5⟩(7) = 18.

We sketch two different proofs of Proposition 3.2, to illustrate the idea of the more general
proofs of Theorem 3.3, Theorem 3.5 and Theorem 4.1. A straightforward dimension count
shows that hS/I⟨5⟩(7) = 18 if and only if the forms f0, f1, f2 do not have quadratic syzygies.
The Hilbert-Burch matrix B has the form

B =


q00 q01 q02
q10 q11 q12
q20 q21 q22
ℓ0 ℓ1 ℓ2

 ∈ S4×3,

where qij ∈ S2 are quadrics, and ℓi ∈ S1 are linear forms. The quadratic syzygies of f0, f1, f2
are the k-linear combinations of the columns of B whose last entry is zero. If such a non-
trivial k-linear combination exists, the linear forms ℓ0, ℓ1, ℓ2 are linearly dependent. Hence,
V(ℓ0, ℓ1, ℓ2) ⊆ P2 is non-empty. The quintics f0, f1, f2 are the 3 × 3 minors of B involving
the last row, so that V(ℓ0, ℓ1, ℓ2) ⊆ V(f0, f1, f2), showing V(ℓ0, ℓ1, ℓ2) is one of the points
in Z. The genericity of Z, together with the fact that the construction is invariant under
permutation of the 18 points, leads to a contradiction; we refer to the proof of Theorem 3.5
for details on this construction. Hence ℓ0, ℓ1, ℓ2 are linearly independent, and one concludes
that f0, f1, f2 do not have quadratic syzygies. An analogous argument will give the proof of
Theorem 3.5.

Alternatively, one can prove Proposition 3.2 via a classical liaison argument. Suppose s0f0+
s1f1 + s2f2 = 0 is a quadratic syzygy of f0, f1, f2, for some sj ∈ S2. Assume f0, f1, f2 are
chosen generically in I(Z)5. Let K ⊆ P2 be the set of points defined by the ideal ⟨f1, f2⟩S.
By Bézout’s theorem, and Remark 2.6, K is a complete intersection of 25 reduced points,
and Z is a subset of K. In other words, K = Z ∪̇Z ′ where Z ′ is a set of 7 points, called the
liaison of Z in K. For every z ∈ Z ′, we have s0(z)f0(z) = 0. We have f0(z) ̸= 0, otherwise
z ∈ Z, and we conclude that s0 ∈ I(Z ′). On the other hand, the theory of liaison guarantees
that Z ′ has no nonzero quadratic equations; the necessary results to prove this statement
are presented in Section 4. We conclude that s0 = 0, and analogously for s1 = s2 = 0. This
argument generalizes to a proof of Theorem 3.3 and Theorem 4.1.

3.2 The case r = rd,max

In this section, we prove Conjecture 1 and Conjecture 2 for the maximal number of points
r = rd,max in the plane. Fix d ≥ 5 and let Z ∈ (P2)rd,max be a general collection of rd,max

points. By construction, I(Z) is zero in degree smaller than d and the chopped ideal I(Z)⟨d⟩
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has 3 generators of degree d. By Corollary 2.5, I(Z)⟨d⟩ defines Z scheme-theoretically. Since
the IGC holds in P2, the three generators of degree d have no linear syzygies and I(Z) has
d− 4 minimal generators of degree d+ 1. The minimal free resolution of I(Z) is

0 I(Z)
S[−d]3⊕

S[−(d+ 1)]d−4

S[−(d+ 2)]d−2 0.B (8)

Conjecture 1 predicts the value for hI⟨d⟩ in degree d+ e:

hI(Z)⟨d⟩(d+ e) = min

{
3 ·

(
e+ 2

2

)
,

(
d+ e+ 2

2

)
−
(
d+ 2

2

)
+ 3

}
.

For e = d− 3, both arguments give the minimum:

3 ·
(
d− 1

2

)
=

3d2 − 9d+ 6

2
=

(
2d− 1

2

)
−
(
d+ 2

2

)
+ 3.

Hence, we expect the map µd−3 : Sd−3 ⊗ I(Z)d → I(Z)2d−3 to be an isomorphism.

Theorem 3.3. Let Z ∈ (P2)rd,max be a collection of rd,max general points, and let I⟨d⟩ =
⟨I(Z)d⟩ be its chopped ideal. The Hilbert function of I⟨d⟩ satisfies

hI⟨d⟩(t) = 0 if t < d,

hI⟨d⟩(t) = 3 · hS(t− d) if d ≤ t ≤ 2d− 3,

hI⟨d⟩(t) = hS(t)− rd,max if t ≥ 2d− 3.

In this case, Conjecture 1 and Conjecture 2 hold and γ2(d, rd,max) = d− 3.

Proof. It suffices to show that the three generators f0, f1, f2 of the chopped ideal do not have
syzygies in degree d− 3. This guarantees that the inequality in Theorem 2.10 is a pointwise
upper bound, and in turn that equality holds. Suppose (s0, s1, s2) is a syzygy of degree d−3:

s0f0 + s1f1 + s2f2 = 0 for some si ∈ Sd−3.

We are going to prove that s0 = s1 = s2 = 0. By Remark 2.6 we may assume that f1, f2
generate a complete intersection ideal defining a set K of d2 distinct points in P2. The set
K contains Z, and we write Z ′ = K \ Z for the complement of Z in K.

It suffices to show that I(Z ′)d−3 = 0. Indeed, for every z ∈ Z ′ we have f1(z) = f2(z) = 0,
which implies f0(z)s0(z) = 0. But f0(z) ̸= 0 because by Corollary 2.5 the chopped ideal
defines Z scheme-theoretically and z /∈ Z. Hence s0 ∈ I(Z ′)d−3. If I(Z ′)d−3 = 0, we obtain
s0 = 0. This implies s1 = s2 = 0 as well, because s1, s2 defines a syzygy of the complete
intersection ⟨f1, f2⟩S, which does not have non-trivial syzygies in degree smaller than d.

We are left with showing that I(Z ′)d−3 = 0. The Hilbert-Burch matrix B′ of Z ′ can be
obtained from the Hilbert-Burch matrix B of Z in (8) as follows; see, e.g., [Sau85, Prop. 1.3].
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The entries of B in its first three rows are quadrics, and the ones in the remaining d − 4
rows are linear forms. The second and third row of B correspond to f1, f2. The Hilbert-
Burch matrix B′ is the transpose of the submatrix obtained from B by removing the two
rows corresponding to f1, f2. Therefore B′ is a (d− 2)× (d− 3) matrix whose first column
consists of quadratic forms, and the remaining d − 4 columns consist of linear forms. The
maximal minors of B′ have degree d − 2, and they are minimal generators of I(Z ′) by the
Hilbert-Burch Theorem. In particular, I(Z ′)d−3 = 0, as desired.

Theorem 3.3 is a special version of Theorem 4.1, whose proof resorts to liaison theory in
higher dimension and is less explicit. Therefore, we chose to include both proofs.

Theorem 3.3 allows us to provide an upper bound on the saturation gap for any set of
general points in P2. Let r ≤ rd,max and fix r general points Z in P2. By definition,
γ2(d, r) = min { e ∈ Z>0 | hS/I⟨d⟩(d+ e) = r }, where I⟨d⟩ = ⟨I(Z)d⟩S for r general points Z.

Corollary 3.4. For r ≤ rd,max general points in the plane, the saturation gap γ2(d, r) is at
most d− 3. In particular, the alternating sum in Conjecture 1 reduces to a single summand.

Corollary 3.4 is a special case of Corollary 4.5 below.

3.3 The case r = rd,min for odd d

Let d = 2δ + 1 be odd, and let Z be a set of r = rd,min = 2(δ + 1)2 general points in P2. By
Proposition 2.11, I(Z) is generated by δ + 1 forms of degree d and 1 form of degree d+ 1:

I(Z) = ⟨f0, . . . , fδ, g⟩S,

with f0, . . . , fδ ∈ Sd and g ∈ Sd+1. In this section we prove the following result.

Theorem 3.5. Let d = 2δ + 1 and let Z ∈ (P2)rd,min be a collection of rd,min = 2(δ + 1)2

general points. The Hilbert Function of I⟨d⟩ = ⟨I(Z)d⟩S satisfies

hS/I⟨d⟩(d) = rd,min,

hS/I⟨d⟩(d+ 1) = rd,min + 1,

hS/I⟨d⟩(t) = rd,min if t ≥ d+ 2.

In this case, Conjecture 1 and Conjecture 2 hold and γ2(d, rd,min) = 2.

The proof uses the minimal free resolution of I(Z), obtained from Proposition 2.11

0 I(Z)
S[−d]δ+1⊕
S[−(d+ 1)]

S[−(d+ 2)]δ+1 0.B

14



The Hilbert-Burch matrix B has the following form:

B =


q00 · · · q0δ
...

...
qδ0 · · · qδδ
ℓ0 · · · ℓδ

 ,

for some quadratic forms qij ∈ S2 and linear forms ℓj ∈ S1. The degree e syzygies of f0, . . . , fδ
are the elements of the k-vector space

Syz(f0, . . . , fδ)e =
{
(s0, . . . , sδ) ∈ (Se)

δ+1
∣∣ s0f0 + · · ·+ sδfδ = 0

}
.

Proof of Theorem 3.5. The fact that hS/I⟨d⟩(d) = hS/I(d) = rd,min follows by (1). The IGC
holds for n = 2, and it implies hS/I⟨d⟩(d+ 1) = rd,min + 1.

For the statement on hS/I⟨d⟩(t) for t ≥ d + 2, observe that (δ + 1) · hS(2) = hS(d + 2) −
rd,min + (δ − 2). Hence, it suffices to show that the forms f0, . . . , fδ generating the chopped
ideal I⟨d⟩ = ⟨I(Z)d⟩S have exactly δ − 2 quadratic syzygies, i.e.

dimk Syz(f0, . . . , fδ)2 = δ − 2.

It is clear that dimk Syz(f0, . . . , fδ)2 ≥ hI(d)hS(2)− hI(d+2) = δ− 2; this also follows from
Theorem 2.10. We show that f0, . . . , fδ cannot have δ − 1 syzygies.

The linear span LZ := ⟨ℓ0, . . . , ℓδ⟩k of the linear forms in the last row of B does not depend
on the choice of the minimal free resolution. This is a consequence of [Eis95, Thm. 20.2].

If f0, . . . , fδ have δ − 1 quadratic syzygies for a general choice of Z, then dimk LZ is at
most 2, which implies that the variety V(LZ) is non-empty. Moreover, by the Hilbert-Burch
Theorem, the ideal generated by LZ contains I⟨d⟩ = ⟨f0, . . . , fδ⟩S, which cuts out Z scheme-
theoretically by Theorem 2.4. Hence dimk LZ = 2 and V(LZ) is one of the points in Z.
Define

ψ : (P2)r 99K P2, ψ(Z) := V(LZ).

This is a rational map: the coordinates of LZ , and hence of the point it defines, can be
expressed as polynomial functions of the coordinates of the configuration Z ∈ (P2)r, for
instance via successive applications of Cramer’s rule. Moreover, we showed that ψ(Z) ∈ Z.
By definition, ψ is invariant under the action of the symmetric group Sr permuting the
factors of (P2)r. Consider the subvarieties of (P2)r defined by

Yj := { Z = (z1, . . . , zr) ∈ Dom(ψ) | ψ(Z) = zj }.

We have (P2)r =
⋃r

j=1 Yj. Since (P2)r is irreducible, we have Yj = (P2)r for at least one
j. On the other hand, Sr invariance implies that if Yj = (P2)r for one j, then this must
be true for all j’s. But any two Yj are distinct because generically Z consists of distinct
elements. This gives a contradiction showing that the map ψ cannot exist. We obtain that
dimk LZ = 3 for general Z and this concludes the proof.
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4 The largest possible saturation gap
In this section, we consider a set Z of r =

(
d+n
n

)
− (n+1) general points in Pn. Corollary 2.5

guarantees this is the largest possible number of points such that the chopped ideal I⟨d⟩ =
⟨I(Z)d⟩S in the ring S = k[x0, . . . , xn] defines Z scheme-theoretically. We will show that
Conjecture 1 is true in this case:

Theorem 4.1. Let n, d be positive integers and let Z ⊆ Pn be a set of r = hS(d) − (n + 1)
general points. The Hilbert function of the chopped ideal I⟨d⟩ = ⟨I(Z)d⟩S satisfies

hS/I⟨d⟩(d+ e) =
∑
k≥0

(−1)k · hS(d+ e− kd) ·
(
n+ 1

k

)
,

for e ≤ (n−1)d−(n+1). Conjecture 1 and Conjecture 2 hold with γn(d, r) = (n−1)d−(n+1).

As a consequence of Theorem 4.1, we will obtain an upper bound on the saturation gap
γn(d, r) for all r < hS(d)− n in Corollary 4.5.

The proof of Theorem 4.1 relies on a fundamental fact in the theory of liaison. Given
the Hilbert function of a set of points Z, one can compute the Hilbert function of the
complementary set of points Z ′ = K \ Z in a complete intersection K ⊇ Z. We record
this fact in Proposition 4.4 below. In order to state it precisely, we introduce the following
notation. The function ∆hZ(t) = hZ(t)− hZ(t− 1), with hZ = hS/I(Z), is the first difference
of the Hilbert function of Z. Often, ∆hZ(t) is called the h-vector of Z and it is recorded as
the sequence of its non-zero values. We record some immediate properties, see e.g. [Chi19].

Lemma 4.2. For a finite set of points Z ⊆ Pn, we have

(i) hZ(t) =
∑t

t′=0∆hZ(t
′);

(ii) regH(Z) = max { t | ∆hZ(t) > 0 };

(iii) if I(Z)t = 0 then ∆hZ(t
′) =

(
t′+n−1
n−1

)
for t′ ≤ t.

For complete intersections K, the function ∆hK has a symmetry property [Eis95, Ch. 17].

Lemma 4.3. Let K ⊆ Pn be a set of d1 · · · dn points whose ideal is generated by a regular
sequence f1, . . . , fn, with deg(fi) = di. Then regH(K) = d1 + · · · + dn − n. In particular,
if d1 = · · · = dn = d, regH(K) = n(d − 1). Moreover, ∆hK is symmetric, that is, setting
ρ = regH(K), we have ∆hK(t) = ∆hK(ρ− t).

The theory of liaison studies the relation between the distinct irreducible components (or
union of such) of a complete intersection; we only illustrate one result in the context of ideals
of points; we refer to [MN02, Mig98] for an extensive exposition of the subject. The following
is a consequence of [Mig98, Prop. 5.2.1]; see also [AC22, Eqn. (3)].

Proposition 4.4. Let Z ⊆ Pn be a set of points and let f1, . . . , fn ∈ I(Z) be homogeneous
polynomials of degree d1, . . . , dn defining a smooth complete intersection K of degree d1 · · · dn.
Let Z ′ = K \ Z be the complement of Z in K. Let ρ = regH(K) = d1 + · · · + dn − n. Then
∆hZ(t) + ∆hZ′(ρ− t) = ∆hK(t).
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In words, Proposition 4.4 says that the sequence ∆hZ′ equals the sequence ∆hK −∆hZ , in
the reversed order.

The proof of this result uses a construction known as the mapping cone in homological
algebra. The key fact is that the resolution of I(Z ′) can be obtained from that of I(Z) using
the fact that the resolution of I(K) is the classical Koszul complex of f1, . . . , fn [Mig98].

We now have all the ingredients to give a proof of Theorem 4.1.

Proof of Theorem 4.1. By construction, we have dimk(I⟨d⟩)d = dimk I(Z)d = n+ 1. Remov-
ing z0 ∈ Z, a general set f1, . . . , fn ∈ I(Z \ {z0})d defines a reduced complete intersection
K ⊆ Pn of dn points by Remark 2.6. We add a generator f0 such that I⟨d⟩ = ⟨f0, . . . , fn⟩S.

The Hilbert function hK(t) has the following compact form, which can be computed directly
from the dimension of the syzygy modules in the Koszul complex [Eis95, Ch. 17]:

hK(t) =
n∑

k=0

(−1)khS(t− kd)

(
n

k

)
.

In particular hK(t) = hZ(t) for t ≤ d − 1, and hK(d) = hZ(d) + 1. Recall from Lemma 4.3
that regH(K) = n(d− 1). Set ρ := n(d− 1) and let Z ′ := K \ Z be the complement of Z in
K. By Lemma 4.3 and Proposition 4.4, we have

∆hZ(t) + ∆hZ′(ρ− t) = ∆hK(t) = ∆hK(ρ− t).

Since ∆hZ(t) = 0 for t ≥ d + 1, we deduce ∆hZ′(t) = ∆hK(t) for t ≤ ρ − (d + 1). Since
I(Z ′) ⊆ I(K), this implies I(Z ′)t = I(K)t for t ≤ ρ− (d+ 1). In particular, we obtain that

dimk I(Z
′)t = hS(t)− hK(t) =

∑
k≥1

(−1)k+1hS(t− kd)

(
n

k

)
,

for t ≤ (n− 1)d− (n+ 1). See Figure 2 for a schematic representation.

Now, fix e ≤ nd− n− (d + 1) and let Syze ⊆ Sn+1
e be the subspace of syzygies of degree e;

i.e. the tuples (s0, . . . , sn) with s0f0 + · · ·+ snfn = 0.

Consider the projection π0 : Syze → Se onto the 0-th component Se, that is π(s0, . . . , sn) = s0.
We observe that the image of this map is contained in I(Z ′). Indeed, since Z ′ ⊆ K, for every
p ∈ Z ′ we have fj(p) = 0 for j = 1, . . . , n. This implies s0(p)f0(p) = 0 for p ∈ Z ′. Since I⟨d⟩
defines Z scheme-theoretically, we deduce that f0(p) ̸= 0 for every p ∈ Z ′; hence s0(p) = 0
for p ∈ Z ′, as desired. Therefore, the image of the map π0 is contained in I(Z ′)e.

The kernel of π0 consists of tuples (0, s1, . . . , sn) ∈ Sn+1
e such that s1f1 + · · · + snfn = 0;

hence (s1, . . . , sn) defines a syzygy of f1, . . . , fn. Since the ideal ⟨f1, . . . , fn⟩S is a complete
intersection, its only syzygies in degree e are generated by the Koszul syzygies, and we deduce

dimk(Kerπ0) =
∑
k≥2

(−1)khS(d+ e− kd)

(
n

k

)
.
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Figure 2: The sequences ∆hZ and ∆hK for r = 121 points in P4. Their
difference, in reversed order, equals ∆hZ′ . Note ∆hK(5) = ∆hZ(5) + 1.

Since dimk Syze = dimk(Kerπ0) + dimk(Im π0) ≤ dimk(Kerπ0) + dimk I(Z
′)e, the standard

identity
(
n
k

)
+
(

n
k+1

)
=

(
n+1
k+1

)
yields

dimk Syze ≤
∑
k≥1

(−1)k+1hS(e− kd)

(
n

k + 1

)
+
∑
k≥1

(−1)k+1hS(e− kd)

(
n

k

)
=

∑
k≥1

(−1)k+1hS(e− kd)

(
n+ 1

k + 1

)
.

We conclude that for e ≤ (n− 1)d− (n+ 1),

hI⟨d⟩(d+ e) = (n+ 1) · hS(e)− dimk Syze ≥
∑
k≥1

(−1)k+1hS(d+ e− kd)

(
n+ 1

k

)
.

The reverse inequality for hI⟨d⟩(d+e) follows from Fröberg’s Theorem 2.9 which is a pointwise
lower bound since Fröberg’s conjecture is true in this case [Frö85, Section 3.1].

It remains to show that the inequality hS/I⟨d⟩(d+ e) ≥ hS(d+ e)− (n+ 1) is an equality for
e0 := (n − 1)d − (n + 1) and strict for e0 − 1 (Theorem 2.10), thus establishing the length
of the saturation gap e0. We have shown that hS/I⟨d⟩(t) = fröd,n+1(t) for t ≤ nd − (n + 1),
where the latter is the Hilbert function of any ideal generated by a regular sequence of n+1
elements in degree d. Hence it suffices to check the (in)equalities for any such complete
intersection, for example the monomial ideal M := ⟨xd0, . . . , xdn⟩S. The Hilbert function of
S/M has the combinatorial description

hS/M(t) = #
{
xα ∈ St

∣∣ xα divides xd−1
0 · · ·xd−1

n

}
.

The involution xα 7→ xd−1
0 · · ·xd−1

n /xα shows the symmetry hS/M(t) = hS/M((n+1)(d−1)−t).
Thus

hS/M(d+ e0) = hS/M(n(d− 1)− 1)
sym
= hS/M(d) = hS(d)− (n+ 1)

hS/M(d+ e0 − 1)
sym
= hS/M(d+ 1) = hS(d+ 1)− (n+ 1)n
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using d ≥ 2 in the last equality. To see that the last term is strictly larger than hS(d)−(n+1),
we calculate(

hS(d+ 1)− (n+ 1)n
)
−

(
hS(d)− (n+ 1)

)
=

(
n+ d

n− 1

)
− (n+ 1)(n− 1)

d≥2

≥ (n+ 2)(n+ 1)n

6
− (n+ 1)(n− 1) =

1

6
(n+ 1)(n2 − 4n+ 6) > 0.

This leads to the following generalization of Corollary 3.4.

Corollary 4.5. For r ≤ hS(d) − (n + 1) general points in the plane, the saturation gap
γn(d, r) is at most (n− 1)d− (n+ 1). The sum in Conjecture 1 reduces to n− 1 terms.

Proof. The proof is by reverse induction on r. The base case is r = hS(d)−(n+1), for which
the statement follows from Theorem 4.1. We are going to show that γn(d, r − 1) ≤ γn(d, r).
Let Zr−1 = (z1, . . . , zr−1) ∈ (Pn)r−1 be general, let zr be one additional general point and
set Zr = (z1, . . . , zr). Let e0 := γn(d, r), we have hS/I(Zr)⟨d⟩(d + e0) = r and need to show
hS/I(Zr−1)⟨d⟩(d+ e0) = r − 1. For this is suffices to show

(I(Zr−1)⟨d⟩)d+e0 = Se0 · I(Zr−1)d ⊋ Se0 · I(Zr)d = (I(Zr)⟨d⟩)d+e0 .

By genericity of Zr, we can pick f ∈ I(Zr−1)d \ I(Zr)d and h ∈ Se0 not vanishing on zr, then
fh ∈ Se0 · I(Zr−1)d, but fh /∈ I(Zr) ⊇ I(Zr)⟨d⟩.

5 Proofs via computer algebra
This section provides a computational proof of Conjecture 1 for many small values of d, n, r.

Theorem 5.1. Conjecture 1 holds for a set of r general points in Pn, with the following
values of n and r:

n 2 3 4 5 6 7 8 9 10
r ≤ 2343 ≤ 2296 ≤ 1815 ≤ 1272 ≤ 908 ≤ 767 ≤ 479 ≤ 207 ≤ 267

The proof of Theorem 5.1 is computational. For every such (n, r) of interest, we exhibit an
r-tuple Z ∈ (Pn(Q))r for which the statement holds. The following semicontinuity result
guarantees that this suffices to conclude.

Proposition 5.2. Let r < hS(d) − n and let UgenHF ⊆ (Pn)r be the collections of points
satisfying (1). The set Uk,e = {Z ∈ UgenHF | hI(Z)⟨d⟩(d+ e) ≥ k } is Zariski open in (Pn)r.
In particular, the set U = {Z ∈ (Pn)r | hI(Z)⟨d⟩ satisfies (3) } is Zariski open.

Proof. Let Gr(hS(d) − r, Sd) be the Grassmannian of planes of dimension hS(d) − r in Sd.
Consider the vector bundle E := Hom(S⊗Se, Sd+e), where S denotes the tautological bundle
over Gr(hS(d) − r, Sd): the fiber of E at a plane [L] is EL = Hom(L ⊗ Se, Sd+e). The
multiplication map µ : Sd ⊗ Se → Sd+e defines a global section of E via restriction. The
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pull-back c∗E of E via the chopping map (Definition 2.3) defines a bundle over UgenHF and
c∗µ defines a global section of c∗E . The set Uk,e is the complement of the degeneracy locus

Vk,e :=
{
Z ∈ UgenHF

∣∣ rank(µe : I(Z)d ⊗ Se → Sd+e

)
< k

}
.

This shows that Vk,e is Zariski closed, hence Uk,e is Zariski open.

The set U is the intersection of UgenHF with finitely many open sets Uke,e for e = 1, . . . ,mr.
Here mr is any upper bound on the saturation gap, for instance mr = (n−1)d− (n+1) from
Corollary 4.5; ke is the expected value of hI⟨d⟩(d+ e) in (3). This concludes the proof.

Theorem 5.1 is a direct consequence of Proposition 5.2.

Proof of Theorem 5.1. Identify the field of rational numbers Q with the prime field of k. For
every (n, r) of interest, we exhibit an instance Z ∈ UgenHF ⊆ (Pn(Q))r for which the Hilbert
function of I(Z)⟨d⟩ satisfies (3). These instances can be found online at

https://mathrepo.mis.mpg.de/ChoppedIdeals/.

This guarantees that the corresponding open set U of Proposition 5.2 is non-empty, and
therefore it is Zariski dense. This shows that for a general instance Z ∈ (Pn)r, the Hilbert
function of Z satisfies (3), and therefore Conjecture 1 holds.

Notice that it suffices to check (3) for e up to the expected saturation gap of Conjecture 2.
Indeed, if it holds up to that value, we have (I⟨d⟩)d+e = I(Z)d+e for higher e, which is enough
to conclude.

To speed up the computations, we make the following observation. Let I ⊆ S = k[x0, . . . , xn]
be an ideal generated by polynomials f1, . . . , fs with coefficients in Z ⊆ k. Then

dimk It = dimQ(I ∩Q[x0, . . . , xn])t ≥ dimFp(IFp)t.

Here IFp ⊆ Fp[x0, . . . , xn] is the reduction modulo p of the ideal I. Checking that the upper
bound (3) is attained is much easier over a finite field, and it guarantees the bound is attained
over Q, hence over k. This leads to the following strategy for proving Theorem 5.1. First
implement the expected Hilbert function and the expected gap size according to Conjecture 1
and Conjecture 2, here called expectedHF(n, r, t) and expectedGapSize(n, r). Next, execute
the following steps for given (n, r):

1. Determine d := min { t | hS(t) ≥ r }.

2. Sample r points Z ⊆ Pn(Fp) (represented by homogeneous integer coordinates).

3. Calculate the ideal I := I(Z) and set J := ⟨Id⟩Fp[x0,...,xn].

4. Calculate the Hilbert function of S/J up to d+ expectedGapSize(n, r).

5. Check if the values match with expectedHF(n, r, t).
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Proposition 5.2 and the preceding remark about reduction modulo p ensure that this pro-
cedure proves the validity of Conjecture 1 in the cases of Theorem 5.1. The following code
in Macaulay2, assuming an implementation of expectedGapSize and expectedHF, demon-
strates the procedure.

loadPackage "Points" 1

n = 2; r = 41; 2

d = 8; -- determined by (n,r) 3

I = points randomPointsMat(ZZ/1009[x_0..x_n], r); 4

e = expectedGapSize(n,r) -- 3 5

J = ideal select(first entries gens I, f -> degree f == {d}); 6

hs = hilbertSeries(J, Order=>d+e+1) --
1 + 3T + 6T 2 + 10T 3 + 15T 4 + 21T 5 + 28T 6 + 36T 7 + 41T 8 + 43T 9 + 42T 10 + 41T 11

↪→

7

T = (ring hs)_0; 8

for t to d+e do 9

assert (coefficient(T^t, hs) == expectedHF(n,r,t)) 10

We briefly discuss some additional speed-ups. In the cases outside of the range (4), where
Conjecture 1 is equivalent to the IGC, it is much faster to calculate mingens(I(Z)) and
compare with the expected first graded Betti numbers β1,d, β1,d+1. Also, much computation
time is spent computing the ideal of points. For large r, a significant speedup is obtained
when using the methods implemented in Points.m2 [SSS+].

We conclude with a variation on the computer experiment. Instead of computing ideals
of (random) points one can also try to find monomial ideals certifying Conjecture 1. This
method, for instance, can be used to prove the MRC in P2 [Sau85, GGR86]. An exhaustive
search is possible in P2 for small values of r and leads to the following result:

Theorem 5.3. Let n = 2, S = k[x, y, z].

(i) For r = 18 there is a unique, up to permutation of the variables, monomial ideal
I = ⟨x3y2, y3z2, z3x2, x2y2z2⟩S with Hilbert function (1), which satisfies Conjecture 1.

(ii) For r ∈ {25, 32, 33} there are no monomial ideals satisfying Conjecture 1.

6 Symmetric tensor decomposition
This final section discusses the role of chopped ideals in tensor decomposition algorithms.
This was our original motivation and this project was initiated by a question encountered
by one of the authors and Nick Vannieuwenhoven in [TV22]. The setting in that paper
is slightly different because it studies algorithms for (ordinary) tensor decomposition. The
same approach is classical in symmetric tensor decomposition or Waring decomposition [IK99,
BCMT10]. A Waring decomposition of a homogeneous polynomial F ∈ T = k[y0, . . . , yn] of
degree D is an expression of F as a sum

F = c1(z1 · y)D + · · ·+ cr(zr · y)D (9)
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of powers of linear forms. Here ci ∈ k are constants and zi · y = zi0y0 + · · · + zinyn. The
Waring rank of F is the minimal number of summands r in such an expression.

Most decomposition algorithms aim to determine the vectors zi up to scaling, and then solve
a linear system to find the coefficients ci. Therefore, it is natural to regard Z = (z1, . . . , zr)
as a point in (Pn)r. A classical approach to compute Z uses apolarity theory and dates back
to [Syl52]. We briefly recall the basics.

The ring S = k[x0, . . . , xn] acts on the ring T by differentiation: if g ∈ S and F ∈ T , then
g • F = g(∂0, . . . , ∂n)F where ∂j = ∂

∂yj
. This action is graded. In particular, every F ∈ TD

gives rise to a sequence of linear maps

CF (d,D − d) : Sd → TD−d, g 7→ g • F,

called the Catalecticant maps of F . Notice that KerCF (d,D − d) ⊆ Sd is a linear space of
polynomials of degree d, and that CF (d,D− d) = 0 if d > D. The kernels KerCF (d,D− d)
are the homogeneous components of an ideal, called the apolar ideal of F , given by

Ann(F ) = { f ∈ S | f • F = 0 } .

On the other hand, S can be naturally regarded as the homogeneous coordinate ring of Pn.
The classical apolarity lemma [BCC+18, Sec. 1, Lem. 5] states that F decomposes as in (9)
if and only if the vanishing ideal I(Z) of Z = (z1, . . . , zr) is contained in Ann(F ).

It is usually hard to compute the ideal I(Z) of a minimal Waring decomposition of F .
However, in a restricted range, it turns out that its chopped ideal is generated by the graded
component of Ann(F ) in degree d = regH(Z). In other words, the chopped ideal of Z
can be computed via elementary linear algebra as kernel of the corresponding catalecticant
map. This is known as the catalecticant method to determine a decomposition of F and
it is the starting point of a number of more advanced Waring decomposition algorithms
[BGI11, BCMT10, BT20, LMR23]. We record a consequence of [IK99, Thm. 2.6, Lem. 1.19].

Theorem 6.1. Let D ≥ 2d. If F ∈ TD is a general form of rank r < hS(d)− n, then

(i) there is a unique Waring decomposition Z ⊆ (Pn)r of length r and

(ii) KerCF (d,D − d) = I(Z)d generates the chopped ideal I(Z)⟨d⟩.

This suggests a strategy for computing the Waring decomposition (9) of F ∈ TD, compare
[BCC+18, Alg. 2.82]:

1. Construct the catalecticant matrix CF (d,D − d), with d = ⌊D
2
⌋.

2. Compute a basis f1, . . . , fs for the kernel of CF (d,D − d) using linear algebra over k,

3. Solve the polynomial system f1 = · · · = fs = 0 on Pn. Let Z = (z1, . . . , zr) ∈ (kn+1)r

be the tuple of homogeneous coordinate vectors for the solutions.

4. Solve the linear equations (9) for c1, . . . , cr.
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When the rank of F is at most hS(⌊D/2⌋)−(n+1), and under suitable genericity assumptions,
Theorem 6.1 guarantees that this method computes the unique Waring decomposition of F .
Moreover, if one knows r < hS(d) − n for some d < D/2, the approach can be made more
efficient by computing a smaller catalecticant matrix.

Example 6.2. Consider a general ternary form of degree D = 10 with Waring rank r = 18,

F = (z1 · y)10 + · · ·+ (z18 · y)10.

Here y = (y0, y1, y2) and each zi has three coordinates as well. The catalecticant matrix
CF (5, 5) is of size 21 × 21, and has rank 18. Its kernel consists of three ternary quintics in
the variables x0, x1, x2 passing through the 18 prescribed points z1, . . . , z18. They generate
the chopped ideal I⟨5⟩ = ⟨I(Z)5⟩ investigated in Section 3.1. ⋄

The main work in this strategy is step 3: solving the polynomial system f1 = · · · = fs = 0.
If k = C, two important strategies for doing this numerically are homotopy continuation
[Tim21] and numerical normal form methods [Tel20]. We argue that in this setting it is
natural to use the latter type of methods. Indeed, by construction, the system has s =
hS(d) − r > n equations and n + 1 variables, hence it is overdetermined. In homotopy
continuation, this is typically dealt with by solving a square subsystem of n equations which
has, by Bézout’s theorem, dn > r solutions. These candidate solutions are filtered by checking
if all remaining equations also vanish. However, computing all these dn solutions becomes
quickly infeasible. More refined algorithms using homotopy continuation are proposed in
[BDHM17], but they rely on the knowledge of certain information on secant varieties which
is out of reach with current methods. On the contrary, numerical normal form methods
work directly with the overdetermined system, see [BT21, Sec. 4.4]. A second advantage
is that, while homotopy continuation requires k = C, normal form methods work over any
algebraically closed field k.

Numerical normal form methods such as [BT21] and [Tel20, Sec. 4.5] compute the points
zi via the eigenvalues and/or eigenvectors of pairwise commuting multiplication matrices.
These are in turn computed from a different matrix M(d+ e), called Macaulay matrix. Here
e ≥ γn,d(r) is a positive integer for which hS/I⟨d⟩(d+ e) = r: the number of rows of M(d+ e)
is hS(d+ e), and its column span is I(Z)d+e. In particular, upper bounds on the saturation
gap allow one to work with the smallest admissible value e0. We summarize the relation
between Waring decomposition and Conjecture 2 as follows:

The complexity of computing multiplication matrices in our setting is governed by linear
algebra computations with the Macaulay matrix M(d+ e0), where e0 = γn,d(r).

To illustrate this punchline, we implemented the catalecticant algorithm in the Julia package
Catalecticant.jl. It uses EigenvalueSolver.jl, a general purpose equation solver from
[BT21]. Here is how to construct and decompose F from Example 6.2:

n = 2; D = 10; r = 18; # define the parameters 1

@polyvar y[1:n+1] # variables of F 2

Z = exp.(2*pi*im*rand(r, n+1)) # generate random points Z 3
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F = sum((Z*y).^D) 4

c, linforms = waring_decomposition(F,y,r) # decompose F 5

Here line 3 draws the coordinates of the points Z uniformly from the unit circle in the complex
plane; this avoids bad numerical behavior in the expansion (zi · y)D. The output at line 5
is the pair of coefficients of the linear forms from (9). This method assumes Conjecture 2:
EigenvalueSolver.jl constructs the Macaulay matrix M(d + e0), where e0 = γn,d(r) is
the saturation gap predicted in Conjecture 2. In this specific case, we have d + e0 = 7, as
illustrated in Example 1.1

The code is available at https://mathrepo.mis.mpg.de/ChoppedIdeals/. It includes a
file examples.jl which illustrates some other functionalities, such as computing Hilbert
functions, catalecticant matrices and their kernel. Our code performs well, and may be of
independent interest for Waring decomposition. On a 16 GB MacBook Pro with an Intel
Core i7 processor working at 2.6 GHz, it computes the decomposition of a rank r = 400 form
of degree D = 12 in n+ 1 = 6 variables with 10 digits of accuracy within 25 seconds.

Future work
We conclude with some directions for future research. Chopped ideals are relevant for a large
class of varieties, besides projective space. For instance, other types of tensor decomposition
lead to points in multi-projective space [TV22]. One can also study ideals of points, and
their chopped ideals, in arbitrary toric varieties, rational homogeneous varieties, or other
varieties for which it makes sense to consider a multi-graded Hilbert function. This relates
to decomposition algorithms and secant varieties as in [BB21, Sta23, Gał23].

Finally, it is possible to study chopped ideals for positive-dimensional varieties. For instance,
there are 7 sextics passing through 11 general lines in P3. These generate a non-saturated
chopped ideal, whose saturation is the vanishing ideal of the union of the lines, which has
4 additional generators in degree 7. For more general classes of varieties, there are sev-
eral possible choices of chopped ideal to consider, and it would be interesting to explore
generalizations of Conjecture 1.
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A On the missing sextic
Consider a partition of Z into two disjoint subsets Z1, Z2, each consisting of 9 points. Since
hS(3) = 10, there are two distinct cubics g1, g2 such that I(Zi)3 = ⟨gi⟩k. We will prove that
the sextic g = g1g2 is not generated by the quintics f0, f1, f2; in particular g /∈ (I⟨5⟩)6 and
I(Z) = ⟨f0, f1, f2, g⟩S. In order to prove this result, we introduce some geometric tools.

The first one is an elementary fact about fibers of a branched cover, which is at the foundation
of monodromy techniques:

Proposition A.1. Let f : X → Y be a dominant generically finite map of irreducible vari-
eties. Let Z be a closed subvariety of X which intersects general fibers of f . Then Z = X.

Proof. Since Z intersects general fibers of f , we have that f |Z is dominant too. Since f |Z is
dominant and Z is a subvariety of X, we have dimX ≥ dimZ ≥ dimY . On the other hand,
since f is dominant and finite, we have dimX = dimY . Therefore dimZ = dimX and since
X is irreducible, we conclude Z = X.

The second result is Proposition A.3, which consists in a generalization of [BL13, Lem. 8.1].
In order to prove it, we need the following version of Bertini’s Theorem, derived from [Jou83,
Thm. 6.3]:

Lemma A.2. Let X ⊆ PN be an irreducible projective variety with singular locus Xsing. Let
J be a linear series on X with base locus B ⊆ X and let Y ∈ J be a general element. Then
Y \ (Xsing ∪B) is smooth. Moreover, if dim J ≥ 2, then Y \B is irreducible.

Proof. Write m + 1 = dim J ; the linear series on X defines a regular map φ : X \ B → Pm

and Y is the (closure of the) the generic fiber of this map. Consider an affine open cover of
Pm with the property that every pair of points belongs to at least one affine open subset of
the cover. The preimages of the open sets of this cover define a cover of X \ B using open
quasi-projective varieties. Any pair of points of X \B belongs to at least one quasi-projective
variety of this cover.

On each of these open sets the statement is true by [Jou83, Thm. 6.3]. Since smoothness can
be checked locally, this guarantees that Y \ (Xsing ∪ B) is smooth. If Y \ B were reducible,
consider a quasi-projective open set of the cover which intersects two distinct irreducible
components. Then [Jou83, Thm. 6.3, part 4] yields a contradiction.

We now prove that a reduced 0-dimensional linear section of a linearly non-degenerate variety
is itself non-degenerate. This is a higher codimension analog of [BL13, Lem. 8.1].

Proposition A.3. Let X ⊆ PN be an irreducible variety of dimension c not contained in a
hyperplane. Let L be a linear space with codimL = c. Suppose X ∩ L is a set of reduced
points. Then X ∩ L is not contained in a hyperplane in L.

Proof. Let I(L) = ⟨ℓ1, . . . , ℓc⟩ be the ideal of L. Observe that the the points of X ∩ L are
smooth points of X. To see this, let p ∈ X ∩ L and consider the local ring OX,p; since
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X ∩ L is a set of reduced points, I(L)p ⊆ OX,p coincides with the maximal ideal in OX,p; in
particular (the localizations of) (ℓ1, . . . , ℓc) define a regular sequence in OX,p, showing that
OX,p is a regular local ring, and equivalently that p is smooth in X.

Let L = Lc ⊆ Lc−1 ⊆ · · · ⊆ L1 ⊆ L0 = PN be a general flag of linear spaces, with
codimLj = j. For every j, define Xj = X ∩ Lj; in particular Xc = X ∩ L. For every
j = 0, . . . , c−1, we will show that Xj is irreducible and smooth away from the singular locus
of X. We proceed by induction on j. The base case j = 0 is straightforward.

For j ≥ 1, suppose Xj−1 is irreducible and smooth away from the singular locus of X. Then
I(L)|Lj−1

defines a (non-complete) linear series on Xj. Since Lj ⊆ Lj−1 is general among
planes containing L, Lemma A.2 guarantees that Xj = Xj−1 ∩ Lj is smooth away from the
singularities of Xj−1 and the base locus of I(L). Moreover, since j ≤ c − 1, dimXj−1 ≥ 2,
hence Xj is irreducible except possibly for components supported in the base locus of I(L).
The base locus of I(L) is X ∩ L, which, as shown above, consists of smooth points of X.
This guarantees that there are no embedded components nor singularities supported on the
points of X ∩ L. We conclude that for every j = 0, . . . , c− 1, Xj is irreducible and smooth
away from Xsing.

An induction argument on j = 0, . . . , c− 1, with successive applications of [BL13, Lem. 8.1],
shows that Xj+1 = X ∩ Lj+1 is linearly non-degenerate in Lj+1. In particular, X ∩ Lc =
Xc−1 ∩ L is linearly non-degenerate in L. This concludes the proof.

Finally, we will use that the degree of the variety

P3,3 := { g ∈ PS6 | g = g1g2 for some g1, g2 ∈ S3 } ⊆ PS6

is 1
2

(
18
9

)
= 24310. This can be computed using elementary intersection theory; see, e.g.,

[EH16, Sec. 2.2.2] for a similar calculation.

Proposition A.4. Let Z ⊆ P2 be a set of 18 general points. For every bipartition Z = Z1∪̇Z2

of Z into two sets of 9 points, one has g = g1g2 /∈ I(Z)⟨5⟩, where I(Zi) = ⟨gi⟩S.

Proof. The proof is structured as follows. We first show that there is some partition for
which g = g1g2 ∈ I(Z) \ I(Z)⟨5⟩. Then, we use Proposition A.1 to show that the same must
hold for all partitions.

Since Z is general, we have dimk I(Z)6 = 10, dimk(I(Z)⟨5⟩)6 = 9. Notice dimP3,3 = 9 + 9 =
18 = codimPS6 PI(Z)6. Let W := P3,3 ∩ PI(Z)6 ⊆ PS6.

For every g = g1g2 ∈ W , observe that Zi = Z ∩ {gi = 0} defines a bipartition of Z into two
subsets of 9 points. Indeed, Z = Z1∪Z2, and no subset of 10 points in Z has a cubic equation
because of the genericity assumption. On the other hand, any bipartition of Z = Z1 ∪̇ Z2

into two subsets of 9 points gives rise to an element g = g1g2 ∈ W ; by genericity, all these
elements are distinct. This shows that W = P3,3∩PI(Z)6 is a set of 1

2

(
18
2

)
= degP3,3 points.

In particular, W is reduced.
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By Proposition A.3, W is linearly non-degenerate in PI(Z)6, so it is not contained in the
hyperplane P(I(Z)⟨5⟩)6. This shows that at least one element of W is not contained in the
chopped ideal I(Z)⟨5⟩.

We now show that W ⊆ PI(Z)6 \ P(I(Z)⟨5⟩)6. Consider the varieties

Y :=
{
(I(Z)⟨5⟩)6 ∈ Gr(9, S6)

∣∣ Z ⊆ P2 is a set of 18 points in general position
}
,

X :=

 (Z1, Z2, g1, g2) ∈ (P2)9 × (P2)9 × PS3 × PS3

∣∣∣∣∣∣
Z1 ∩ Z2 = ∅

Z1, Z2, Z1 ∪ Z2 in gen’l position
I(Zi)3 = ⟨gi⟩

.
These are projective subvarieties of the Grassmannian Gr(9, S6) and of the product (P2)9 ×
(P2)9 × PS3 × PS3 respectively. Define the dominant generically finite rational map

φ : X 99K Y , (Z1, Z2, g1, g2) 7→ (I(Z1 ∪ Z2)⟨5⟩)6.

Let Z be the subvariety of X defined by

Z := { (Z1, Z2, g1, g2) | g1g2 ∈ (I(Z1 ∪ Z2)⟨5⟩)6 }.

If W ∩ P((I(Z)⟨5⟩)6) ̸= ∅, then Z would intersect the generic fiber of φ. In this case,
Proposition A.1 guarantees X = Z. This implies that for every (Z1, Z2, g1, g2) ∈ Z, we have
g1g2 ∈ (I(Z1 ∪ Z2)⟨5⟩)6. In other words W ⊆ P(I(Z)⟨5⟩)6, which contradicts what we saw
above. We conclude W ∩P(I(Z)⟨5⟩)6 = ∅. In other words, every g = g1g2 satisfies g /∈ I(Z)⟨5⟩
as desired.
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