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Introduction

The classical Waring problem in number theory asks the following question:

Given 3 ∈ ℕ, what is the minimal number A ∈ ℕ such that any natural number can be
written as a sum of at most A 3-th powers of natural numbers?

For example the question for 3 = 2 is answered by Lagrange’s four-square theorem. In this thesis
we investigate a related question in a more algebro-geometric framework:

Given a homogeneous form � ∈ ℂ[G0 , . . . , G=]3, what is the minimal number A ∈ ℕ such
that � can be written as a linear combination of A 3-th powers of linear forms?

This number is called the Waring rank WR(�), such a power sum decomposition is called a
Waring decomposition. Consider for example � = GH ∈ ℂ[G, H]2; by expanding (0G + 1H)2 one
easily sees that WR(GH) ≥ 2. On the other hand

GH =
1

4

(
(G + H)2 − (G − H)2

)
soWR(GH) = 2.

A first concern may be, whether or not such a decomposition always exists. In chapter 1 we
will develop the necessary language and machinery to restate this as the geometric fact that
the image of the Veronese map �3 : ℙ= → ℙ(=+33 )−1 is not contained in a hyperplane, and relate
the Waring rank to higher secant varieties. But there is also a more straightforward, albeit
“appearing-out-of-nowhere” proof:
As any form can be expressed as a linear combination of monomials, it suffices to find

decompositions of each monomial G300 · · · G
3=
= . By substitution from a polynomial ring with

more variables it suffices to consider the monomial G0 · · · G= . For this we can give the formula

G0 · · · G= =
∑

�∈{±1}=

�1 · · · �=
2==!

· (G0 + �1G1 + · · · + �=G=)= ,

which is a linear combination of 2= =-th powers.

Is this expression minimal (i. e. a Waring decomposition)? Can the set of linear forms
occurring in this decomposition be anticipated? The answer to these questions is yes! In
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chapter 2 we will meet theApolarity Lemmawhich relates power sum decomposition of a form
� to ideals of schemes of points contained in a certain ideal associated to �. Using this and
the additional machinery of Hilbert functionswe calculate the Waring rank of any monomial.

In the original number-theoretic Waring problem the following phenomenon arises: Every
number can be written as a sum of 9 cubes, the bound being sharp (e. g. for 23 = 2 · 23 + 7 · 13).
But actually, for all natural numbers apart from {23, 239}, 8 or fewer cubes suffice! So a natural
related question is:

Given 3 ∈ ℕ, what is the minimal number A ∈ ℕ such that any sufficiently large natural
number can be written as a sum of at most A 3-th powers of natural numbers?

In algebraic geometry, an analogous question is to ask for the rank of a form belonging to a
general form, called the generic Waring rank. Formally:

Given =, 3 ≥ 1, what is the minimal number A ∈ ℕ such that all forms in a Zariski-open
dense subset* ⊆ ℂ[G0 , . . . , G=]3 have Waring rank ≤ A?

While the number-theoretic question is still open1, the generic Waring rank is completely
known! A heuristic argument goes as follows: The set of 3-th powers in ℂ[G0 , . . . , G=]3 has
dimension = + 1. If there were no relations lowering the dimension, one might expect the set
of sums of B 3-th powers to have dimension B(= + 1). Hence the smallest B such that this set
has the dimension of the ambient space

(
=+3
3

)
should be

B =

⌈
1

= + 1

(
= + 3
3

)⌉
.

It turns out that this is indeed the correct answer (apart from a handful of exceptional cases),
and a consequence of the celebrated Alexander-Hirschowitz Theorem. In chapter 3 we give an
overview on how to prove this theorem.

The Waring rank has several interesting connections with other areas of mathematics and
science, in chapter 4 we focus on some applications in computer science. We present two
algorithms for computing Waring decompositions in the cases 3 = 2 (quadratic forms) and
= = 1 (binary forms, Sylvester’s algorithm).
It is then a natural next question to ask about the inherent complexity of computing the

Waring rank. We recall basic notions from complexity theory and discuss a recent result by
Shitov showing polynomial time equivalence of the Waring rank problem to that of solving
polynomial equations, which is known to be at least NP-hard.

1For an overview of this topic I recommend the survey by Vaughan &Wooley [VW02].
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We conclude by showcasing a unexpected connection to the theory of parameterized al-
gorithms, recently found by Pratt. He shows how, among other results, short powers sum
decompositions of elementary symmetric polynomials yield good algorithms for counting
simple closed walks in directed graphs.

The aim of this thesis is to introduce the reader to the interesting and broad topic of Waring
rank and relatednotions such as tensor rank, higher secant varieties, Apolarity andpolynomial
interpolation. We assume familiaritywith projective algebraic varieties and schemes taught in
a typical two-semester algebraic geometry course. More specific topics are introduced along
the way and references for further reading are given.
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Notation

Throughout this thesis ¥ will be an algebraically closed field of characteristic 0 (although
many statements and proofs also apply to char¥ > 3, the degree of the forms considered).

All schemes considered will be Noetherian and, with the exception of section 1.2, of finite
type over ¥; mostly embedded in some ambient projective space.

Homogeneous forms whose Waring rank we consider will be typeset as capital letters with
lowercase indeterminates such as �(G0 , . . . , G=). On the other hand, polynomial functions on
some projective space will be denoted as 5 (-0 , . . . , -=). This distinction is useful in chapter
2, where the 5 are sort of dual to �, on the other hand chapter 4 has to break this convention
in some places.
The ring of polynomial functions will be denoted as ( = ¥[-0 , . . . , -=], or ¥[-] if the

number of variables is understood. Graded components of graded structures will be denoted
as (3.

The defining homogeneous ideal of a projective scheme - ⊆ ℙ= is �(-); the sheaf of ideals
is I- . Conversely, if � ⊆ ( is a homogeneous ideal, then the projective scheme it defines will
be denoted as V(�). The defining homogeneous ideal of a closed point % ∈ ℙ= will be denoted
by m% (even though this is not a maximal ideal).

The affine cone of a projective variety - ⊆ ℙ(¥=) is -̂ ⊆ ¥= , conversely the set in projective
space corresponding to . ⊆ ¥= denoted by ℙ(.).
Zero-dimensional schemes will be typeset in blackboard bold such as �, their length is

len(�) = dim¥O�(�).
We useℕ0 andℕ+ for the non-negative resp. positive integers. Multi-indices are typeset in

bold Greek letters such as α = (0 , . . . , =) ∈ ℕ=
0 . We use the following shorthand notation:

|α| =
=∑
8=0

8 , α! =

=∏
8=0

8!,

(
|α|
α

)
=

|α|!
0! · · · =!

, -α = -0

0 · · ·-
=
= ,

α ≤ β iff 8 ≤ �8 for 8 = 0, . . . , =.

We will denote by �3 = �3(¥) = { � ∈ ¥ | �3 = 1 } the set of 3-th roots of unity in ¥.





1
Ranks and secant varieties

In this chapter we formally introduce several notions of ranks such as Waring rank, border
rank and tensor rank. These are closely related to higher secant varieties of projective varieties,
whose properties are studied. We conclude the chapter by defining the big and little Waring
problem, reporting on the progress on these questions. We generally follow the introduction
by Carlini, Grieve & Oeding [CGO14] and the excellent expository paper The Hitchhiker Guide
to Secant Varieties and Tensor Decomposition [Ber+18].

1.1. Waring rank and Border rank
Let’s start by introducing the main player of the game: Homogenous polynomials and their
Waring rank. By a “form” we mean a homogeneous polynomial � ∈ ¥[G0 , . . . , G=] C ¥[G]
(provided the number of variables = + 1 is understood). The vector space of homogeneous
polynomials of degree 3 is denoted as ¥[G]3.

Definition 1.1. Let � ∈ ¥[G]3 be a form. TheWaring rankWR(�) is the least integer A ≥ 0 such
that there exists a decomposition

� = �1!
3
1 + · · · + �A!3A , !1 , . . . , !A ∈ ¥[G]1 linear forms, �8 ∈ ¥.

Any such expression is called aWaring decomposition of �.

As mentioned in the introduction the name Waring is borrowed from the motivating clas-
sical problem from number theory of expressing natural numbers as sums of 3-th powers.

Remark. • Since ¥ is algebraically closed, we can always write �8!38 = (
3
√
�8!8)3, so we may

assume that the coefficients are 1, i. e. � = !31 + · · · + !3A . But notice that this is not true
if we work over non-algebraically closed fields, for example −G2 will never be a sum of
squares in ℝ[G].

• We should make sure that the Waring rank of a form does not depend on the number of
variables of the ambient polynomial ring:
If � ∈ ¥[G0 , . . . , G=]3 ⊆ ¥[G0 , . . . , G= , . . . , G=+<]3, then it should not matter in which
ring we seek for a Waring decomposition. Clearly more variables, i. e. more linear
forms can only make the decomposition smaller. On the other hand, in any expression
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� =
∑A
8=1 !8(G0 , . . . , G=+<)3 we can set G=+1 = · · · = G=+< = 0 to obtain a decomposition

of the same length in the smaller ring.
• The Waring rank of � and � · �, � ∈ ¥× are the same, since

� =

A∑
8=1

!38 ↔ � · � =
A∑
8=1

( 3
√
� · !8)3 .

Thus it makes sense to talk about the Waring rank of points of the projectivization
ℙ(¥[G]3).

• A similar argument shows that a coordinate transformation ) ∈ GL(= + 1,¥) leaves the
Waring rank unchanged: WR(� ◦ )) =WR(�).

Example 1.2. Let � = G30 + · · · + G3: . If there’s any fairness in the world, thenWR( 5 ) = : + 1.
We may assume : = = (i. e. the ambient polynomial ring has variables G0 , . . . , G=). Clearly

the rank is less than or equal to =+1. Assume that 5 =
∑A
8=0 !

3
8
with A < =. These linear forms

span a proper subspace 〈!0 , . . . , !A〉¥ ( ¥[G]1; WLOG let !0 , . . . , !; be a basis of this subspace.
Extend this to a basis

H0 = !0 , . . . , H; = !; , H;+1 , . . . , H= ,

then with respect to these coordinates the form � is

�(G) = �(H) = H30 + · · · + H3; +
( ;∑
9=0

0;+1, 9H 9

)3
+ · · · +

( ;∑
9=0

0A, 9H 9

)3
.

From this presentation it is easy to verify that the point % = [0 : · · · : 0 : 1] is a singularity
of the projective hypersurface defined by {�(H) = 0} ⊆ ℙ[H0:···:H=], since all partial derivatives
with respect to the H8 vanish at % (recall ; < =). But on the other hand the Fermat hypersurface
V(-3

0 + · · · + -3
= ) ⊆ ℙ[G0:···:G=] is nonsingular in characteristic 0 (or > 3), a contradiction!  

Example 1.3 (The degree 2 case). Let � ∈ ¥[G0 , . . . , G=]2 be a quadratic form. It can be identified
with the symmetric matrix � = [08 9] ∈ Sym(= + 1,¥) such that �(G) = GT�G.

Claim. WR(�) = rank�, the usual matrix rank.

Proof of claim. Any symmetricmatrix� can be orthogonally diagonalized (over¥ algebraically
closed of characteristic 0), i. e. there is an matrix* ∈ GL(= + 1,¥)with**T = 1=+1 such that
*−1�* = diag(�0 , . . . ,�=). By the previous remarkWR( 5 ) =WR(� ◦*), but

(� ◦*)(G) = (*G)T�(*G) = GT(*−1�*)G =
=∑
8=0

�8G
2
8 .

After re-scaling the coordinates/variables we see that the form is projectively equivalent to
G20 + · · · + G3:−1 for : = rank(�), which has Waring rank : by the previous example. �claim
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The cases 3 = 2 turns out to be quite special in several ways. For example since matrix rank
can be checked using the vanishing of certain minors, the set of forms of rank ≤A is a closed
subset. This is not the general situation; for 3 ≥ 3 the opposite is true:

Example 1.4. Consider � = G0G
3−1
1 ∈ ℂ[G]3, 3 ≥ 3. We will see later (example 2.10) that

WR(�) = 3, but it is easy to see that WR(�) ≥ 3: Indeed, since we have the following
factorization

!31 + !32 = !31 − (
3
√
−1!2)3 =

∏
�∈�3(ℂ)

(!1 − � 3
√
−1!2),

any form ofWaring rank ≤ 2must either be a single 3-th power, or factor into 3 distinct factors
(depending on !1 and !2 being linearly dependent or not).

But notice that � has “almost” Waring rank 2 in the sense that

� =
1

3
· lim
�→0

1

�

(
(�G0 + G1)3 − G31

)
.

This example shows that the set { � ∈ ¥[G]3 | WR(�) ≤ A } may not be Zariski-closed (not
even closed in the standard ℂ-topology!). This leads to the following definition

Definition 1.5. Let � ∈ ¥[G]3. The border rank WR(�) is the smallest integer A ≥ 0 such that

� ∈ {� ∈ ¥[G]3 | WR(�) ≤ A } ⊆ ¥[G]3 .

Remark. Note that this closure could also be taken inℙ(¥[G]3) by the correspondence of closed
subsets of ℙ(+) and closed cones in + . In particular the border rank is also well-defined in
ℙ(¥[G]3).

Example 1.6 (Border rank 1). The set of forms of Waring rank 1 is the image of the morphism

ℙ(¥[G]1) → ℙ(¥[G]3), [!] ↦→ [!3].

This set is the image of a proper morphism (for details see section 1.3), hence closed, so
WR(�) = 1 if and only if WR(�) = 1.

Example 1.7. Example 1.4 combined with the previous example shows that WR(G0G31) = 2, in
particular the gap between Waring rank and border rank can get arbitrarily large.

This is bad news! On the one hand we are interested in the Waring rank, on the other hand
we have just seen that the set of polynomials of bounded Waring rank, is not closed, so we
are not in our beloved land of subvarieties of projective space. Taking the closure , gives
us subvarieties (or at the very least algebraic sets), but we may fear that this closure is very
different from, .
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1.2. Constructible sets
To remedy the situation we introduce the notion of a constructible set:

Definition 1.8. Let - be a Noetherian scheme. A subset � ⊆ - is constructible if it is a finite
union of locally closed sets

� =

:⋃
8=1

(�8 ∩ $8)︸     ︷︷     ︸
loc. closed

, �8 closed, $8 open. (∗)

The family of construcible sets is closed under taking intersections, unions and comple-
ments, and it is the smallest such family containing the open sets [GW20, Proposition 10.13].
Constructible sets are useful, as the set-theoretic image of a morphism is constructible:

Theorem 1.9 (Chevalley’s theorem). Let -, . be noetherian schemes and 5 : - → . be a morphism
of finite type. Let � ⊆ - be constructible, then 5 (�) ⊆ . is also constructible.

The essential part of the proof is to establish the following statement:

Theorem 1.10 ([GW20, Thm. 10.19]). Let 5 : - → . be a dominant morphism of finite type between
Noetherian schemes. Then 5 (-) contains a dense open subset of ..

Proof. 1. Suppose we already showed the theorem for . irreducible. If . = .1 ∪ · · · ∪ .=
are the irreducible components of ., then we may apply the theorem to the restrictions
5 −1(.8) → .8 and obtain *8 ⊆ 5 (-) ∩ .8 dense open in .8 . Then *′8 = *8 \ (

⋃
9≠8 .9) is open in

all .8 , hence in . and*′1 ∪ · · · ∪*′= is dense open in ..
2. We reduced to the case . irreducible; as this is a statement about the topology, we may

replace -, . with its reduced structure; hence . is integral. Since we only need to find some
dense open subset, wemay replace. and-with affineopensSpec�, Spec � respectively. Then
5 is induced by an injective ( 5 dominant) ring homomorphism ! : � → � = �[11 , . . . , 1<],
where � is a domain and � of finite type. To finish the proof, we need to find an B ∈ � with
�(B) ⊆ 5 (Spec �), i.e. Spec �B → Spec�B surjective.
3. Let ( = � \ 0,  = (−1�, then (−1� is of finite type over  , hence we can apply Noether

normalization: We can find 1 , . . . , 3 ∈ (−1� algebraically independent over  such that
(−1� is finite over  [1 , . . . , 3] and 18 integral over this polynomial ring. Choose a common
denominator B ∈ ( of all 8 and the integrality equations of the 18 , then

�B ⊆ �B[1 , . . . , 3] ⊆ �B

Then Spec�B[] → Spec�B is surjective (p = pec = p[] ∩ �) and Spec �B → Spec�B[] is
finite, hence also surjective (“lying over”). �

Proof of Chevalley’s theorem. Write � as in (∗), then 5 (�) = ⋃:
8=1 5 (�8 ∩$8) and we may assume
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that � is locally closed. Restricting 5 to � we may assume - = � altogether.
Let /0 = 5 (-), by the previous theorem 5 (-) contains a dense subset *0 open in /0. Let

/1 B 5 (-) ∩ (/0 \*0) ( /0. If /1 = ∅ then we are done, otherwise apply the same reasoning
to 5 −1(/1) → /1; this yields /2 and so on. The process has to stop, as the /8 are closed and .
is noetherian. 5 (-) is the constructible set*0 ∪ · · · ∪*; . �

Remark. A consequence of the proof is that a constructible set � ⊆ - contains a dense open
subset of its closure; although this can be seen more elementary from the definition.

With Chevalley’s theorem in our pocket we can return to the Waring problem. We first
make the following observation: Let A, =, 3 ∈ ℕ, # = max{A, = + 1}, then

{ � ∈ ¥[G0 , . . . , G=]3 | WR(�) ≤ A } = (Mat(#, = + 1,¥) ⊲ G31 + · · · + G3A︸                                    ︷︷                                    ︸
⊆ ¥[G0 ,...,G# ]

) ∩ ¥[G0 , . . . , G=]3 ,

where the action of matrices on forms is given by

� ⊲ G31 + · · · + G3A = (�G1)3 + · · · + (�GA)3 =
A∑
8=1

(08 ,1G1 + · · · + 08 ,#G# )3 .

Any element in the orbit clearly has Waring rank ≤A, and any Waring decomposition is
obtained by choosing a suitable matrix �. With this in mind we can prove the following
theorem.

Theorem 1.11. The following subsets of ¥[G0 , . . . , G=]3 are constructible

,A =
{
� ∈ ¥[G]3

�� WR(�) = A
}
,

,≤A =
{
� ∈ ¥[G]3

�� WR(�) ≤ A
}
.

Proof. By the previous lemma we see that,≤A is the image of the morphism

< : Mat(#, = + 1,¥) → ¥[G1 , . . . , G# ]3 , � ↦→ � ⊲ G31 + · · · + G3A

intersected with ¥[G0 , . . . , G=]3. This set is constructible by Chevalley’s theorem, and hence
,A =,≤A \,≤(A−1) is also constructible. �

The fact that,≤A is constructible shows that it is not terribly far away from being a closed
subset of ¥[G]3. In our most familiar setting with ¥ = ℂ we could also talk about forms in
the Euclidean closure, i. e. limits of forms (such as in example 1.4), which clearly is contained
in the Zariski-closure. One could worry that the Zariski closure is much bigger than the
Euclidean closure, i. e. the intuition of taking limits of forms is misleading. Fortunately, this
is not the case!
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Theorem 1.12. Let � ⊆ ℂ= be a (nonempty) constructible subset. Then the Zariski closure � and
Euclidean closure �ℂ coincide.

Proof. Taken from [Kra84, Satz AI.7.2]. By definition, � is a finite union of locally (Zariski)
closed subsets � =

⋃:
8=1 �8 . In any topological space we have

�1 ∪ �2 = �1 ∪ �2 ,

so we immediately reduce to the locally closed case, and we may assume the “closed part” to
be irreducible. Hence we are in the following situation: - ⊆ ℂ= an irreducible affine variety,
∅ ≠ � ⊆ - open, with the aim to show �ℂ = -.
Suppose first that - is a curve, let 5 : -̃ → - be its normalization; 5 has finite fibres. Let

G ∈ " B 5 −1(- \*), as -̃ is a smooth complex curve, there is an Euclidean neighborhood
G ∈ � ⊆ -̃ homeomorphic to a disc in ℂ. Clearly G ∈ � \"ℂ (" is finite!), and therefore
5 (G) ∈ 5 (� \")ℂ = �ℂ .
Now let - be arbitrary and G ∈ -. Choose an irreducible curve � ⊆ - containing G and not

disjoint from �, for example by invoking Bertini’s theorem or as in [Kra84, Satz AI.4.5]. Now
� ∩ � is nonempty open in �; by the first case G ∈ � ∩ �ℂ , so G ∈ �ℂ . �

1.3. The Veronese embedding

As promised in example 1.6 we will now expand on the observation that the (projectivized)
set of 3-th powers is the image of the morphism of taking 3-th powers. These varieties,
the Veronese varieties, will be of central interest to us, so it’s worth studying some of their
properties first. We take a slight detour in introducing coordinate-free projective space, which
yields an elegant description of the Veronese varieties and their tangent space, following the
short exposition by Brambilla & Ottavani [BO08].
Let + be ¥-vector space of dimension = + 1, we denote by ( = S(+) =

⊕
3≥0 S

3+ the
symmetric algebra of + . We get a well-defined perfect pairing

S3+ × S3(+∨) → ¥, (E1 · · · E3 , ℓ1 · · · ℓ3) ↦→
∑
�∈(3

3∏
8=1

ℓ8(E�(8))

After choosing a basis G0 , . . . , G= of + , let -8 = G∨8 ∈ +∨ its dual basis, we have

( B S(+∨) � ¥[-0 , . . . , -=], (∨3 B S3(+∨) � ¥[-0 , . . . , -=]3 ,

the homogeneous polynomials of degree 3. If 5 ∈ S3(+∨) corresponds to the polynomial
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∑
|α|=3 2α-

α, then for E = E0G0 + · · · + E=G= ∈ +

(E3 , 5 ) =
∑
|α|=3

∑
�∈(3

2α · (-0(E))0 · · · (-=(E))= = 3!
∑
|α|=3

2α · E0

0 · · · E
=
= = 3! · 5 (E0 , . . . , E=).

Hence S(+∨) is precisely the homogeneous coordinate ring of ℙ(+) � Proj S(+∨) � ℙ= , and
the pairing (−3 ,−) corresponds to polynomial evaluation (up to the scalar 3! ∈ ¥×). For
example, the defining ideal of the closed point [E] ∈ ℙ(+) is

m[E] =
{
5 ∈ (∨

�� 5 (E) B (E3 , 5 ) = 0
}
⊆ S(+∨).

Lemma 1.13 (Veronese embedding). Let 3 ∈ ℕ. The (well-defined) map

�3 : ℙ
= = ℙ(+) → ℙ# = ℙ(S3+), [E] ↦→ [E3]

defines a closed embedding. Its image is a non-degenerate regular closed (irreducible) subvariety.

By non-degeneratewe mean that the subvariety is not contained in any hyperplane.

Proof. The map is well-defined, as [(�E)3] = [�3E3] = [E3]. Write E =
∑=
8=0 E8G8 , then

E3 = (E0G0 + · · · + E=G=)3 =
∑
|α|=3

(
3

α

)
· E0

0 · · · E
=
= · Gα.

Hence up to rescalingwith themultinomial coefficients themap is the same as the polynomial
map in coordinates with all possible monomials

[E0 : · · · : E=] ↦→ [E30 : E3−10 E1 : · · · : E3=].

But this is just the closed embedding given by the very ample line bundle L = Oℙ(+)(3). In
particular �3(ℙ=) � ℙ= is irreducible, regular and not contained in a hyperplane. �

Definition 1.14. The image +3,= B �3(ℙ(+)) is called the Veronese variety.

The Veronese variety +3,= is one of our main objects of study. It yields, for example, a
simple proof of the finiteness of the Waring rank. Let + = ¥[G]1, then S3+ = ¥[G]3.

Lemma 1.15. The Waring rank of � ∈ ¥[G]3 is the minimal A ∈ ℕ such that

∃%1 , . . . , %A ∈ +3,= : [�] ∈ 〈%1 , . . . , %A〉ℙ .

In particular it is finite and bounded above by
(
3+=
=

)
.

Proof. By the previous lemma we know that
〈
+3,=

〉
ℙ
= ℙ(¥[G]3), so such an A is guaranteed

to exist. This A is the smallest number such that 5 can be written as a linear combination of A
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3-th powers, known to us as the Waring rank. The upper bound is just dim¥[G0 , . . . , G=]3 =(
3+=
=

)
. �

We first collect some properties of the Veronese variety. To this end, we transfer the natural
group action � = GL(+)	 + to S3+ via

� ⊲ (E1 . . . E3) B (�E1) . . . (�E3).

The corresponding action on the coordinate ring is S3(+∨) 3 5 ↦→ 5 ◦ �−1; this is compatible
with the natural pairing in the sense

(� ⊲ −, � ⊲ −) = (−,−).

The map �3 is GL(+)-equivariant, i.e.

� ⊲ �3([E]) = �3(�[E]) for all E ∈ + , � ∈ GL(+).

Since the action of GL(+) on ℙ(+) is transitive, we have

+3,= = �3(ℙ(+)) = �3(GL(+) · [40]) = GL(+) ⊲ [G30],

so +3,= is precisely the GL(+)-orbit of a single 3-th power. The following description is
attributed to Lasker.

Theorem 1.16 (The tangent space of +3,=). (i) The tangent space )[E3]+3,= is the subspace

)[E3]+
3,= = ℙ(E3−1+) =

{
[E3−1F]

�� F ∈ + }
⊆ ℙ(S3+).

(ii) Its orthogonal in S3(+∨) can be described as

()E3+̂3,=)⊥ = (m2
[E])3 ⊆ S3(+∨).

Proof. (i) LetF ∈ + , then C ↦→ [(E+CF)3] parametrizes a curve � in+3,= through [E3]whose
tangent line )[E3]� is the linearized part [E3 + C3 · E3−1F]. In particular [E3−1F] ∈ )[E3]+3,= and
hence ℙ(E3−1+) ⊆ )[E3]+3,= . Both linear spaces have dimension =, hence they are equal
(ii) To calculate the orthogonal, notice that

� ⊲ m[G0] =
{
5 ◦ �−1

�� (G30 , 5 ) = 0
}
=

{
6

�� ((�G0)3 , 6) = 0
}
= m[�G0].

Hence if we can prove the equality for the point [G30], then for E = �G0 ∈ +

()E3+̂3,=)⊥ = (� ⊲ )G30
+̂3,=)⊥ = � ⊲ ()G30+̂

3,=)⊥ = � ⊲ (m2
[G0])3 = (m

2
[E])3 .
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Thus, without loss of generality E = G0. Then m[G0] = (-1 , . . . , -=), m2
[G0] = (-

2
1 , -1-2 . . . , -

2
=)

and hence a ¥-basis of (m2
[G0])3 is given by the monomials not divided by -3−1

0 . On the other

hand by (i) we have )G30+̂
3,= = 〈-3

0 , -
3−1
0 -1 , . . . , -

3−1
0 -=〉¥, so they are clearly orthogonal

complements of each other. �

1.4. Secant varieties
In lemma 1.15 we saw a geometric interpretation of the Waring rank using (higher) secants.
This concept can be generalized to any non-degenerate projective variety - ⊆ ℙ# .

Definition 1.17. Let - ⊆ ℙ# , then we denote

�◦B (-) B
⋃

G1 ,...,GB∈-
〈G1 , . . . , GB〉ℙ , �B(-) B �◦B (-) ⊆ ℙ# .

The variety �B(-) is the B-th higher secant variety of -.

Definition 1.18. The --rank of a point G ∈ ℙ# is the minimal number

R-(G) = min { A ∈ ℕ | G ∈ 〈G1 , . . . , GA〉ℙ for some G1 , . . . , GA ∈ - }
= min { A ∈ ℕ | G ∈ �◦A (-) } .

This is well-defined as 〈-〉ℙ = ℙ# , in particular we have the upper bound R-(G) ≤ # + 1.
The statement of Lemma 1.15 is that WR = R+3,= .

We use this opportunity to introduce a very famous relative of the Waring rank.

Definition 1.19. Let +1 , . . . , +3 be ¥-vector spaces of dimension =1 , . . . , =3 ≥ 1. Let ) ∈ + =

+1 ⊗ . . . +3 be a tensor, then its tensor rank rank()) is the minimal A ≥ 0 such that ) is a linear
combination of A elementary tensors

) =

A∑
8=1

�8E8 ,1 ⊗ · · · ⊗ E8 ,3 , �8 ∈ ¥, E8 , 9 ∈ +9 .

This notion of a rank can also be understood as a rank relative to a projective variety.

Example 1.20. The Segre embedding is an embedding of the product of projective spaces into a
larger projective space, which can be expressed as

� : ℙ(+1) × · · · × ℙ(+3) → ℙ(+1 ⊗ · · · ⊗ +3), ([E1], . . . , [E3]) ↦→ [E1 ⊗ · · · ⊗ E3].

The image - of � is called a Segre variety, and it is easy to see that the tensor rank is precisely
the --rank. For matrices (i. e. tensors of order 2) the tensor rank coincides with the usual
matrix rank.
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Remark. Let +1 = · · · = +3 = + . By identifying symmetric tensors with homogeneous forms,
it makes sense to talk about the Waring rank of a symmetric tensor and to compare it with
its tensor rank. Since powers of linear forms are elementary tensors, we see that WR()) ≥
rank()), and example 1.3 shows that in the case 3 = 2 the two notions coincide. Comon’s
conjecture asks whether this is always the case, and it has been confirmed in many special
cases. But there is a counterexample due to Shitov [Shi18], he costructed a symmetric tensor
) ∈ S3¥800 with

rank()) ≤ 903 < WR()).

To study the higher secant varieties, it is useful introduce the join of projective varieties, we
follow Ådlandsvik [Ådl87] for a particularly elegant proof of Theorem 1.27.
For affine varieties -1 , . . . , -B ⊆ �# = ¥# we use the notation

-1 + · · · + -B B
{
G1 + · · · + GB ∈ ¥#

�� G8 ∈ -8 } .
The affine cone of a projective variety - ⊆ ℙ(¥#+1) is denoted by -̂ ⊆ ¥#+1, conversely the
projective variety corresponding to a cone . ⊆ ¥#+1 is denoted by ℙ(.) ⊆ ℙ(¥#+1).

Definition 1.21. Let -1 , . . . , -B ⊆ ℙ# = ℙ(¥#+1) be projective varieties. Their join1 is the
variety

-1 • · · · • -B B ℙ

(
-̂1 + · · · + -̂B

)
.

Observe that for nonempty projective varieties -1 , . . . , -B ⊆ ℙ#

ℙ(-̂1 + · · · + -̂B) =
⋃

G1∈-1 ,...,GB∈-B
〈G1 , . . . , GB〉ℙ ,

in particular �B(-) = - • · · · • - (B times).

Remark. This yields another proof of theorem 1.11, in fact for any projective variety the set
�◦B (-) = ℙ(-̂ + · · · + -̂) is constructible.

1.5. Expected dimensions
The first nontrivial thing to ask about higher secant varieties is its dimension.

Theorem 1.22. The binary operation • turns the set of irreducible closed subvarieties of ℙ# into a
commutative semigroup. We have

dim-1 • -2 ≤ dim-1 + dim-2 + 1.

Proof. Commutativity is clear, for associativity it suffices to show -1 •-2 •-3 = (-1 •-2) •-3.
1A common notation is �(-1 , . . . , -B ), but to emphasize the semigroup structure I chose to use this notation.
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Let -,., / be the affine cones, then this amounts to the equality

- + . + / = (- + .) + /.

“⊆” is clear, for the other inclusion consider

- × . × / (- + .) × / (- + .) + /
(G, H, I) (G + H, I)

(F, I) (F + I).

Bothmaps are dominant, so their composition is dominant, too. Hence the image of - ×.×/
is dense in (- + .) + / and we win. The dimension can be calculated as

dim(-1 • -2) − 1 = dim -̂1 + -̂2 − 2 ≤ dim -̂1 − 1 + dim -̂2 − 1 = dim-1 + dim-2. �

A similar argument shows -1 • -2 • · · · = -1 • (-2 • (. . . )), in particular �B- = - B in this
semigroup. We immediately get the expected dimension of higher secant varieties:

Definition 1.23. If - ⊆ ℙ# is a non-degenerate projective variety of dimension =, then

expdim �B(-) B min{B= + B − 1, #} ≥ dim �B-,

this number is called the expected dimension of �B-. The difference �B B expdim �B-−dim �B-

is the B-defect, and - is called B-defective if �B > 0.

Corollary 1.24. If a non-degenerate - ⊆ ℙ# is B-defective and �B+1- ≠ ℙ# , then - is also (B + 1)-
defective.

Proof. From B ↦→ B + 1 the expected dimension increases by Δ = dim- + 1, by Theorem 1.22
the actual dimension also incerases at most by Δ, so

dim �B+1- ≤ dim �B- + Δ < expdim �B- + Δ = expdim �B+1-. �

The expected dimension increases in steps of Δ (before the ambient space is filled). On
might wonder how much smaller the increments of the actual dimension can get. A first
answer is given by the following theorem.

Theorem1.25 ([Ådl87, Corollary 1.4]). Let- ⊆ ℙ# be a non-degenerate subvariety. If dim �B+1- ≤
dim �B- + 1, then �B+1- = ℙ# .

Proof. If dim �B+1- = dim �B-, then equality holds for all higher secant varieties and we are
done, hence we may assume dim �B+1- = dim �B- + 1. We call H ∈ ℙ# a vertex if �(-, H) = -,
the set of vertices is Vert(-); one verifies immediately that this is a linear subspace of ℙ= .
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Claim. - ⊆ Vert(- B+1).

Proof of claim. By assumption - B • - * - B , so - contains a dense open subset of non-vertices
* = - \Vert(- B). For G ∈ * we have

- B ( - BG ⊆ - B+1 =⇒ dim- BG = dim- B+1

irred.
=⇒ - BG = - B+1

=⇒ - B+1G = - BG2
G2=G
= - BG = - B+1.

Hence G is a vertex of - B+1, and thus - = * ⊆ Vert(- B). �claim

Now - ⊆ Vert(- B+1) is a linear subspace containing -, so -, -2 , . . . , - B+1 ⊆ Vert(- B+1),
but by definition this means - B+1 = - B+2 = · · · = ℙ# . �

Example 1.26 (Curves are never defective). Let C ⊆ ℙ# be a non-degenerate curve, for example
a rational normal curve +3,1. Then by theorem 1.22 and 1.25

dim CB+1 ≤ dim CB + 2, dim CB+1 ≤ dim CB + 1 iff CB+1 = ℙ# .

Thus, the dimension of the higher secant varieties increase in steps of 2 before it fills ℙ# , so
�BC always has the expected dimension.

1.6. Terracini’s first lemma
If we want to detect B-defectiveness, we need some way to calculate the dimension of the �B-.
As dim �B- is the dimension of the (Zariski) tangent space of a general point on �B-, it would
be sufficient to understand the tangent space of points on secant varieties, or more generally
on joins. This will be accomplished by Terracini’s lemma below, we give a modern treatment
due to Ådlandsvik [Ådl87, Corollary 1.10 & 1.11].

Theorem 1.27 (Terracini’s lemma - general affine form).
Let -1 , . . . , -B ⊆ �# be affine varieties, . B -1 + · · · + -B . For G = (G1 , . . . , GB) ∈

∏
8 -8 ,

H B G1 + · · · + GB we have
)G1-1 + · · · + )GB-B ⊆ )H.,

and there is a dense open subset* ⊆ . such that equality holds whenever G1 + · · · + GB ∈ * .

Proof. Let 8 9 : ¥= → ¥= be the identity and consider the addition morphism

5 :

B∏
9=1

¥= → ¥= , (01 , . . . , 0B) ↦→ 81(01) + · · · + 8B(0B) =
B∑
9=1

.
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Here )G8¥= = ¥= and dG 5 = dG(81 + · · · + 8B) = dG 81 + · · · + dG 8B is just addition. By functoriality
of dwe get dG( 5 -) = (dG 5 ). (- =

∏B
8=1 -8), hence we get the first claim by

)G1-1 + · · · + )GB-B = im()G 5 -) ⊆ )H.. (∗)

For the second claim recall that by generic smoothness in characteristic 0 [Har77, Corollary
III.10.7] there is a dense open subset+ ⊆ ¥= such that 5 : 5 −1(+) → + is a smooth morphism.
Smooth morphisms have the property that )5 : )G → )5 (G) is surjective [Har77, Proposition
III.10.4(iii)], in our case this precisely means equality in (∗). �

By projectivizing everything we immediately obtain the projective version:

Theorem 1.28 (Terracini’s lemma - general projective form).
Let -1 , . . . , -B ⊆ ℙ# be projective varieties. For (G1 , . . . , GB) ∈

∏
8 -8 and H ∈ 〈G1 , . . . , GB〉ℙ we have

〈)G1-1 , . . . , )GB-B〉ℙ ⊆ )H(-1 • · · · • -B).

There is a dense open subset* ⊆ . such that equality holds whenever H ∈ * .

Corollary 1.29 (Terracini’s lemma for secant varieties).
For a general collection of points G1 , . . . , GA ∈ - and a general point H ∈ 〈G1 , . . . , GA〉ℙ we have

)H�A(-) = 〈)G1-, . . . , )GA-〉ℙ .

Remark. Notice that the argument in the proof of theorem 1.27 relies on the crucial fact that
char¥ = 0. For different, more calculus-style proofs (overℂ) see [BO08, Lemma2.2] or [Ber+18,
Lemma 1].

To show the usefulness of this theorem we use it to compute the dimension of the secant
variety of the Veronese surface.

Example 1.30 (The Veronese surface). Consider

( = +2,2 =
{
[!2]

�� ! ∈ ¥[G0 , G1 , G2]1 }
⊆ ℙ(¥[G0 , G1 , G2]2) � ℙ5.

The expected dimension of - = �2( is min{3 · 2 − 1, 5} = 5. But the actual dimension turns
out to be strictly smaller! The dimension can be calculated as the dimension of the tangent
space of a generic point of -, by Terracini’s lemma this is given as dim

〈
)[E2]+

2,2 , )[F2]+
2,2

〉
ℙ

for general linear forms E, F. Let (̂ ⊆ ¥[G0 , G1 , G2]2 be the affine cone of (, then

dim
〈
)[E2](, )[F2](

〉
ℙ
= dim()E2 (̂ + )F2 (̂) − 1 Lin.Alg.

= 3 + 3 − dim()E2 (̂ ∩ )F2 (̂) − 1.
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By Theorem 1.16(i) we see that

)E2 (̂ ∩ )F2 (̂ = E¥[G]1 ∩ F¥[G]1 = 〈EF〉¥

which is in fact not trivial. Hence - is a four-dimensional irreducible subvariety of ℙ5, i. e. a
hypersurface.
In fact, we knew this already! Recall Example 1.3; therewehave seen that the set of quadratic

forms of rank ≤ A correspond to the symmetric matrices of rank ≤ A. Here we are considering
the projective space ℙ(Sym(3,¥)) and the subset of matrices of rank ≤ 2. This is equivalent
to not having full rank, i. e. det� = 0. Hence the identification ℙ(¥[G]2) � ℙ(Sym(3,¥))maps
secant variety �2( to the hypersurface cut out by {det� = 0}.

1.7. The big and little Waring problem
With all the objects and notions defined so far we can finally ask the big (and small) questions.

Problem 1.31 (Little Waring problem). Given =, 3 ≥ 1, what is the maximum Waring rank

6(=, 3) B max {WR(�) | � ∈ ¥[G0 , . . . , G=]3 }?

This problem still remains largely unsolved. A typical algebro-geometer2 might suggest a
variation of this problem asking not for the maximal rank, but for the generic Waring rank.

Problem 1.32 (Big Waring problem). Given =, 3 ≥ 1, what is the Waring rank �(=, 3) of a generic
form � ∈ ¥[G0 , . . . , G=]3, i. e. the rank of a dense open set of forms?

We should ensure first that such a set actually exists. We use the notation,A and,≤A from
Theorem 1.11.

Lemma 1.33 (Existence of the generic Waring rank). There is precisely one � ∈ ℕ such that,�

contains a dense open subset.

Proof. We have a chain,≤1 ⊆ ,≤2 ⊆ ,≤3 ⊆ . . . (this is the chain of secant varieties), which
eventually fills out the ambient space. Let � be the smallest integer with,≤� = ¥[G]3. Since
,≤� is constructible, it contains a dense open subset * of its closure ¥[G]3. Since,≤�−1 is a
proper subset of thewhole space, we see that,� contains the dense open subset*∩(,≤�−1)c.
Furthermore, all other,9 , 9 ≠ � are contained in the complement of this set, so they do not
contain a dense open. �

It turns out that the big Waring problem has a complete answer: All numbers �(=, 3) are
known. Even better, we know the dimension of all varieties �B+3,= .
2Perhaps the generic one.
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Theorem 1.34 (Alexander-Hirschowitz, [BO08, Theorem 1.2]). The higher secant varieties of the
Veronese varieties �B+3,= , =, 3, B ≥ 1, have expected dimension

dim �B+
3,= = expdim �B+

3,= = min

{(
= + 3
3

)
− 1, B= + B − 1

}
with the following complete list of exceptions

3 = B �B dim �B+3,=

2 ≥2 2 . . . =
(
B
2

)
B= + B − 1 −

(
B
2

)
3 4 7 1 33

4 2 5 1 14

4 3 9 1 33

4 4 14 1 68

Chapter 3 will be concerned with an outline of a proof of this theorem.

Example 1.35. We already know that the theorem is true in the case = = 1, as the higher secant
varieties of any non-degenerate curve have expected dimension, see example 1.26.

From this result we obtains the solution to the big Waring problem.

Corollary 1.36 (The solution of the big Waring problem).

�(=, 3) =
⌈

1

= + 1

(
= + 3
3

)⌉
with the following list of exceptions

3 = �(=, 3)
2 ∀ = + 1
3 4 8

4 2 6

4 3 10

4 4 15

Proof. The generic Waring rank is the smallest B such that �B+3,= fills up its ambient space,
i. e. dim �B+3,= =

(
=+3
3

)
. The Alexander-Hirschowitz theorem gives a complete list of these

numbers, so this is simple arithmetic. For example, in the non-exceptional case we want the
least B such that

B= + B + 1 ≥
(
= + 3
3

)
− 1 ⇐⇒ B ≥ 1

= + 1

(
= + 3
3

)
.

Thus, rounding up this rational number gives the desired value. For the exceptional cases
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notice that � = B + 1with B the largest number such that +3,= is B-defective. �

Example 1.37.

• The case 3 = 2 (which is always exceptional) has been witnessed in example 1.3: The
general matrix in Sym(= + 1,¥) has rank = + 1.

• For = = 1 we have �(1, 3) = d12
(
3+1
3

)
e = d 3+12 e. We know (or learn in example 2.10) that

for exampleWR(G0G3−11 ) = 3, which is almost twice the generic rank!

Can the ratio 6(=, 3)/�(=, 3) get bigger than in the case = = 1? A surprising yet elementary
result by Blekherman & Teitler [BT14] tells us that this is not the case.

Theorem 1.38. For any non-degenerate projective variety - ⊆ ℙ# let 6(-), �(-) be the maximum
and the generic --rank, defined in the same fashion as in Problem 1.31, 1.32. Then

�(-) ≤ 6(-) ≤ 2 · �(-).

Proof. The first inequality is trivial. For the second let * ⊆ ℙ= be a dense open subset
consisting of elements of generic rank, and let G ∈ ℙ= , D ∈ * . Let ℓ = 〈G, D〉ℙ, then ℓ ∩ *
is dense open in ℓ , hence containing E ≠ D, so ℓ = 〈D, E〉ℙ. D and E lie in linear subspaces
spanned by �(-) points respectively, so G lies in a subspace generated by 2 · �(-) points. �

In our case of Waring rank we get (in the non-exceptional cases)

6(=, 3) ≤ 2 · �(=, 3) = 2 ·
⌈

1

= + 1

(
= + 3
3

)⌉
.

This is (asymptotically) less than the previously best upper bound

6(=, 3) ≤
(
= + 3 − 1

=

)
−

(
= + 3 − 5
= − 2

)
−

(
= + 3 − 6
= − 2

)
.

obtained by Ballico & De Paris [BD17].



2
The rank of monomials

In this chapter we will learn about a useful tool to compute theWaring rank of a specific form,
the Apolarity Lemma. As an application, we compute the Waring rank of all monomials, and
even of sums of coprime monomials. Finally, we discuss the Strassen conjecture concerning
some additivity property of ranks.

2.1. The apolarity action

In this section we follow [Ber+18, §2.1.4] and [IK99, §1.1].
Let ) = ¥[G0 , . . . , G=], ( = ¥[-0 , . . . , -=] be polynomial rings. We let ( act on ) by

interpreting -8 =̂ %
%G8

, more formally:

Definition 2.1. The apolarity action is defined on the monomial basis as

◦ : (8 × )9 → )9−8 , -α ◦ Gβ B


β!
(β−α)!G

β−α if α ≤ β,
0 otherwise.

for multi-indices α,β ∈ ℕ=+1
0 of length |α| = 8, |β | = 9.

Remark. • This action turns ) into a (-module, the only thing to verify is

(-α · -α′) ◦ Gβ = -α+α′ ◦ Gβ =


β!
(β−α−α′)!G

β−α−α′ if α +α′ ≤ β,
0 otherwise

= -α ◦


β!
(β−α′)!G

β−α′ if α′ ≤ β,
0 otherwise

= -α ◦ (-α′ ◦ Gβ).

Thus, we can view) as a set of functions onwhich the ring of linear differential operators
( acts on.

• The fact that the set of differential operators (with composition as multiplication) can be
modeled as the commutative (!) polynomial algebra ( is motivated by Schwarz’ theorem
from multivariate calculus.
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• The apolarity action induces a perfect pairing (3 ×)3 → ¥, in fact this is the pairing from
section 1.3 in a different guise!

Definition 2.2. Let � ⊆ ( be a homogeneous ideal. The inverse system �−1 is the set of polyno-
mials annihilated by all elements of �:

�−1 B { � ∈ ) | % ◦ � = 0 ∀% ∈ � }

The inverse system �−1 is an graded (-submodule of ), but not an ideal (not closed under
multiplication). The definition is reminiscent of an orthogonal complement, and indeed we
have the following properties

Lemma 2.3. Let � , � ⊆ ( be homogeneous ideals.

(i) The graded components of �−1 are orthogonal to the graded components of �3:

(�−1)3 = �⊥3 B { � ∈ )3 | % ◦ � = 0 ∀% ∈ �3 } .

(ii) If � ⊆ �, then �−1 ⊆ �−1.
(iii) (� + �)−1 = �−1 ∩ �−1 and (� ∩ �)−1 = �−1 + �−1.
(iv) dim¥ �

−1
3
= dim¥ (3 − dim¥ �3 = dim¥((/�)3.

Proof. (i) Clearly (�−1)3 ⊆ �⊥3 . Conversely let 5 ∈ �⊥
3
, then 5 is annihilated by all differential

operators % ∈ �3, and trivially by operators of higher degree (by definition of ◦). Let % ∈ �3−: ,
: < 3, then -α · % ∈ �3 for all |α| = :, since � is an ideal. But

0 = (-α · %) ◦ 5 = -α ◦ (% ◦ 5 )

implies that no monomial Gα can ocur in % ◦ 5 , hence % ◦ 5 = 0.
(ii)-(iv) By (i) and the fact that ◦ defines a perfect pairing (3 ×)3 → ¥, this is a consequence

of the corresponding facts from linear algebra about perfect pairings. �

Of particular interest is the case of monomial ideals. We recall their defining properties:

Lemma 2.4 (Monomial ideals). For an ideal � ⊆ ¥[-] the following are equivalent:

(i) � is generated by a (finite) set of monomials;
(ii) For any 5 =

∑
α 2α-

α ∈ � we have -α ∈ � whenever 2α ≠ 0;
(iii) � is homogeneous and each �3 admits a ¥-basis consisting of monomials.

Example 2.5. If � ⊆ ( is a monomial ideal, then Lemma 2.3 and 2.4 show that

(�−1)3 = �⊥3 = 〈{ G
α | -α ∉ �3 }〉¥ ⊆ )3 .
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We can interpret the polynomial ring ( as a ring of functions on )1. Indeed if ! = 00G0 +
· · · + 0=G= is a linear form, then similarly to the calculation in section 1.3

-α ◦ (00G0 + · · · + 0=G=)3 = -α ◦
∑
|β |=3

(
3

β

)
0βGβ = 0α

(
3

α

)
· !
1
= 3! · 00

0 · · · 0
=
= ,

so if % = 6(-0 , . . . , -=), then % ◦ !3 = 3! · 6(00 , . . . , 0=) is function evaluation up to a constant.
With this in mind we can identify ( with the homogeneous coordinate ring of ℙ()1), and it

makes sense to talk about the vanishing ideal �(-) ⊆ ( of a subset - ⊆ ℙ()1).

Example 2.6. If % = [!] ∈ ℙ()1) is a point, then (m−1
%
)3 = ¥ · !3. Indeed, it suffices to show this

for a particular form ! = G0. Then m[G0] = (-1 , . . . , -=) is a monomial ideal with (m[G0])3
consisting of polynomials without -3

0 , by Example 2.5 we conclude (m−1[G0])3 = ¥G
3
0 .

Definition 2.7. Let � ∈ )3 be a form. The apolar ideal of � is

�⊥ B { % ∈ ( | % ◦ � = 0 } ,

it is a homogeneous ideal in (.

We are ready to formulate and prove the Apolarity Lemma.

Theorem 2.8 (Apolarity Lemma). Let !1 , . . . , !B ∈ )1 be linear forms and � = {[!1], . . . , [!B]} ⊆
ℙ()1). Then for a form � ∈ )3 the following are equivalent:

(i) � = �1!
3
1 + · · · + �B!3B for some �8 ∈ ¥;

(ii) �(�) ⊆ �⊥.

Proof. (i)⇒(ii) Let % ∈ �(�), then % ◦ !3
8
= %([!8]) = 0 for 8 = 1, . . . , B, and by linearity

% ◦ � = 0, so % ∈ �⊥.
(ii)⇒(i) Notice that �(�) = m[!1] ∩ · · · ∩m[!B ]. If �(�) ⊆ �⊥, then

� ∈ (�⊥)−13 ⊆ �(�)
−1
3

2.3
= (m−1[!1])3 + · · · + (m

−1
[!1])3

2.6
= ¥!31 + · · · + ¥!3B ,

so � is a linear combination of !31 , . . . , !
3
A . �

This theorem gives a characterization of the Waring rank.

Corollary 2.9. Let 0 ≠ � ∈ ) be a form, then

WR(�) = min
{
A ∈ ℕ+

�� �⊥ contains the ideal of a set of A distinct points
}
.

Moreover, the linear forms from a Waring decomposition correspond to such points.

Remark. If we know that �⊥ ⊇ �({[!1], . . . , [!A]}), then it is not immediately clear how to find
coefficients �8 such that � =

∑A
8=1 �8!

A
8
. But since we know that there exists some solution,



26 2. The rank of monomials

we1 can solve the over-determined system of linear equations in the coefficients given by this
equation.

Example 2.10. We can now prove that � = G0G3−11 has Waring rank 3. Indeed, we may work in
) = ¥[G0 , G1], ( = ¥[-0 , -1].

- 8
0-

9

1 ◦ G0G
3−1
1 = 0 iff 8 ≥ 2 or 9 ≥ 3 =⇒ 5 ⊥ = (-2

0 , -
3
1 ),

which contains the ideal (-3
0 −-3

1 ) =
⋂

�∈�3 (-0 − �-1) of 3 distinct points. HenceWR(�) ≤ 3.
On the other hand, suppose �⊥ contains the ideal �(%1 , . . . , %B) of fewer distinct points. Each

m%1 is a principal prime ideal (%8) (height 1 primes in ¥[-0 , -1]), so

% B %1 · · · %B ∈ �(%1 , . . . , %A) ⊆ (-2
0 , -

3
1 ).

As B < 3, %must be a multiple of -2
0 , but we assumed the points to be distinct!  

A useful relation between the ideal �⊥ and the colon ideal � : � B { G ∈ ( | G� ⊆ � } is the
following:

Lemma 2.11. For any form � and any % ∈ ( we have �⊥ : (%) = (% ◦ �)⊥.

Proof. Let � ∈ (, then

� ∈ �⊥ : (%) ⇔ �% ∈ �⊥ ⇔ �% ◦ � = 0 ⇔ � ∈ (% ◦ �)⊥. �

2.2. Hilbert functions
Before we can fully utilize the apolarity lemma, we need another tool, the Hilbert function of a
projective scheme, or more generally, of a graded algebra. As before, let ( = ¥[-0 , . . . , -=].

Definition 2.12. Let � =
⊕

3≥0 �3 be a finitely generated graded ¥-algebra. The Hilbert
function is defined as HF(�, 3) B dim¥ �3. The hilbert series2 is the formal power series
HS(�, C) = ∑∞

3=0(dim¥ �3)C3 ∈ ℤ[[C]].
Let - ⊆ ℙ= = Proj¥[C0 , . . . , C=] be a projective scheme with homogeneous coordinate ring

� B ¥[C]/�(-). The Hilbert function of - is HF(-, 3) B HF(�, 3) = HF(¥[C], 3) − dim¥ �(-)3.

If � is generated by elements 51 , . . . , 5B in degrees 31 , . . . , 3B , then HS(�, C) is a rational
function of the form

HS(�, C) =
5 (C)

(1 − C31) · · · (1 − C3B )
[AM69, Theorem 11.1]. In the case of quotients of a polynomial ring � = (/� (so 58 = -8 ,
38 = 1) the denominator simplifies; we will see a particular instance of this in Lemma 2.16.
1Or a computer.
2Also called Poincaré series.
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A consequence of this is that the Hilbert function equals a polynomial for 3 � 0 [AM69,
Corollary 11.2], called the Hilbert polynomial HP(-, 3). If � : - ↩→ ℙ= is a projective variety,
then by Serre vanishing [Har77, III.5.2(b)] HF(-, 3) becomes the polynomial

HF(-, 3) = "(ℙ= , �∗O-(3)), 3 � 0, "(ℙ= ,F) =
∑
8≥0
(−1)8ℎ 8(ℙ= ,F).

One can show that the Hilbert polynomial of - has degree A = dim-. The degree of - ⊆ ℙ=

is defined as A! times the leading coefficient of HP(-, 3) (this is an integer). The degree is the
number of intersection points of - with a general linear subspace ! ⊆ ℙ= of codimension A.

Example 2.13. • The Hilbert function of the polynomial ring (, and hence that of - = ℙ= is

HF(ℙ= , 3) = HF(¥[-0 , . . . , -=], 3) =
(
= + 3
3

)
,

which is a polynomial function for = ≥ 0. The Hilbert series takes the simple form
HS((, C) = (1 − C)−(=+1).

• If � is Artinian, then �3 = 0 for 3 � 0, and HS(�, 1) = ∑∞
3=0HF(�, 3) = dim¥ � ∈ ℕ0.

In this case the Hilbert polynomial is simply 0.
• If -,. ⊆ ℙ= are projective schemes, then

HF(- ∪ ., 3) = HF(-, 3) +HF(., 3) −HF(- ∩ ., 3).

Indeed, this follows from the short exact sequence of ¥-vectorspaces

0 �(-) ∩ �(.)︸       ︷︷       ︸
= �(-∪.)

�(-) ⊕ �(.) �(-) + �(.)︸       ︷︷       ︸
= �(-∩.)

0.
5 ↦→( 5 , 5 ) ( 5 ,6)↦→ 5−6

In particular, the Hilbert polynomial is additive for disjoint subschemes and 3 � 0,
because (/(�(-) + �(.)) is Artinian.
But since �(-) + �(.)may not span m+ entirely, the Hilbert function may not be additive
for each degree! In some sense, this is why chapter 3 on the Alexander-Hirschowitz
theorem is non-trivial (and in fact quite involved).

A useful tool for calculating the Hilbert function is the following lemma.

Lemma 2.14. Let � ⊆ ( be a homogeneous ideal and % ∈ (1 not a zero-divisor in (/�. Then

HF((/� , 3) =
3∑
8=0

HF((/(� + (%)), 8).
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Proof. Not being a zero-divisor in (/� means that we have a short exact sequence

0 ((/�)[−1] ((/�) ((/�)/(%)︸    ︷︷    ︸
= (/(�+(%))

0,
·%

where �[3] is the algebra with �[3]8 = �8+3. Looking at the dimension of the graded pieces
we obtain

HF((/� , 8 − 1) −HF((/� , 8) +HF((/(� + (%)), 8) = 0, 8 ≥ 0.

(with HF((/� ,−1) = 0). Summing over 8 = 0, . . . , 3 yields the desired formula. �

An important special case is the Hilbert function of a complete intersection.

Definition 2.15. (i) Let � be a commutative ring (for our purpose ¥[C]). 51 , . . . , 5: ∈ � is an
regular sequence if 58 is not a zero-divisor in �/( 51 , . . . , 58−1) for 8 = 1, . . . , :.

(ii) An ideal � ⊆ � is called a complete intersection if it is generated by a regular sequence.

Theorem 2.16 (Hilbert series of a complete intersection). Let � ⊆ ( be a complete intersection ideal
generated by the regular sequence of homogeneous elements 51 , . . . , 5: , 38 B deg 58 ≥ 1. Then

HS((/� , C) = (1 − C
31) · · · (1 − C3: )
(1 − C)=+1 =

(1 + C + · · · + C31−1) · · · (1 + C + · · · + C3:−1)
(1 − C)=+1−:

.

Proof. The proof is similar to the previous lemma. Let � 9 = (/( 51 , . . . , 59), so �0 = ( and
�: = (/�. Since 59 is regular on � 9−1, we get short exact sequences

0 � 9−1[−3 9] � 9−1 � 9 0.
· 59

Taking dimensions of the graded components and forming the corresponding power series
we get

C39 · HS(� 9−1 , C) −HS(� 9−1 , C) +HS(� 9 , C) = 0,

or, after rearranging HS(� 9 , C) = (1 − C39 ) · HS(� 9−1 , C). Thus we can apply induction on 9 to
reduce to the case �0 = (, which has Hilbert series (1 − C)−(=+1) by example 2.13:

HS((/� , C) = · · · = (1 − C31) · · · (1 − C3: ) · HS((, C) = (1 − C
31) · · · (1 − C3: )
(1 − C)=+1 .

The second equality from the theorem is just an application of the geometric sum formula
1 − C3 = (1 − C)(1 + C + · · · + C3−1) and canceling the (1 − C) terms. �

Corollary 2.17. Let � be as in the previous lemma, � B (/�.

(i) If � is Artinian (this is the case if : = = + 1, so V(�) = ∅), then its ¥-dimension is 31 · · · 3: .
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(ii) If � is one-dimensional (this is the case if : = =, also � = V(�) is finite), then deg� =

31 · · · 3: = len(�), the length of�.

Recall that the length of a zero-dimensional ¥-scheme� is defined as

len(�) = dim¥O�(�) =
∑
%∈|�|

dim¥O�,% .

Proof. (i) As mentioned in example 2.13 we have HS(�, 1) = dim¥ �. By the previous
theorem the Hilbert series of � is actually the polynomial

HS(�, C) = (1 + C + · · · + C31−1) · · · (1 + C + · · · + C3:−1) ∈ ℤ[C],

so plugging in C = 1 yields dim¥ � = 31 · · · 3: .
(ii) Since � is finite, we can choose a linear form % ∈ (1 not vanishing on any point in the

support of �. Then 51 , . . . , 5= , % is a regular sequence and by (i) and Lemma 2.14 for 3 � 0

we get

HF(�, 3) =
3∑
8=0

HF((/( 51 , . . . , 5: , %), 8) = 31 · · · 3: .

So the Hilbert polynomial of � is the constant 31 · · · 3: , which is its degree (by definition).
The second equality is a general fact:
Notice that� lies in the hyperplane� = {% ≠ 0}, after a change of coordinateswemay assume
% = -0. Hence � is (isomorphic to) Spec¥[-1 , . . . , -=]/� with some dehomogenization of �.
Since the Hilbert function becomes constant, for 3 � 0 we get that the map

((/�)3 → ¥[-1 , . . . , -=]/� , 5 ↦→ 5
�

is an isomorphism, hence ℓ (�) = deg�. �

2.3. The Waring rank of monomials
Armed with the Apolarity lemma and some knowledge of Hilbert functions, we are ready to
prove

Theorem 2.18. Let G300 · · · G
3=
= ∈ ¥[G] be a monomial. After renaming the variables we may assume

1 ≤ 30 ≤ · · · ≤ 3= . Then

WR(G300 · · · G
3=
= ) =

1

30 + 1

=∏
8=0

(38 + 1).

We follow the proof by Carlini, Catalisano & Geramita [CCG12] . We return to the notation
from section 1 with ( = ¥[-] the polynomial ring of differential operators acting on ) = ¥[G].
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Proof of Theorem 2.18. To ease notation, we consider the monomial

� = G30−10 · · · G3=−1= , 2 ≤ 30 ≤ · · · ≤ 3= .

Just as in example 2.10 we see that

-α ◦ G30−10 · · · G3=−1= = 0 iff  9 ≥ 3 9 for some 0 ≤ 9 ≤ = =⇒ �⊥ = (-30
0 , . . . , -

3=
= ). (∗)

WR(�) ≤ 31 · · · 3= : Consider the points %� = [1 : �1 : · · · : �=] ∈ ℙ= , �8 ∈ �38 (38-th roots of
unity), these are distinct and clearly in the vanishing set of

� B (-31
1 − -

31
0 , . . . , -

3=
= − -3=

0 ).

� is a complete intersection ideal cutting out a projective subscheme� = Proj (/� of dimension
0 and degree 31 · · · 3= . But� contains at least the 31 · · · 3= distinct points %�, so it must be the

reduced scheme of these points. As �
(∗)
⊆ �⊥, the Apolarity Lemma yields the number 31 · · · 3=

as a lower bound for WR(�).

WR( 5 ) ≥ 31 · · · 3= : Let � B �(�) ⊆ �⊥ be an ideal of B distinct points � = {%1 , . . . , %B}; our
goal is to show that B ≤ 31 · · · 3= . Consider the colon ideal

�′ B � : (-0) = �(�) : �(V(-0)) = �(� \ V(-0)),

�′ is an ideal of the set of B′ ≤ B points�′ = � \ V(-0). We have

�′ + (-0) ⊆ ( 5 ⊥ : (-0)) + (-0)︸                ︷︷                ︸
C �

2.11
= (-0 , -

31
1 , . . . , -

3=
= ).

Notice that by definition of �′ the linear form -0 is not a zero-divisor in (/�′. Therefore we
can apply lemma 2.14 to get for C � 0

B ≥ B′ = HF((/�′, C)2.14=
C∑
8=0

HF((/(�′ + (-0)), 8)

≥
C∑
8=0

HF((/� , 8) =
∞∑
8=0

HF((/(-0 , -
31
1 , . . . , -

3=
= ), 8)

2.17
= 31 · · · 3= . �

Example 2.19. Theorem 2.18 reproves example 2.10: WR(G10G3−11 ) = 3.

Also, for 30 = · · · = 3= = 1we getWR(G0 · · · G=) = 2= , the corresponding linear forms being
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G0 + �1G1 + · · · + �=G= , G8 ∈ {±1}. This explains the decomposition

G0 · · · G= =
1

2==!

∑
�∈{±1}=

�1 · · · �= · (G0 + �1G1 + · · · + �=G=)=

presented in the introduction.

Remark. We remark that the given result holds true in characteristic char¥ > 3. Indeed, the
only concern might be that we used that there are 38 + 1 distinct (38 + 1)-th roots of unity; this
is not true if char¥ | (38 + 1). But the only possibility for 38 + 1 > 3 is 30 = 3, � = G30 , and in
this case � has trivially Waring rank 1.

2.4. Sums of monomials
We follow Carlini et al [CCG12] again to prove that the Waring rank is additive for sum of
coprime monomials, generalizing theorem 2.18.

Theorem 2.20. Let �1 , . . . , �: be coprime monomials (i. e. in disjoint sets of variables) of the same
degree 3. Let � = �1 + · · · + �: . If 3 = 1 then WR(�) = 1. If 3 ≥ 2, then

WR(�1 + · · · + �:) =WR(�1) + · · · +WR(�:).

The strategy resembles the proof of theorem 2.18, also using colon ideals. We need a lemma
regarding the Hilbert function first.

Lemma 2.21. Let �1 , . . . , �: ⊆ m+ ⊆ ( be homogeneous ideals with (�1 ∩ · · · ∩ �9−1) + �9 = m+ for
2 ≤ 9 ≤ :, then for C ≥ 0

HF((/(�1 ∩ · · · ∩ �: , C) = HF((/�1 , C) + · · · +HF((/�: , C) + �C ,0 · (: − 1).

Proof. We use induction on :. For : = 1 there is nothing to prove. In the general case we have
a short exact sequence

0 (/(�1 ∩ · · · ∩ �:) (/(�1 ∩ · · · ∩ �:−1) ⊕ (/�: (/(�1 ∩ · · · ∩ �:−1 + �:) 0

The rightmost algebra is just (/m+ � ¥, so the Hilbert functions satisfy

HF((/(�1 ∩ · · · ∩ �: , C) −HF((/(�1 ∩ · · · ∩ �:−1), C) −HF((/�: , C) +HF(¥, C)︸   ︷︷   ︸
= �C ,0

= 0.

Rearranging and using the induction hypothesis yields the result. �

Proof of theorem 2.20. We first rule out some low degree cases.
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• If 3 = 1, then � is linear and has trivially Waring rank 1.
• If 3 = 2, then we are in the setting of ranks of symmetric matrices, see example 1.3. Then

the sum corresponds to symmetric block diagonal matrices, and the rank is additive on
block matrices, so the theorem is true in this case.

⇒ We may assume 3 > 2.

The Waring rank of � = �1 + · · · + �: is clearly less than or equal to the sum of the Waring
ranks. Thus, by the apolarity lemma we are required to show that if �⊥ contains the ideal
� ⊆ ( of B distinct points, then B ≥ ∑:

8=1WR(�8). As in the single monomial case, we will
assume

�8 = G
8 ,0
8 ,0
· · · G8 ,=8

8 ,=8
, 1 ≤ 8 ,0 ≤ · · · ≤ 8 ,=8 .

Consider the colon ideal �′ = � : (-1,0 , . . . , -:,0), this is again an ideal of B′ ≤ B points
%1 , . . . , %B′ not lying inside V(-1,0 , . . . , -A,0); we wish to prove that B′ ≥ ∑:

8=1WR(�8).
Claim. There exists a linear polynomial % = 01-1,0 + · · · + 0:-:,0 ∈ (1, 8 ∈ ¥×, which is not

a zero-divisor in (/�′.

Proof of claim. % being a zero-divisor in (/�′means that % vanishes on one of the points. Since
%9 ∉ V(-1,0 , . . . , -:,0), there is some -8 9 ,0 not vanishing on %9 , and hence the following finite
union of proper subspaces does not fill the space of linear forms (#¥ = ∞):( B′⋃

9=1

{ % | %(%9) = 0 }
)
∪

( :⋃
8=1

〈-1,0 , . . . , -̂8 ,0 , . . . , -:,0〉¥
)
( 〈-1,0 , . . . , -:,0〉¥.

Thus there exists a % with the desired property. �claim

Using -8 ,0 ◦ � = -8 ,0 ◦ �8 (disjoint sets of variables!), we get

�′ + (%) ⊆ (�⊥ : (-1,0 , . . . , -:,0)) + (%)
=

(
�⊥ : (-1,0)

)
∩ · · · ∩

(
�⊥ : (-:,0)

)
+ (%)

2.11
⊆

(
(-1,0 ◦ �1)⊥ + (%)

)︸                  ︷︷                  ︸
C �1

∩ · · · ∩
(
(-:,0 ◦ �:)⊥ + (%)

)︸                  ︷︷                  ︸
C �:

(∗)

We can explicitly calculate the �8 . Let F be the number of 1’s among the smallest of
the exponents of the monomials 1,0 , . . . , A,0; after rearranging the �8 we may assume that
1,0 = · · · = F,0 = 1. We make the following observations:

(i) If 1 ≤ 8 ≤ F, then -8 ,0 ◦ �8 = G8 ,18 ,1
· · · G8 ,=8

8 ,=8
. In particular, (-8 ,0 ◦ �8)⊥ contains % anyways

and we have

�8 = ({-8′, 9 | 8′ ≠ 8 , 0 ≤ 9 ≤ =8′ } ∪ {-8 ,0 , -8 ,1+1
8 ,1

, . . . , -
8 ,=8+1
8 ,=8

}).
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(ii) If F < 8 ≤ :, then -8 ,0 ◦ �8 = G8 ,0−18 ,0
G
8 ,1
8 ,1
· · · G8 ,=8

8 ,=8
. As -8′,0 ∈ (%8 ,0 ◦ �8)⊥ for 8′ ≠ 8, adding

% to a set of generators has the same effect as adding -8 ,0. Thus we get exactly the same
kind of description as in (i).

(iii) Notice that �1 ∩ · · · ∩ �8′−1 and �8′ together contain all -8 , 9’s, so they generate m+. This
means that we can apply lemma 2.21.

(iv) The intersection �1 ∩ · · · ∩ �: is generated by the powers of the -8 , 9 in the latter set of
generators in (i). The only linear generators among these are -1,0 , . . . , -:,0, so

dim¥ (�1 ∩ · · · ∩ �:)1 = :.

Our estimate of �′ + (%) as the intersection of the �8 will be almost good enough for our
purposes, we only need to consider the dimension of the degree 1 component:

Claim. dim¥ (�′ + (%))1 = 1, or equivalently, (�′)1 = 0.

Proof of claim. Let ℓ =
∑:
8=1

∑=8
9=0

18 , 9-8 , 9 ∈ (�′)1. By definition of �′ = � : (-1,0 , . . . , -:,0) we
have

ℓ · -1,0 , . . . , ℓ · -:,0 ∈ � ⊆ �⊥.

This enforces some constraints on the coefficients: Since 3 ≥ 3, we can compare coefficients in

0 = ℓ ◦ (-8 ,0 ◦ �8) = 8 ,0

(
18 ,0 · (8 ,0 − 1)G8 ,0−28 ,0

G
8 ,1
8 ,1
· · · G8 ,=8

8 ,=8

+
=8∑
9=1

18 , 9 · 8 , 9G8 ,0−18 ,0
G
8 ,1
8 ,1
· · · G8 , 9−1

8 , 9
· · · G8 ,=8

8 ,=8

)
.

We conclude 18 ,1 = · · · = 18 ,=8 = 0 for 8 = 1, . . . , :, and thus ℓ = 11,0-1,0 + · · · + 1:,0-:,0. This
shows that ℓ vanishes not only on the B′ points in V(�′) as assumed, but also on the remaining
points in the subspace V(-1,0 , . . . , -:,0). Thus ℓ ∈ � ⊆ �⊥, but 3 = deg � ≥ 2, so there are no
nonzero linear forms in �⊥! �claim

Now we are ready to complete the proof of the theorem. For C � 0,
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B′ = HF((/�′, )) =
C∑
8=0

HF((/(�′ + (%)), 8)

claim
= (dim¥ (1 − 1) +

C∑
8=0
8≠1

HF((/(�′ + (%)), 8)

(∗)
≤ (dim¥ (1 − 1) +

C∑
8=0
8≠1

HF((/(�1 ∩ · · · ∩ �:), 8)

(iv)
= (dim¥ (1 − 1) − (dim¥ (1 − :) +

C∑
8=0

HF((/(�1 ∩ · · · ∩ �:), 8)

2.21
= (: − 1) − (: − 1) +

C∑
8=0

HF((/�1 , 8) + · · · +
C∑
8=0

HF((/�: , 8).

As the �8 are generated by regular sequences, Corollary 2.17 tells us that

∞∑
8=0

HF((/�1 , 8) = (8 ,1 + 1) · · · (8 ,=8 + 1)
2.18
= WR(�8),

and thus B ≥ B′ ≥WR(�1) + · · · +WR(�:). �

Example 2.22. If you, like me, are a fan of cracking nuts with sledgehammers, then you will
appreciate the fact that Theorem 2.20 proves

WR(G31 + . . . G3: ) = :.

The natural next question is to ask about the Waring rank of other families of polynomials
related to monomials. An interesting family are the elementary symmetric polynomials

4=,3 =
∑

1≤81<···<83≤=
G81 · · · G83 ∈ ¥[G1 , . . . , G=]3 , 1 ≤ 3 ≤ =.

If 1 < 3 < =, then 4=,3 is not a sum of coprime monomials, so the previous results can’t be
applied directly. H. Lee obtained the following results:

Theorem 2.23 ([Lee16]). (i) For 3 = 2: + 1 odd, = ≥ 3, we have a power sum decomposition

23−13!4=,3 =
∑

�⊆{1,...,=}
|� |≤:

(−1)|� |
(
= − : − |� | − 1

: − |� |

)
·
(
�(� , 1)G1 + · · · + �(� , =)G=

)3
,
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where �(� , 8) = −1 if 8 ∈ � and +1 otherwise. This decomposition is optimal, so

WR(4=,3) =
3−1
2∑
8=0

(
=

8

)
.

(ii) For 3 = 2: even, = > 3, then we have a decomposition

23(= − 3)3!4=,3 =
∑

�⊆{1,...,=}
|� |≤:

(−1)|� |
(
= − : − |� | − 1

: − |� |

)
(= − 2|� |) ·

(
�(� , 1)G1 + · · · + �(� , =)G=

)3
,

This decomposition is known to be sub-optimal in special cases, but we have the bounds( 3/2∑
8=0

(
=

8

))
−

(
= − 1
3/2

)
≤WR(4=,3) ≤

3/2∑
8=0

(
=

8

)
.

2.5. Strassen’s conjecture

Theorem 2.20 shows that when adding monomials in disjoint sets of variables, their Waring
rank adds up, too. The same is true for all degree 2 forms, since the Waring rank corresponds
to matrix rank, which is additive on block diagonal matrices. Thus, one may be tempted to
formulate the following

Problem 2.24 (Symmetric direct sum conjecture). Consider forms �8 ∈ ¥[G0,8 , . . . , G=8 ,8]3, 3 ≥ 2,
in disjoints sets of variables. Is it true that

WR(�1 + · · · + �:) =WR(�1) + · · · +WR(�:)?

In the tensor rank setting the tensor rank gives a measure of how many multiplications are
required to calculate a certain multilinear map. If we have for example maps �1 : +1×,1 → ¥

and �2 : +2 ×,2 → ¥, then one may consider the “product map”

�3 : (+1 ⊕ +2) × (,1 ⊗,2) → ¥, �3((E1 , E2), (F1 , F2)) = �1(E1 , F1) + �2(E2 , F2).

Inmatrix form this corresponds to taking the blockdiagonalmatrix consisting of twoblocks for
�1, �2 respectively. Since the (ordinary) matrix rank is additive on these block diagonals, one
may conjecture that any “optimal algorithm” (respectively: minimal tensor decomposition)
must respect this direct sum and compute �1 and �2 apart from each other. This leads to the
original direct sum conjecture by Strassen [Str73]

Problem 2.25 (Strassen’s direct sum conjecture). Given tensors)8 ∈
⊗3

9=1+8 , 9 , 3 ≥ 2 and consider
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the direct sum

)1 ⊕ · · · ⊕ ): ∈
3⊗
9=1

( :⊕
8=1

+8 , 9

)
.

Then is it true that R()1 ⊕ · · · ⊕ ):) = R()1) + · · · + R():) ?

This conjecture has been verified in many special cases, but it turns out to be false in this
generality, as Shitov constructed explicit counterexamples [Shi19]; the symmetric version is
still open, though.
The symmetric Strassen conjecture has been proven for other families of forms. Carlini et

al. introduced the concept of 4-computability [Car+15] to bring many of these cases together.

Theorem 2.26. Let �1 , . . . , �: be forms of degree 3 in disjoint sets of variables. The symmetric Strassen
conjecture holds if each �8 is of one of the following forms:

• �8 is a monomial;
• �8 is a form in ≤ 2 variables;
• �8 = G

0
0(G11 + · · · + G1=) or �8 = G00(G10 + G11 + · · · + G1=) with 0 + 1 ≥ 1;

• �8 = G
0
0(G11 + G12) or �8 = G00(G10 + G11 + G12);

• �8 = G
0
0�(G1 , . . . , G=), where�⊥ = (61 , . . . , 6=) is a complete intersection ideal and deg(69) > 0

for 9 = 1, . . . , =;
• �8 = det([G:

9
]=
9,:=0
) is a Vandermonde determinant.



3
The Alexander-Hirschowitz Theorem

In this chapter we will sketch the promised proof of the Alexander-Hirschowitz theorem
1.34. The proof in the original paper [AH95] has been substantially simplified; still we will
only be able to sketch the main argument due to its length and difficulty. We follow the
expositions by Brambilla & Ottavani [BO08] and by Hà & Mantero [HM21], who focus more
on the algebro-geometric and the commutative algebra aspect of this theorem respectively.

3.1. Polynomial interpolation
First, a correction: Theorem 1.34 is not what is commonly called the Alexander-Hirschowitz
theorem, but rather an equivalent formulation in the language of secant varieties to Veronese
varieties. The trueAlexander-Hirschowitz theorem is Theorem 3.3, and in this section we will
prove the equivalence with theorem 1.34.

Definition 3.1. A double point 2% ⊆ ℙ= supported in % ∈ ℙ= is the non-reduced closed sub-
scheme defined by the homogeneous ideal m2

%
.

Notice that 2% is a scheme of length len(2%) = = + 1. Double points allow us to express
when a hypersurface V( 5 ) ⊆ ℙ= is singular at %.

Lemma 3.2. Let 5 ∈ (3 be a polynomial, 2% a double point. Then the following are equivalent:

(i) 5 ∈ �(2%) = m2
%
.

(ii) V( 5 ) is singular at % ∈ V( 5 );
(iii) All partial derivatives of 5 vanish at %;

Proof. (ii)⇔(iii): A projective hypersurface is singular at % if and only if

5 (%) =
% 5

%G0
(%) = · · · =

% 5

%G=
(%) = 0.

By the “Euler relation” 3 · 5 = ∑=
8=0 -8

% 5
%-0

we may omit 5 (%) = 0 in this system of equations.
(i)⇔(ii): Both statements are invariant under a change of coordinates, so we may assume

% = [1 : 0 : · · · : 0]. Then (m2
%
)3 has a ¥-basis of monomials not divided by -3−1

0 and it is
an explicit calculation to verify that 5 ∈ (m2

%
)3 is equivalent to the vanishing of 5 and its first

derivatives at %. �
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So by (iii) 5 being in �(2%)3 imposes = + 1 linear relations on the coefficients of 5 . Similarly,
5 ∈ �(�)3, � consisting of B double points, imposes B(= + 1) linear equations on 5 , so one
would expect that �(�)3 ⊆ (3 has codimension B · (= + 1) (if it is nonzero). This is the content
of the “true” Alexander-Hirschowitz theorem.

Theorem 3.3 (Alexander-Hirschowitz).
Let� be a general collection of B double points and �(�)3 =

{
5 ∈ (3

�� 5 singular at� }
. Then

codim �(�)3 = min

{
B(= + 1),

(
= + 3
3

)}
except for the following cases

3 = B codim �(�)3
2 ≥2 2 . . . = B(= + 1) −

(
B
2

)
3 4 7 34

4 2 5 15

4 3 9 34

4 4 14 69

We now show that theorem 3.3 and theorem 1.34 are equivalent to each other. If � =

{%1 , . . . , %B}, then we sometimes write 2� to mean {2%1 , . . . , 2%B}.

Lemma 3.4. For 3, =, B ≥ 1, and� = {2%1 , . . . , 2%B} a scheme of B general double points we have

�B+
3,= + 1 = codim �(�)3 .

In fact,� ⊆ ℙ= � +3,= can be any collection of double points {%1 , . . . , %B} such that the “generality”
assumption from Terracini’s lemma 1.29 for +3,= is satisfied and a general point in 〈%1 , . . . , %B〉ℙ ⊆
�B+3,= is regular.

Proof. This is essentially a consequence of Lasker’s theorem 1.16 and Terracini’s lemma 1.27.
Let [E8] = %8 be representatives, then

�(�)3 =
B⋂
8=1

(m2
[E8])3

1.16
=

B⋂
8=1

()E3
8
+̂3,=)⊥ =

( B∑
8=1

)E3
8
+̂3,=

)⊥
1.27
=

(
)E31+···+E3B

��B+3,=)
)⊥
.

Thus, taking (co)dimensions and using the generality assumption we get

codim¥ �(�)3 = dim¥ �(�)⊥3 = dim¥ )E31+···+E3B
��B+3,= = dim �B+

3,= + 1. �

If we impose the condition of passing through a single point on a space of functions, we
expect the dimension to decrease by 1. As noticed before, requiring a singularity at a point
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imposes = + 1 equations, so we expect the dimension to decrease by this amount. This leads
to the following definition:

Definition 3.5. We say that a� = {2%1 , . . . , 2%B , &1 , . . . , &C} collection of ordinary and double
points imposes independent conditions on Oℙ= (3) if codim �(�)3 = min

{
(= + 1)B + C ,

(
=+3
3

)}
.

More generally, if � ⊆ ℙ= is a zero-dimensional scheme of length ℓ = len(�), then we say
that� is AH=(3) if codim �(�)3 = min

{
ℓ ,

(
=+3
3

)}
.

So the statement of theAlexanderHirschowitz theorem is that a general collection of double
points inℙ= imposes independent conditions onOℙ= (3) apart from the listed exceptional cases.
This is where the name polynomial interpolation comes from, in the one-dimensional case this
is very familiar:

Example 3.6. We can reinterpret example 1.35 in this setting. If � ⊆ ℙ1 is a scheme of B
double points, then we are looking for binary forms 5 ∈  [-0 , -1] singular at each point
%1 , . . . , %B . We may assume that [0 : 1] is not among the %8 , then by the Euler relation
% 5
%-0

= -0
1
-0
(3 · 5 − % 5

%-0
) we may discard the condition % 5

%-0
= 0. After dehomogenization this

is equivalent to the following polynomial interpolation problem:

Given ?1 , . . . , ?B ∈ ¥, find polynomials 5 ()) ∈ ¥[)]3 with 5 (?1) = 5 ′(?1) = 0 for
8 = 1, . . . , B.

We can give a closed-form solution to this as

5 ()) = 6()) ·
B∏
8=1

() − ?8)2 , 6()) ∈ ¥[)]3−2B .

This is precisely the expected dimension of �(�)3, so any (not just a general) collection of
double points imposes independent conditions on Oℙ1(3)!

3.2. Specialization of points
In this section we give an overview of the proof strategy. Some obvious difficulties are:

(i) We have 3 degrees of freedom:

• The dimension = of the ambient space ℙ= ;
• The number B of general double points;
• The degree 3 of hypersurfaces through these points.

(ii) It could be hard to verify if a given configuration of double points is “general enough”.
(iii) If onewants to apply induction, it is not obvious how“general position” can be translated

to lower-dimensional spaces.
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Wefirst take care of the first concern. If�,�′ ⊆ ℙ= are schemes of pointswithmultiplicities,
we write� ⊆ �′ if

� = {<1%1 , . . . , <B%B}, �′ = {<′1%1 , . . . , <′B′%B′}, B′ ≥ B, <′8 ≥ <8

(for us only the case <8 ∈ {1, 2} is relevant). This is equivalent to �(�) ⊇ �(�′).

Lemma 3.7. Let� ⊆ ℙ= be a scheme of points with multiplicities that is AH=(3).

(i) If codim �(�)3 =
(
=+3
3

)
, then any larger scheme�′ ⊇ � is also AH=(3).

(ii) If codim �(�)3 = len(�), then any smaller scheme�′ ⊆ � is also AH=(3).
(iii) In proving the Alexander-Hirschowitz theorem for 3, = in a non-exceptional case, it suffices to

consider general schemes of double points with the following number of B points:

s B

⌊
1

= + 1

(
= + 3
3

)⌋
≤ B ≤ s B

⌈
1

= + 1

(
= + 3
3

)⌉
.

Proof. (i) Since dim¥ �(�)3 = 0 and� ⊆ �′we have �(�′) ⊆ �(�) = 0. Thus codim¥ �(�′)3 =(
=+3
3

)
as well, so�′ is AH=(3).

(ii) � imposes a systemof len(�) linear equations on(3. If� isAH=(3) andhas codimension
ℓ (-), then this system of eqations has maximal rank, so the subsystem of equations coming
from�must also have maximal rank. We conclude that codim¥ �(�′) = len(�′), so it also has
expected codimension.
(iii) The two (possibly coinciding) numbers s, s are the largest resp. smallest possible num-

ber of points such that the minimum inmin{B(=+1),
(
=+3
3

)
} is attained in the first resp. second

argument. If general subsets of B double points are AH=(3), then by (i) and (ii) any other
number of general double points is AH=(3). �

Remark. While the precise statement is slightly different/stronger, morally speaking this is a
translation of corollary 1.24 into this setting, so solving the big Waring problem is essentially
the same as proving the Alexander-Hirschowitz theorem.

This basically removes the parameter B from the regular cases of the theorem. Notice how
we can still apply this method to the exceptional cases, for example while 3 = 3, = = 4 B = 7 is
exceptional, to prove AH4(3) for all other choices of B it suffices to consider B ∈ {6, 8}.
The next simplification is a very important one, and it relies on the following semi-continuity

property of the Hilbert function. Let ¥(I) be the purely transcendental field extension of ¥
obtained by adjoining the B(= + 1) indeterminates I = {I8 9 , 8 = 1, . . . , B , 9 = 0, . . . , =}. The set
of generic double points is the set

� = {2P1 , . . . , 2PB} ⊆ ℙ=¥(I) , P8 = [I80 : · · · : I8=].
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For any � ∈ �B(=+1)
¥

with �80 , . . . ,�8= not all zero for each 8 we get the specialization

�(�) = {2P1(�), . . . , 2PB(�)}, P8(�) = [�80 : · · · : �8=].

Theorem 3.8 (Semi-continuity of the Hilbert function). Let � be the scheme of B generic double
points and � any scheme of B double points. Then for any 3 ≥ 0,

dim¥ �(�)3 ≥ dim¥ �(�)3 .

Furthermore, for general � equality holds.

The proof of this statement (even slightly more general) can be found in the paper by Ha &
Mantero [HM21, Theorem D.3], we sketch the important ideas.

Idea of proof. Consider the following set:

�C =
{
� ∈ �B(=+1)

¥

��� dim¥ �(�(�))3 ≥ C
}
.

Claim 1. The sets �C are closet subsets of�B(=+1)
¥

.

Proof of claim. One may proceed as follows: Let 2 = { 2α | |α| = 3 } be a set of indeterminates
and let

5 =
∑
|α|=3

2α-
α ∈ ([2]

be the generic polynomial with coefficients 2. Consider the matrices

� =

[
%-α

%-9

]
9=0,...,=, |α|=3

, �(�) =
©«
�(P1(�))

...

�(PB(�))

ª®®®¬
where �(P8) is obtained from � by plugging in the values of the points into the variables.
Then the form 5 is in �(�(�))3 if and only its coefficients 2α satisfy

�(�) · (2(3,...,0) , . . . , 2α , . . . , 2(0,...,3))T = 0

This is a linear system of equations, so � ∈ �C if and only the kernel of �(�) has dimension at
least C. This is equivalent to some condition on the rank of �(�), which is a closed condition.

�claim

Claim 2. Let C0 B dim¥ �(�)3, then �C0 contains a dense open subset.

Proof of claim. Let 51 , . . . , 5C0 ∈ �(�)3 ⊆ ¥(I)[-0 , . . . , -=] be a ¥(I)-basis, WLOG 58 ∈ ¥[I][-].
Let" be thematrix indexed by 8 = 1, . . . , C0 and |α| = 3whose (8 ,α)-th entry is the coefficient
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of -α in 58 . Since they form a basis, " has maximal rank C0, so at least one minor does not
vanish identically. So there exists a dense open set* ⊆ �B(=+1) of points � ∈ * such that this
minor doesn’t vanish in the specialization "(�). In particular the specializations of the 58 are
linearly independent forms in �(�(�))3. �claim

These two claims give the proposition, because �C0 is a closed set containing a dense open,
hence all schemes of double points satisfy

dim¥ �(�)3 ≥ C0 = dim¥ �(�)3 .

Also, the dense open set* proves that we have equality for general �. �

This has the following surprising consequence:

Corollary 3.9. Fix =, 3, B. The following assertions are equivalent:

(i) Some specific collection of B double points is AH=(3).
(ii) All general collections of B double points are AH=(3).

Proof. Indeed, if a specific collection of double points � is AH=(3), then

max{
(
=+3
3

)
− B(= + 1), 0} = dim¥ �(�)3 ≤ dim¥ �(�)3 ≤ max{

(
=+3
3

)
− B(= + 1), 0},

so we have equality. But the theorem shows that a general collection of double points has the
same Hilbert function value at 3, so it must be also AH=(3)! �

This leads to the following algorithmic approach to the theorem.

Algorithm 1 Randomized algorithm for proving cases of the Alexander-Hirschowitz theorem
Require: Integers =, 3, B ≥ 1, Bound on coordinates of points A0=64.
Ensure: � = set of points such that 2� is AH=(3).
1: for 8 = 1, . . . , B do
2: Sample random integers 00 , . . . , 0= ∈ {−A0=64, . . . , A0=64}.
3: %8 ← [00 : · · · : 0=] //One should ensure that not all 08 = 0.
4: �8 ← m%8

5: end for
6: � ← �21 ∩ · · · ∩ �2B
7: 4G?38< ← max{

(
=+3
3

)
− B(= + 1), 0}

8: if dim¥ �3 = 4G?38< then
9: �← {%1 , . . . , %B}
10: else
11: return “Could not verify AH=(3) on this�.”
12: end if
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By Corollary 3.9 if this algorithm returns successfully for any random collection of points,
then we know that any general such collection of points is AH=(3)! A sample implementation
in Sage [The21] can be found in appendix A.

Example 3.10. While this algorithmic approach cannot resolve the exceptional cases, it can give
upper bounds on the defect. For example, the following randomly sampled set of 7 points
show that the defect is at most 1:

[1 : 0 : 1 : 0 : 0], [1 : 1 : 0 : 1 : 1], [1 : 1 : 1 : 1 : 1], [1 : 0 : 1 : −1 : 1],
[−1 : −1 : 0 : 1 : −1], [0 : 1 : 1 : 0 : −1], [1 : 0 : 0 : 1 : 1].

3.3. Terracini’s second lemma and the case = = 2

Terracini’s first lemma 1.29 gives us amethod to determine the dimension of the secant variety.
Terracini’s second lemma extends on this to give a necessary criterion for a collection of points
to not impose independent conditions.

Theorem 3.11. Assume that a general collection � = {2%1 , . . . , 2%B} of double points does not
imposing independent conditions on Oℙ= (3). Let G8 = �3(%8) ∈ +3,= be their images.

(i) There exists a positive-dimensional closed subvariety . ⊆ +3,= through G1 , . . . , GB such that for
all H ∈ . we have

)H+
3,= ⊆

〈
)G1+

3,= , . . . , )GB+
3,=

〉
ℙ
.

(ii) Any hypersurface V( 5 ) ⊆ ℙ= of degree 3 singular at %1 , . . . , %= is singular at each point of
�−1
3
(.).

In the proof we use the abstract secant variety of a projective non-degenerate variety - ⊆ ℙ#

�B- = { (I, G1 , . . . , GB) | I ∈ 〈G1 , . . . , GB〉ℙ } ⊆ ℙ# × - × · · · × -.

This variety has dimension B · dim- +min{B − 1, #}: The last B factors contribute B · dim-

dimensions, and the general collection of B points on - will span an (B − 1)-dimensional
projective subspace or the whole space 1. Notice that if �0 : ℙ

# ×∏
8 - → ℙ= is the projection

onto the first factor, then �0(�B-) = �B-.

Proof. Let I ∈ 〈G1 , . . . , GB〉ℙ be such that )I�B+3,= =
〈
)G1+

3,= , . . . , )GB+
3,=

〉
ℙ
(this is the only

“generality” assumption we need in this proof). Let ΣI B �−10 (I) ⊆ �B+3,= , we claim that
. B �1(ΣI) ⊆ +3,= is a subvariety with the desired properties.

• Notice first that ΣI is invariant under permutations by SB of component 1, . . . , B.
1This is because “being linearly dependent” is a closed property and by non-degeneracy there has to be some set
of points spanning amin{B − 1, #}-dimensional subspace.
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• By assumption dim �B+3,= > dim �B+3,= , so dimΣI ≥ 1. Clearly the projection ofΣI onto
+3,=×· · ·×+3,= is also positive-dimensional. As this set is invariant under permutations,
its projection onto the first (or any) factor cannot be finite, so dim. > 0.

• By the choice of I we have (I, G1 , . . . , GB) ∈ ΣI = �−10 (I), by permutation-invariance we
have G1 , . . . , GB ∈ ..

• Let H1 ∈ ., be the image of (H, H2 , . . . , HB , I) ∈ ΣI under �1, then

)H1+
3,= ⊆

〈
)H1+

3,= , . . . , )HB+
3,=

〉
ℙ
⊆ )I�B+3,= =

〈
)G1+

3,= , . . . , )GB+
3,=

〉
ℙ
.

This establishes (i). For (ii) let V( 5 ) ⊆ ℙ= be a hypersurface singular at %1 , . . . , %B , then

5 ∈ (m2
%1
∩ · · · ∩m2

%B
)3

1.16
=

〈
)%1+

3,= , . . . , )%B+
3,=

〉⊥
ℙ
⊆ ()H+3,=)⊥ 1.16

= (m2
�−1
3
(H))3 .

for any H ∈ ., i. e. V( 5 ) is singular along �−1
3
(.). �

Before applying Terracini’s second lemma we recall a basic version of Bézout’s theorem.

Theorem 3.12. Let �, �′ ⊆ ℙ2 be plane curves of degree 3, 3′, then exactly one of the following is true:

(i) � and �′ share an irreducible component;
(ii) � ∩ �′ is a 0-dimensional scheme of length �.�′ = 3 · 3′, in particular #(� ∩ �′) ≤ 33′.

Theorem 3.13 (The case = = 2). A general collection of B double points�B ⊆ ℙ2 imposes independent
conditions on degree 3 plane curves except in the following two cases:

• 3 = 2, B = 2;
• 3 = 4, B = 5.

Proof. We may always assume B ≥ 2. We check 3 = 1, . . . , 4 first.

(1) Lines are never singular, and the expected dimension of ��(1) is always 0.
(2) Any singular quadratic curve � is necessarily a union of two lines, and if#Sing(�) ≥ 2,

then � must be the double-line through these two points. So codim ��2(2) = 6 − 1, one
less than expected. For B ≥ 3 the expected dimension (0) is correct.

(3) For B = 3, let ℓ1 , ℓ2 , ℓ3 be the lines through the three points. Any cubic singular at these
points must contain each of the ℓ8 (as 3 = �.ℓ8 < 2 · 2, using Bézout), so it must be the
cubic ℓ1 ∪ ℓ2 ∪ ℓ3. So the expected dimension of 1 is correct, and hence this covers the
cases B = 1, 2, 3; for 4 the expectation that there are no cubics is also verified.

(4) For B = 4, expdim ��4(4) =
(2+4

4

)
− 3 · 3 = 3. We first show that any quartic � with 4

singularities contains a (smooth) quadric & through these points. Indeed, take a fifth
point on �, let& be a quadric trough these points, then 8 = �.& < 2 ·4+1 shows that by
Bézout � must contain &. Thus, requiring the quartic to contain two additional general
(single) points forces � = & ∪ &′, each unique (!) quadric containing the four singular
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points and one of the additional points. This shows dim ��3(4) − 2 = 1 as desired, this
implies the remaining cases B = 1, 2, 3, 4 (Lemma 3.7).
For B = 5 we expect dim ��5(4) = 5, but as the previous case there actually does exists a
unique quartic singular in 5 general points, namely the double quadric through these
points.

Now let 3 ≥ 5 and assume that a general collection of B double points does not impose
independent conditions on plane curves of degree 3. Let � be a plane curve through �B ,
by Terracini’s second lemma � must contain an irreducible plane curve . of degree ; in its
singular locus.

• This means 2. ⊆ �, so 2; ≤ 3.
• The family of curves through B general points is nonempty only if dim¥[-0 , -1 , -2]; > B.
• The largest B′ such that B′(= + 1) = min{B′(2 + 1),

(2+3
2

)
} is B′ = b 13

(
3+2
2

)
c. Suppose B < B′,

then B + 1 would also be an exceptional case, so we may assume B ≥ B′.

Summarizing, we have the following three inequalities

2; ≤ 3
2.⊆�

, B ≤
(
; + 2
2

)
− 1 = ;(; + 3)

2
C contains B general points

,

⌊
1

3

(
3 + 2
2

)⌋
≤ B.

Combining these yields ⌊
(3 + 2)(3 + 1)

6

⌋
≤ B ≤ 3

4

(
3

2
+ 3

)
which we can evaluate to admit integer solutions 3 = 0, 2, 3, 4, 6. So the only interesting case
is 3 = 6, which gives

⌊
56
6

⌋
≤ B ≤ 9, so B = 9 and ; = 3. So � is necessarily a double cubic, more

specifically the unique cubic through 9 general points. This incidentally matches the expected
dimension

(2+6
2

)
− 9 · 3 = 1, so this case is also not exceptional. �

3.4. The exceptional cases
Theorem 3.14. For B ≤ = + 1 we have

dim �B+
3,= = dim { ( ∈ Sym(= + 1,¥) | rank(() ≤ B } − 1 = B= + B − 1 −

(
B

2

)
.

In particular +2,= is B-defective for B = 2, . . . , = with �B =
(
B
2

)
.

Proof. The first equality is immediate from the discussion in example 1.3. There we also
discussed the group action

� = GL(=,¥)	 Sym(=,¥), " ⊲ ( B "("T.

https://www.wolframalpha.com/input/?i=floor%28%28d%2B2%29%28d%2B1%29%2F6%29%3C%3D+d%2F4*%28d%2F2%2B3%29
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Under this action the symmetric matrices of given rank form a single orbit

{ ( ∈ Sym(=,¥) | rank(() = B } = � ⊲

[
1B 0

0 0

]
︸      ︷︷      ︸

C�B

= 5 (�),

where 5 : �→ Sym(=,¥), 5 (") = " ⊲ �B . The fibre of ( = 5 (#) is

5 −1(() =
{
" ∈ �

�� "�B"
T = ( = #�B#

T }
=

{
" ∈ �

�� (#−1")�B(#−1")T = �B

}
= # · 5 −1(�B) � Stab�(�B).

Since 5 is dominant, the dimension of a general fibre is dim� − dim 5 (�), but all fibres are
isomorphic, so it suffices to calculate the dimension of Stab�(�B). We use block matrix
notation to calculate

"�B"
⊥ =

[
� �

� �

] [
1B 0

0 0

] [
�T �T

�T �T

]
=

[
��T ��T

��T ��T

]
!
=

[
1B 0

0 0

]
= �B

This implies � ∈ O(B,¥) and � = 0 (as �T is invertible). As" ∈ GL(=,¥), this in turn implies
� ∈ GL(= − B,¥) (and � ∈ Mat(B, = − B,¥), but we knew this already). Conversely, any matrix
of this form fixes �B , so

Stab�(�B) =
[
O(B,¥) Mat(B, = − B,¥)

0 GL(= − B,¥)

]
, dimStab�(�B) =

(
B

2

)
︸︷︷︸

dimO(B,¥)

+B(= − B) + (= − B)2.

With this knowledge we can compute

dim 5 (�) = dim� − dimStab�(�B) = =2 −
(
B

2

)
− =(= − B) = B= −

(
B

2

)
.

Translating this back to secant varieties gives

dim �B+
2,= = dim { ( ∈ Sym(= + 1,¥) | rank(() = B } − 1 = B(= + 1) − 1 −

(
B

2

)
. �

Lemma 3.15 (The exceptional quartic cases). Let 3 = 4,

(=, B) ∈ {(2, 5), (3, 9), (4, 14)},
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then �B does not impose independent conditions of on quartic hypersurfaces in ℙ= . More specifically
there exists a quartic hypersurface in ℙ= through B general double points, even though the expected
dimension of ��B (4) is zero.

Proof. The values in question are

= B
(
=+4
4

) (
=+4
4

)
− B · (= + 1)

2 5 15 0

3 9 35 −1
4 14 70 0

so we expect there to be no quartics through�B at all.
But since B =

(
=+2
2

)
− 1 < dim¥ ¥[-0 , . . . , -=]2, there exists a unique quadratic hypersurface

& through B general points. So this double quadric 2& is a singular quartic through�B double
points. One may use the randomized algorithm to prove that the defect is 1. �

Lemma 3.16 (The exceptional cubic case). �7+3,4 is defective, i. e. there exists a cubic hypersurface
in ℙ4 through 7 general double points even though the expected dimension of ��7(3) is zero.

Recall that a rational normal curve �3 ⊆ ℙ3 is any curve projectively equivalent to+3,1 ⊆ ℙ3.2

We use the following basic facts, which can be found for example in the book by Harris
[Har92]:

• For any = + 3 points in ℙ= in general linear position (i. e. no = + 1 lie in a hyperplane)
there exists a rational normal curve through these points [Har92, Theorem 1.18].

• The rational normal curve �3 corresponding to the image of [C0 : C1] ↦→ [C30 : C3−10 C1 : · · · :
C31 ] can be written as the set of points [G0 : · · · : G3] ∈ ℙ= such that [Har92, Example 1.16]

rank


G0 G1 . . . G:

G1 G2 . . . G:+1
...

...
. . .

...

G3−: G3−:+1 . . . G3


= 1

Proof of lemma 3.16. By the remark about rational normal curves there exists a rational normal
curve � through 4 + 3 general points. After a change of coordinates we may assume that this
is given as

C =

 [G0 : · · · : G4] ∈ ℙ
4

������� rank

G0 G1 G2

G1 G2 G3

G2 G3 G4

 ≤ 1

 .
2More intrinsically, after some identificationℙ3 � ℙ(¥[G0 , G1]3), � is the image ofℙ1 under G ↦→ [ 50(3), . . . , 53(G)]
for some basis of ¥[G0 , G1]3 .
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Points on secants to C hence correspond to linear combinations of rank 1 matrices of the
previous shape, which have certainly rank ≤ 2. Hence we get the inclusion (which is actually
an equality, but we dont’t need this)

�2� ⊆ - B

 [G0 : · · · : G4] ∈ ℙ
4

������� rank

G0 G1 G2

G1 G2 G3

G2 G3 G4

 ≤ 2

 = V
©«det


-0 -1 -2

-1 -2 -3

-2 -3 -4


ª®®¬ .

So - ⊆ ℙ4 is a degree 3 hypersurface containing the 7 points, and it is an elementary (but
tedious) calculation that C ⊆ Sing(-). This shows that �(�)3 ≠ 0, despite the expected
dimension being 0. �

This concludes all exceptional cases from the list.

3.5. Traces, residues and Terracini’s inductive argument
In this section we provide a way to reduce the property AH=(3) of a scheme of double points
to that of a scheme in a smaller projective space or with smaller degree. This will enable us to
use induction in the proof of the Alexander-Hirschowitz theorem.

Definition 3.17. Let - ⊆ ℙ= be a scheme, I- its corresponding ideal sheaf and let � ⊆ ℙ= be
a hyperplane.

(i) The scheme Tr�(-) B - ∩ � (formally: the fibre of - under the inclusion � ↩→ ℙ=) is
called the trace of - with respect to �.

(ii) The scheme Res�(-) defined by the ideal sheaf I- : I� is called the residue of - with
respect to �.

This has the following interpretation:

Lemma 3.18 (Trace and residue). Let� = {2%1 , . . . , 2%B} be a collection of double points, of which
the first D ≤ B are supported on a hyperplane � : � ↩→ ℙ= .

(i) Tr�(�) is the scheme of D double points {2%1 , . . . , 2%D} ⊆ � � ℙ=−1.
(ii) Res�(�) is the scheme {%1 , . . . , %D , 2%D+1 , . . . , 2%B} ⊆ ℙ= .
(iii) We have the short exact sequence of ideal sheaves

0 IRes� (�)(−1) I� �∗ITr� (�) 0

Proof. After a change of coordinates we may assume that � = {-0 = 0}.

(i) We distinguish two cases.

• If % ∉ �, then V(m2
%
+ (-0)) = ∅.
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• If % ∈ � then without loss of generality let % = [0 : · · · : 0 : 1], then

((-0 , . . . , -=−1)2 + (-0))/(-0) = (-1 , . . . , -=−1)2︸             ︷︷             ︸
=m2

%
(in ℙ=−1)

⊆ ¥[-1 , . . . , -=].

Hence
�(Tr�(�)) = �({2%1 , . . . , 2%D}) ⊆ ¥[-1 , . . . , -=]

which establishes the statement.
(ii) • Let % ∉ �, WLOG % = [1 : 0 : · · · : 0], then 5 ∈ m2

%
: (-0) means - 5 = 0 and all

its derivatives vanishes at %. This implies the same for 5 , so 5 ∈ m2
%
, and in particular

m2
%
: (-0) = m2

%
.

• Let % ∈ �, i. e. -0 ∈ m% , then m% ⊆ m2
%
: (-0). If 5 ∈ m2

%
: (-0), then % 5

%-0
(%) = 5 (%) = 0,

so 5 ∈ m% and we have equality.
This establishes the desired equality

�(�) : (-0) = (m2
%1

: (-0)) ∩ · · · ∩ (m2
%B

: (-0)) = m%1 ∩ · · · ∩m%D ∩m2
%D+1
∩ · · · ∩m2

%B
.

(iii) It suffices to check exactness of the following sequence of (homogeneous) ideals

0 �(�) : (-0) �(�) (�(�) + (-0))/(-0) 0,
·-0

but this is straightforward from the definitions. �

Twisting with O(3) and taking global sections of the exact sequence from the previous
lemma yields

Corollary 3.19 (Castelnuovo exact sequence). For� and� as before we have the left-exact sequence

0 �(Res�(�))3−1 �(�)3 �(Tr�(�))3 .

In particular we have the Castelnuovo inequality

dim¥ �(�)3 ≤ dim¥ �(Res�(�))3−1 + dim¥ �(Tr�(�))3 .

This estimate allows for a crucial reduction step in the proof of the Alexander-Hirschowitz
theorem.

Theorem 3.20 (Terracini’s inductive argument). Let � ⊆ ℙ= be a union of B double points, D of
them contained in a hyperplane �. Assume

• Tr�(�) imposes independent condition on Oℙ=−1(3);
• Res�(�) imposes independent conditions on Oℙ= (3 − 1);
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• One of the following two pairs of inequalities hold true

(a) D= ≥
(
=−1+3
=−1

)
and B(= + 1) − D= ≥

(
3+=−1
=

)
,

(b) D= ≤
(
=−1+3
=−1

)
and B(= + 1) − D= ≤

(
3+=−1
=

)
.

Then� does impose independent conditions on Oℙ= (3).

Remark. The two sets of inequalities can be expressed in the single statement

“D= lies between the numbers
(
=−1+3
=−1

)
and B(= + 1) −

(
=−1+3
=

)
.”

Proof. We know that dim¥ �(�)3 ≥ max{
(
=+3
=

)
− B(= + 1), 0}, our goal is to show equality. The

first two assumptions ensure (notice that Res�(�) is a mixture of D single and B − D double
points!)

dim¥ �(Tr��)3 = max

{(
= − 1 + 3
= − 1

)
− D=, 0

}
,

dim¥ �(Res��)3−1 = max

{(
= + 3 − 1

=

)
− (B − D)(= + 1) − D, 0

}
.

We can apply these identities to the Castelnuovo inequality in the two cases.

(a) Here the two maxima are 0, so Castelnuovo yields �(�)3 = 0.
(b) Here the maxima are attained at first term, so using the addition theorem for the

binomial coefficients we get

dim¥ �(�)3 ≤
(
= − 1 + 3
= − 1

)
− D= +

(
= − 1 + 3

=

)
− (B − D)(= + 1) − D =

(
= + 3
=

)
− B(= + 1).

Thus, in both cases dim¥ �(�)3 ≤ max{
(
=+3
=

)
− B(= + 1), 0} as desired. �

Example 3.21. We consider the case = = 3 and try to use Theorem 3.20 for induction on 3 ≥ 3.
By Lemma 3.7 we need to consider the values

1

3 + 1

(
3 + 3
3

)
=
(3 + 3)(3 + 2)(3 + 1)

4!
{

3 3 4 5 6

s 5 9 14 21

s 5 8 14 21

• The base case 3 = 3 can be explicitly evaluated on the “star configuration”

%0 = [1 : 0 : 0 : 0], %1 = [0 : 1 : 0 : 0], %2 = [0 : 0 : 1 : 0], %3 = [0 : 0 : 0 : 1],
%4 = [1 : 1 : 1 : 1].

One immediately verifies that �({2%0 , . . . , 2%4})3 = 0, which is expected.
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• Next is 3 = 4, s = 8. Consider a union � of 8 double points, in order to satisfy the
hypotheses of Theorem 3.20 we need to choose 0 ≤ D ≤ 8 such that

12 = 8(3 + 1) −
(
4 + 3 − 1

3

)
≤ 3D ≤

(
3 − 1 + 4
3 − 1

)
= 15 =⇒ D ∈ {4, 5}.

We take3 D = 4 and specialize 4 of the 8 double points on a hyperplane � ⊆ ℙ3 such
that they are general in � � ℙ2, then this scheme of double points isAH2(4) by theorem
3.13.
Arrange the remaining 4 points � in ℙ3 in general position, then � is AH3(3) by the
induction hypothesis, i. e. dim¥ �(�)3 = 4. If the single points on � are in general
position, then forcing the cubic hypersurfaces to pass through these points reduces
�(Res��)3 to 0. Indeed, otherwise there would be a cubic which is a union of a quartic
and �, singular along four general points, which is impossible (because the singular
locus of this quartic would be a linear subspace containing 4 points in ℙ3 in general
position).
Thus we can apply Theorem 3.20 and see that a general scheme of 8 (and hence also
B ≤ 8) double points is AH3(4).

• For 3 = 5, B = 14, the inequalities force D = 7. A general scheme of 7 double points in the
plane is AH2(5), and the scheme� of the remaining 7 double points in ℙ3 is also AH3(4)
by induction. Since there is no cubic through 7 general double points, the dimension
dim¥ �(�)4 = 7 can be reduced to 0 by imposing the additional condition of passing
through the 7 single points on �.
Again we can apply the Theorem and see that a general scheme of 14 (and hence any
number!) double points is AH3(5).

• The case 3 = 6, B = 21 is where we first run into trouble. The inequalities give 28 ≤ 3D ≤
28, so Theorem 3.20 can not be applied. The case B = 20 admits the choices D ∈ {8, 9},
and it is possible to carry out the argument in this case.

We see that it is easier to consider B < s, since then the interval between
(
=−1+3
=−1

)
and

B(= + 1) −
(
=−1+3
=

)
will always contain some D=, D ∈ ℕ0. To adress the “top” case, i. e. AH3(6)

for 21 general double points, is much more difficult, and requires a different, more refined
strategy.

3.6. The cubic case 3 = 3

In the case of cubics we cannot use Terracini’s inductive argument, since virtually all cases for
3 = 2 are defective.
3Notice that D = 5 would not work here, because no general scheme of 5 double points in the plane is AH2(4)
(Theorem 3.13).



52 3. The Alexander-Hirschowitz Theorem

We use the following notation:

B= B s =


(=+3)(=+2)

6 if = ≡ 0, 1 mod 3,

(=+4)(=+1)
6 if = ≡ 2 mod 3,

ℓ= B

(
= + 3
3

)
− B=(= + 1)

The cases = = 2 (Theorem 3.13) and = = 3 (previous example) have been discussed. The
proof for the general case is split into two cases depending on = mod 3. We need to show that
a set of B= general double points in ℙ= is AH=(3). In order to apply induction and to stay in
this particular case, it is necessary to do steps of size 3, i. e. reduce the statement from ℙ= to a
linear subspace of codimension 3. The key tool to this is

Theorem 3.22 ([BO08, Proposition 5.4]). Let = ≥ 3, = ≠ 4, and let ! ⊆ ℙ= be a subspace of
codimension 3.

(i) If = ≡ 0, 1 mod 3, then there are no cubic hypersurfaces in ℙ3 which

• contain !,
• contain B=−3 = =(=−1)

6 general double points supported in ! and
• contain B= − B=−3 = = + 1 general double points in ℙ= .

(ii) If = ≡ 2 mod 3, then there are no cubic hypersurfaces in ℙ3 which

• contain !,
• contain B=−3 = (=+1)(=−2)6 general double points supported in !,
• contain B= − B=−3 = = + 1 general double points in ℙ= and
• contain a general scheme � of length len(�) = ℓ= supported at a point in ! such that and

len(� ∩ !) = ℓ= − 1.

Idea of proof. The main three steps are the following:

• Consider first three general codimension 3 hypersurfaces !, ", # ⊆ ℙ= (= ≥ 5) with
3 general double points on each of them. The first claim is that no cubic hypersurface
contains this constellation, which is proven by induction on = using the isomorphism

�(! ∪" ∪ #)3︸            ︷︷            ︸
over ℙ=

� �((! ∪" ∪ #) ∩ �)3︸                     ︷︷                     ︸
over � � ℙ=−1

for a general hyperplane � ⊆ ℙ= .4

• This fact is used to prove a similar statement about two linear subspaces: Let !, " ⊆
ℙ= be general codimension 3 hypersurfaces and consider = − 2 general double points

4The argument by Brambill & Ottavani contains an incorrect statement, fixed by Ha & Mantero [HM21, Proof of
Claim 5.1.3].
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on each of !, ", and additionally three general single points in ℙ= , then no cubic
hypersurface contains this scheme. This statement is provenusing inducion on =−3 ↦→ =

by introducing a third codimension 3 space # and specializing the points in a clever
way to the intersections.

• Finally, the statement in the theorem is proven by introducing a second codimension 3

subspace " and using induction on = − 3 ↦→ =. In this (and also in the previous steps)
the base cases of the induction have to be checked manually (using a computer). �

Corollary 3.23 (The case 3 = 3). A general collection of B double points in ℙ= is AH=(3) except in
the case = = 4 (Lemma 3.16). More specifically:

(i) If = ≡ 0, 1 mod 3, = ≠ 4, then B= general double points in ℙ= are AH=(3),
(ii) If = ≡ 2 mod 3, then B= general double points and a zero-dimensional scheme of length ℓ= impose

independent conditions on cubics.

Proof. Notice that the second part implies the first part. Indeed, for = ≡ 0, 1 mod 3 B= = s = s

is the only case which one needs to check. In the second case, the argument in Lemma 3.7(ii)
shows that a general scheme of B= double points is AH=(3). Moreover, a general scheme of
s = B= + 1 double points contains a (general) scheme of B= double points and a scheme of the
prescribed length (inside the (= + 1)-th double point), so the argument from Lemma 3.7(i)
applies.

We now turn to the proof of the two statements. Consider the exact sequence

0 I!(3) Oℙ= (3) �∗O!(3) 0

Taking global sections and looking at the subspace of functions passing through the scheme
at hand, we can apply induction on = (in steps of 3).

(i) The induction start is = = 3 (previous section) and = = 7 (has to be done manually).
Assume the statement is true for ℙ=−3.
Specialize B=−3 = =(=−1)

6 of the B= double points on ! in general position, and the remaining
= + 1 points in general position in ℙ= . Then Theorem 3.22 shows that no cubics contain ! and
are singular at the given points, while the induction hypothesis shows that no cubics in ! are
singular on the =(=−1)

6 points in !. This yields the theorem for the whole configuration.
(ii) In this case the starting point is = = 2 (Theorem 3.13).
Specialize B=−3 = (=+1)(=−2)6 double points on ! and arrange the remaining B= − B=−3 = = + 1

double points in ℙ= . Then specialize the scheme � of length ℓ= on ! such that �∩ ! has length
ℓ= − 1. Then again Theorem 3.22 and the induction hypothesis can be applied to the exact
sequence, concluding the proof. �



54 3. The Alexander-Hirschowitz Theorem

3.7. La methode d’Horace differentielle
Now that all exceptional cases (from the table of Theorem 3.3) have been explained, and all
cases for = ≤ 2 and 3 ≤ 3 have been discussed, we are ready to apply the crucial induction
step. This clever refinement of Terracini’s induction step 3.20 (also known as the “methode
d’Horace”) is called the “methode d’Horace differentielle”, an explaination of the name is
given in the paper by Bernardi et al. [Ber+18, Section 2.2.1].

Theorem 3.24 ([HM21, Theorem 2.9]). Fix = ≥ 2, 3 ≥ 4 and s ≤ B ≤ s. Let @ ∈ ℤ, � ∈
{0, . . . , = − 1} be defined via the following expression:

=@ + � = B(= + 1) −
(
= + 3 − 1

=

)
.

Assume that

(i) @ general double points in ℙ=−1 are AH=−1(3),
(ii) B − @ general double points in ℙ= are AH=(3 − 1) and
(iii) B − @ − � general double points in ℙ= are AH=(3 − 2),

then B general double points in ℙ= are AH=(3).

Using the cases 3 ≤ 3 and = ≤ 2, one can see that Theorem 3.24 can be used to prove all but
finitely may cases for (=, 3) in the Alexander-Hirschowitz theorem; the remaining cases can
be checked manually [HM21, Proof of Theorem 2.10].
We give a rough outline of the proof. Recall that the value of the Hilbert function of

a zero-dimensional scheme � is the length of � for 3 � 0. This motivates the following
definition:

Definition 3.25. Let� ⊆ ℙ= be a zero-dimensional scheme.

(i) � is called multiplicity 3-independent if HF(�, 3) = len(�).
(ii) If + ⊆ ¥[-0 , . . . , -=]3 is a vector space, then the Hilbert function with respect to + is

HF(�, +) B dim¥+ − dim¥(�(�) ∩+).

(iii) � is called multiplicity +-independent if HF(�, +) = len(�).

Definition 3.26 ([HM21, Appendix E]). A zero-dimensional scheme� is said to be curvilinear
if one of the following equivalent conditions is satisfied:

(i) Locally,� can be embedded into a smooth curve
(ii) For every % ∈ �, dim)%� ≤ 1

(iii) � is the (disjoint) union of schemes of the form Spec¥[C]/(C ;), ; ∈ ℕ+.
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Curvilinear schemes are useful to us for the following two reasons: Firstly, they form a
dense open subset of the Hilbert scheme HilbB(ℙ=) of zero-dimensional projective schemes
of length B [HM21, Proposition E.7]. The second reason is the following theorem [HM21,
Lemma 2.7], allowing to reduce computations to curvilinear schemes.

Theorem 3.27 (Curvilinear Lemma). Let� ⊆ ℙ= be a zero-dimensional scheme contained in a finite
union of double points. Let + ⊆ ¥[-]3 be a vector space. Then the following are equivalent:

(i) � is multiplicity +-independent;
(ii) every curvilinear subscheme of� is multiplicity +-independent.

Now we can outline the proof of Theorem 3.24.

Proof of Theorem 3.24 (outline). One proceeds in 4 steps.

Step 1. Fix a hyperplane � ⊆ ℙ= . Choose

• a general collection 2Ψ of B − @ − � double points in ℙ= \ �,
• general collections 2Λ, 2Γ of @ and � double points in �.

Step 2. By hypothesis (ii), 2Λ ∪ 2Γ is AH=(3). Taking the trace of 2Γ with respect to �, one
obtains that 2Λ ∪ Tr�(2Γ) andΨ ∪ 2Λ ∪ Tr�(2Γ) have maximal Hilbert function in degree 3,
(that is: min{dim¥ (3 , len(. . . )}; this is always an upper bound). From this point on the proof
is split into two cases depending on whether B = s or B = s < s. Then one verifies that it
suffices to prove that 2Γ is multiplicity+ B �(2Λ∪2Ψ)-independent. For example, in the case
B = s the goal of the theorem is to show that

HF(2Γ ∪ 2Λ ∪ 2Ψ, 3) = B(= + 1).

One can show thatHF(2Λ∪2Ψ, 3) = (=+1)(B−�), then if 2Γweremultiplicity+-independent,
we get the desired result

HF(2Γ ∪ 2Λ ∪ 2Ψ, 3) = dim¥ (3 − dim¥

(
�(2Γ)3 ∩ �(2Λ ∪ 2Ψ)3

)
= HF(2Λ ∪ 2Ψ, 3) + len(2Γ) = (= + 1)(B − �) + �(= + 1) = B(= + 1).

Step 3. In order to show that 2Γ is multiplicity �(2Λ ∪ 2Ψ)-independent, a degeneration
argument is used. For C = (C1 , . . . , C�) ∈ ¥� we take a flat family of general points ΓC =
{�1,C1 , . . . , ��,C�} ⊆ ℙ= and a family of hyperplanes {�C1 , . . . , �C�} such that

(1) �8 ,C8 ∈ �C8 for 8 = 1, . . . , �

(2) �8 ,C8 ∉ � for any C8 ≠ 0 and 8 = 1, . . . , �

(3) For C = 0, �0 = � and �8 ,0 = �8 (the points in Γ) for 8 = 1, . . . , �.

So we have a parametrized family of (single) points on hyperplanes, which “converges” to
Γ ⊆ � for C → 0. A stronger version of the semi-continuity of the Hilbert function [HM21,
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Theorem D.9] shows that in order to prove that 2Γ is multiplicity+-independent, it suffices to
prove that 2ΓC is multiplicity +-independent for some (!) C.
Step 4. One proceeds to argue by contradiction that no such C exists. By the Curvilinear

Lemma 3.27, for each C there exists a curvilinear scheme ΘC = �1 ∪ · · · ∪ �� ⊆ 2ΓC supported
in ΓC which is also not multiplicity +-independent, i. e.

HF(2Λ ∪ 2Ψ ∪ ΘC , 3) < HF(2Λ ∪ 2Ψ, 3) + len(ΘC).

As the curvilinear schemes are dense in the Hilbert scheme, there exists a limit Θ0 where
C → 0. Finally, one can use Θ0, the semicontinuity of the Hilbert function and Castelnuovos
inequality 3.19 to arrive at a contradiction. �

Example 3.28. We return to the case = = 3, 3 = 6, B = 21 from example 3.21, where the easy
induction step could not be applied. Here @ = 9, � = 1, and (according to the proof) we choose
a scheme� consisting of

• a general collection 2Ψ of 11 double points outside �,
• a general collections 2Λ of 9 double points in � and a single double point 2� in �.

The problem was that the point 2� of length 4 could neither be placed in the trace nor in the
residue of � with respect to �. The degeneration argument enables us to substitute 2� by a
curvilinear scheme �, having length len(Tr�(�)) = 1, so it fits in the trace.

Remark. Postinghel published a completely different proof of the Alexander-Hirschowitz the-
orem using degenerations [Pos12].
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Applications

In this chapter we are going to look into some computational aspects of the Waring problem
and relatednotions. Firstwewill discuss somealgorithms to calculate aWaringdecomposition
of a given form. Then we will study the complexity of the Waring rank in general and sketch
a proof by Shitov that the Waring problem is NP-hard. Finally, we give some application of
the Waring Rank problem to the problem of

4.1. Algorithms for the Waring rank

First we start with a not so serious example.

Example 4.1 (An extremely fast, but useless algorithm). Consider the following algorithm.

Algorithm 2 The Alexander-Hirschowitz algorithm
Require: A form � ∈ ¥[G0 , . . . , G=]3.
Ensure: A =WR(�).
1: A ← �(=, 3), obtained from Corollary 1.36.

While this algorithm doesn’t even look at the form, it will be correct on virtually all inputs
from¥[G0 , . . . , G=]3, because a dense open set of forms has generic rank. But it will be certainly
wrong for any form of non-generic rank, so it’s hard to argue that this algorithm even solves
the problem.

A more useful example can be considered in the case 3 = 2. In this case example 1.3 tells
us that the Waring rank of � = G�GT equals the rank of the symmetric matrix �. More
specifically:
If* = [D8 9] ∈ O(=+1,¥)with*−1�* = diag(�0 , . . . ,�=), then let � = { 8 ∈ {0, . . . , =} | �8 ≠ 0 }

�(G) =
∑
8∈�

�8!
2
8 , !8 = G8 ◦*−1 =

=∑
9=0

* 98G8 .

This leads to the following algorithm.
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Algorithm 3Waring decomposition using orthogonal diagonalization
Require: A form � =

∑
1≤8 , 9≤= 18 9 ∈ ¥[G1 , . . . , G=]2.

Ensure: A =WR(�), �1 , . . . ,�A ∈ ¥, !1 , . . . , !A ∈ ¥[G1 , . . . , G=]1 with � =
∑A
8=1 �8!

2
8

1: �← [ 18 9+1 982 ]=8,9=1.
2: * ← >ACℎ>6>=0;_4864=10B8B(�).
3: � ← *T�* //This is a diagonal matrix of eigenvalues of �.
4: A ← rank(�)
5: {81 , . . . , 8A} ← { 8 ∈ {1, . . . , =} | �88 ≠ 0 }
6: for 9 = 1, . . . , A do
7: � 9 ← �8 9 ,8 9

8: !8 ← *8 9 ,1G1 + · · · +*8 9 ,=G=
9: end for

We also consider the case of binary forms, i. e. forms in two variables � ∈ ¥[G0 , G1], which
was already considered by Sylvester in the 1800’s. We give a modern treatment, following
[BGI11, Section 3].
We recall the basics about Grassmannians [Har92, Lecture 6].

Definition 4.2. Let + be a ¥-vector space of dimension =.

(i) The Grassmannian of subspaces of dimension 0 ≤ : ≤ = is the set

�(:, +) B {* ⊆ + | * is a vector subspace of dimension : } .

(ii) The Grassmannian of projective subspaces of ℙ(+) of dimension 0 ≤ : ≤ = − 1 is the set

�(:,ℙ(+)) B {* ⊆ ℙ(+) | * is a linear subspace of dimension : } .

The Grassmannians are projective varieties in a natural way: We have the Plücker embedding

� : �(:, +) → ℙ(
:∧
+), * = 〈E1 , . . . , E:〉¥ ↦→ [E1 ∧ · · · ∧ E:]

This is well-defined, as a different choice of a basis of * changes the wedge product only
by the determinant of some base change matrix, so this does not change the representative
in ℙ(∧: +). The map � is injective and its image is a projective variety, thus we made
�(:, +) � �(: − 1,ℙ(+)) into a projective variety. Since subspaces * ⊆ + of dimension :

are in natural correspondence with subspaces of dimension = − 3 in +∨, we have a natural
isomorphism

:,=−: : �(:, +) � �(= − :, +∨).

We cite the following Lemma. Let + = ¥[G0 , G1]1 be the two-dimensional vector space of
linear forms.
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Lemma 4.3 ([BGI11, Lemma 19]). For 3 ≥ A ≥ 1 consider the map

)A,3−A+1 : ℙ(SA+) → �(3 − A + 1, S3+), [�] ↦→ � · S3−A+.

(i) The image of � ◦ )A,3−A+1 in ℙ(∧3−A+1 S3+) � ℙ(S3−1+A(SA+)) is the (3 − A + 1)-th Veronese
embedding of ℙ(SA+).

(ii) Identifying �(3 − A + 1, S3+) � �(A − 1,ℙ(S3+∨)), this Veronese variety is the set of linear
spaces A-secant to the rational normal curve C3 = �3(S1+∨) ⊆ ℙ(S3+∨). More precisely, the
image of [�] is the A-secant spanned by the linear factors of �.

After identifying ℙ(S3+∨)with ℙ(S3+), we get the following maps:

ℙ(SA+) �(3 − A,ℙ(S3+)) �(A − 1,ℙ(S3+∨)) �(A − 1,ℙ(S3+)))A,3−A+1

�

:,=−:
�

�

The content of lemma 4.3 can be rephrased as follows: For a projective subspace ℙ(,) ⊆
ℙ(S3+) the following are equivalent:

• ℙ(,) is a A-secant to C3 in A distinct points;
• ℙ(,) = �([�]) for some form � with 3 distinct roots.

Therefore we get the following description of the Waring rank of a binary form.

Corollary 4.4. The Waring rank of a form 0 ≠ � ∈ S3+ is the smallest A ∈ ℕ+ such that

• � ∈ ℙ(,) ⊆ ℙ(S3+) for some ℙ(,) ∈ im(�) ⊆ �(A − 1,ℙ(S3+)) and
• there exists a form �0 ∈ SA+ with A distinct roots and �([�0]) = ℙ(,).

To describe the image of )A,3−A+1([�0]) notice that if �0 =
∑A
8=0 D8G

8
0G

A−8
1 , then a basis �0 ·

¥[G0 , G1]3−A is given by {
A∑
8=0

D8G
8+9
0 G

3−8−9
1

����� 9 = 0, . . . , 3 − A
}
.

With respect to the monomial basis, this is the subspace spanned by the rows of the following
(3 − A + 1 × 3 + 1)-matrix: 

D0 D1 . . . DA 0 . . . 0 0

0 D0 D1 . . . DA 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 D0 D1 . . . DA 0

0 0 . . . 0 D0 D1 . . . DA


Let /0 , . . . , /3 be the dual basis of the monomial basis (which is the monomial basis with an
extra factor of

(
3
8

)
, see the apolarity section), then :,=−: maps such a span to the intersection
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of the hyperplanes 
�0 : D0/0 + · · · + DA/A = 0

�1 : D0/1 + · · · + DA/A+1 = 0
...

�3−A : D0/3−A + · · · + DA/3 = 0

In the view of Corollary 4.4 we see that � =
∑3
8=0 08

(
3
8

)
G 80G

3−8
1 ∈ S3+ belongs to the subspace

ℙ(,) = �([�0]) if and only if � ∈ �0 ∩ · · · ∩�3−A defined using the coefficients of �0 as before.
This can be described as the linear system of equations in D = (D0 , . . . , DA)

00 01 . . . 0A

01 02 . . . 0A+1
...

...
. . .

...

03−A 03−A . . . 03


·

©«
D0

D1
...

DA

ª®®®®®¬
=

©«
0

0
...

0

ª®®®®®¬
. (∗)

Definition 4.5. The previous matrix corresponding to the binary form � =
∑3
8=0 08

(
3
8

)
G 80G

3−8
1 is

called the catalecticant matrix CatA,3−A(�).

There are two cases for the equation (∗).

• If A + 1 > 3 − A + 1 then we have more variables than equations, so there is always a
nontrivial solution.

• If A ≤ 23 then there is a nontrivial solution if and only if CatA,3−A(�) has rank ≤ A

We can finally state Sylvester’s algorithm.

Algorithm 4 Sylvester’s algorithm
Require: A binary form 0 ≠ � =

∑3
8=0 08

(
3
8

)
G 80G

3−8
1 ∈ ℂ[G0 , G1]3.

Ensure: A =WR(�), � = ∑A
9=1 �8!

3
8
a Waring decomposition.

1: A ← 1.
2: while rankCatA,3−A(�) is maximal do
3: A ← A + 1
4: end while
5: Take any nontrivial element 0 ≠ �0 ∈ kerCatA,3−A(�).
6: Compute the roots (8 , �8) ∈ ℂ2 of �0, 8 = 1, . . . , A.
7: if the roots are not distinct in ℙ(ℂ2) then
8: go to step 2 //i. e. increase A further
9: else
10: Construct the set of linear forms {!8 = 8G0 + �8G1}.
11: Solve the linear system of equations � =

∑A
8=1 �8!

3
8
.

12: return the Waring decomposition � =
∑A
8=1 �8!

3
8
.

13: end if
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Example 4.6 (Adapted from [BGI11, Example 11]). We compute a Waring recomposition of

� = 2G40 − 4G30G1 + 30G20G21 − 28G0G31 + 17G41 .

Factoring out the binomial coefficients, we get (00 , . . . , 04) = (2,−1, 5,−7, 17). The first two
Catalecticant matrices are

Cat1,3(�) =


2 −1
−1 5

5 −7
−7 17


, Cat2,2(�) =


2 −1 5

−1 5 −7
5 −7 17


The first Catalecticant matrix has rank 2, while the second matrix has rank 2 < 3. A generator
of the kernel is (2,−1,−1)T corresponding to the form

�0 = 2-2
0 − -0-1 − -2

1 = (-0 − -1)(2-0 + -1).

Thus the roots (1 , �1) = (1, 1) and (2 , �2) = (1,−2) are distinct. Thus the linear forms of a
Waring decomposition are given as !1 = G0 + G1, !2 = G0 − 2G1, and the equation

2G40 − 4G30G1 + 30G20G21 − 28G0G31 + 17G41 = �1(G0 + G1)4 + �2(G0 − 2G1)4

gives �1 = �2 = 1.

Remark. This algorithm iterates over all A = 1, . . . ,WR(�). It is possible to skip this iterative
process by first calculating the Border rank

A =WR(�) = rankCatb 32 c ,d 32 e
(�),

and this constrainsWR(�) ∈ {A, 3−A+2}. This resultwas obtained by studying the structure of
the stratification of ¥[G0 , G1]3 byWaring rank, for details see the paper by Bernardi, Gimigliano
and Idà [BGI11, Section 3].

4.2. Some background on complexity theory

Now that we looked at some algorithms for the Waring rank, it is natural to ask about general
complexity theoretic results about the Waring rank and related notions. In this section we
recall some notions from complexity theory to make this precise, a good reference is the
modern treatment by Arora & Barak [AB09]. We assume familiarity with the notion of a
Turing machine.
So far our (pseudocode) algorithms have not been concerned with the question whether a
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computer (with finite memory) can actually execute such an algorithm. For example if ¥ = ℂ
then we cannot even store most numbers in memory, let alone do arithmetic with them.

Definition 4.7. LetR be a ring. We say that one can compute effectively inR if the following are
satisfied:

• Elements 0 ∈ R can be encoded as finite strings 〈0〉 over some finite alphabetΣ, formally

enc: R ↩→ Σ∗ = { strings G1 . . . G= | = ≥ 0, G8 ∈ Σ } , 0 ↦→ 〈0〉.

• There exist deterministic Turingmachines"add,"mult, which on input 〈0〉#〈1〉 produce
〈0 + 1〉 and 〈0 · 1〉 respectively.

• The running time of "add, "mult is polynomial in its input bit length, i. e. the number
of computation steps on input G is $(|G |2) for some constant 2.

These notions ensure that a computer can do basic arithmetic inR efficiently. For example,
R could be ℤ,ℚ,�@ (any finite field), but not ℝ or ℂ (because they are uncountable). Also, a
polynomial ring R[)1 , . . . , )=] can be represented as linear combinations of monomials, this
again yields an efficiently computable ring.

Definition 4.8. We fix some alphabets Σ, Δ.

• A formal language (or problem) is a subset � ⊆ Σ∗.
• The complexity class P consists of formal languages � such that there exists a determin-

istic Turing machine deciding � in polynomial time.
• The complexity class NP consists of formal languages � such that there exists a nonde-

terministic Turing machine deciding � in polynomial time.
• A language � ⊆ Σ∗ can be polynomial time many-one reduced to � ⊆ Δ∗, in symbols
� ≤P

m �, if there exists a function 5 : Σ∗ → Δ∗ computable by a polynomial time Turing
machine, such that

F ∈ � ⇐⇒ 5 (F) ∈ � ∀F ∈ Σ∗.

If � ≤P
m � and � ≤P

m �, then � and � are said to be polynomial time equivalent, in symbols
� ≡P

m �.
• A language � is NP-hard if every NP problem can be polynomial time reduced to �, i. e.
� ≤P

m � for all � ∈ NP. � is NP-complete if � ∈ NP and it is NP-hard.

Example 4.9. Probably the most well-known NP-complete problem is

SAT =
{
〈!〉

�� ! is a Boolean formula and !(01 , . . . , 0=) = 1 for some 0 ∈ {0, 1}=
}
.

this is a consequence of the famous Cook-Levin theorem. The SAT problem is NP-complete
even when restricting to Boolean formulae in 3-conjunctive normal form (this variant is called



4.3. The NP-hardness of the Waring rank 63

3SAT), i. e. those of the following form:

! =
:∧
8=1

(;8 ,1 ∨ ;8 ,2 ∨ ;8 ,3) , ;8 , 9 ∈ {G1 , . . . , G= ,¬G1 , . . . ,¬G=}. (∗∗)

For us the following problem is of interest. Fix integral domainsR ⊆ S,R being efficiently
computable. Then we can define the problem of deciding solvability in S of a system of
polynomial equations defined overR

NULLSTELLENSATZS/R =

{
〈 51 , . . . , 5<〉

����� 51 , . . . , 5< ∈ R[)1 , . . . , )=]
have a common root in S= .

}
A polynomial time reduction from 3SAT can be given as follows:

For a formula ! as in (∗∗), consider the following set of polynomials inR[H1 , . . . , H=]:

1 9 = H 9(H 9 − 1), 9 = 1, . . . , =;

28 = E(;8 ,1) · E(;8 ,2) · E(;8 ,3), 8 = 1, . . . , :, where E(;) =

H 9 − 1 if ; = G 9
H 9 if ; = ¬G 9

The expanded (!) version of these polynomials can be computed in polynomial time.
Claim. The binary vector 0 = (01 , . . . , 0=) ∈ {0, 1}= represents a satisfying assignment of !

if and only if it is a solution to the polynomial system of equations 11 = · · · = 1= = 21 = · · · =
2: = 0.

Proof of claim. Indeed, the equations 11 = · · · = 1= = 0 force any solution to consist of 0’s and
1’s (here integrality is used). We have 28(01 , . . . , 0=) = 0 if and only of one of the terms E(;8 ,1)
vanishes, which is equivalent to ;8 ,1 being satisfied. This proves the claim. �claim

Since 3SAT is NP-hard (and ≤P
m is transitive), we see that NULLSTELLENSATZS/R is NP-hard.

This problem is in fact much harder, at least for R = S = ℤ, since the (negative) solution to
Hilbert’s tenth problem shows that the problem of solvability of Diophantine equations is
undecidable.

4.3. The NP-hardness of the Waring rank
We are ready talk about the complexity of Tensor rank and Waring rank. Since we are
interested in algebraically closed fields such as ℂ, it makes sense to distinguish between the
ringR over which a given tensor/form is defined and the ring S over which the rank has to be
calculated. For example one could ask about the complex Waring rank of forms with rational
coefficients (R = ℚ ( S = ℂ).
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Notice that the definition of Waring rank (1.1) and tensor rank (1.19) make sense over
arbitrary integral domains (replacing “vector space” by “free module”). Hence we consider
the following decision problems:

TENSOR_RANKS/R = { 〈), A〉 | A ∈ ℕ0, T is a tensor defined overR, rankS()) ≤ A }
WARING_RANKS/R =

{
〈�, A〉

�� A ∈ ℕ0 , � ∈ R[G]3 , WRS(�) ≤ A
}
.

In a paper from 2016 Shitov proved the following result characterizing the complexity of
TENSOR_RANKS/R:

Theorem 4.10 ([Shi16, Theorem 3]). The problem of deciding if a tensor ) with entries in R has
rank at most A is polynomial time equivalent to the problem of deciding solvability in S of systems of
polynomials defined overR. In short:

TENSOR_RANKS/R ≡P
m NULLSTELLENSATZS/R.

In fact, it suffices to consider only tensors of degree 3, i. e. inR� ⊗R� ⊗R .
The proof can be summarized as follows: Reducing tensor rank to a system of polynomial

equations is fairly easy: If) ∈ R� ⊗R� ⊗R , then the statement rankS()) ≤ A can be rephrased
as

∃


D1 , . . . , DA ∈ S � ;
E1 , . . . , EA ∈ S � ;
F1 , . . . , FA ∈ S ;
�1 , . . . ,�A ∈ S


: ) =

A∑
8=1

�8 · (D8 ⊗ E8 ⊗ F8).

This is a system of � · � · polynomial equations in A · (�+ �+ +1) variables. A similar strategy
allows for reducing the Waring rank problem to a system of polynomial equations.
In order to give a reduction of polynomial equations to a rank problem, Shitov first considers

the problem of (minimal) rank matrix completion:

MATRIX_COMPLETION_RANKA,S/R

=

{
〈�〉

����� � ∈ Mat(<, =,R ∪ {∗}), one can assign the ∗with elements
from S such that the completed matrix has S-rank1 ≤ A

}
He constructs a polynomial time reduction

NULLSTELLENSATZS/R ≤P
m MATRIX_COMPLETION_RANK3,S/R , 〈 51 , . . . , 5<〉 ↦→ 〈B〉

which implies that MATRIX_COMPLETION_RANKA,S/R, for A ≥ 3, is polynomial time equivalent

1Here, matrix rank over an integral domain is understood to be tensor rank, coinciding with the usual rank in
the case of fields.
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to NULLSTELLENSATZS/R for any A ≥ 3.
He then continues to construct from the incomplete matrix B with � many ∗’s a tensor )

which has tensor rank rankS ) ≤ � + 3 if and only if B admits a completion of rank ≤ 3.

Shitov then proceeds to relate the tensor rank problem (of degree 3 tensors) to the Waring
rank problem. Assume S = F is a field, let �, �,  be disjoint index sets of size =, and consider a
tensor ) ∈ F �×�× . A tensor can be viewed as a 3-dimensional array of elements of F indexed
by � × � ×  , and we adopt the notation )(8 | 9 |:) to denote the entries of the tensor.

We can consider a symmetrization (()) ∈ F�×�×� , � B � ∪ � ∪  , given as

(())( |� |�) =

)(8 | 9 |:) if (, �, �) is a permutation of (8 , 9 , :) ∈ � × � ×  ,
0 otherwise.

Locally, we use the notation �2≤ = { (81 , 82) | 81 , 82 ∈ � , 81 ≤ 82 }. Let ( ∈ F�×�×� be a tensor,
H B � ∪ �2≤ ∪ �2≤ ∪  2

≤, then we can enlarge ( to a tensor T (() ∈ FH×H×H by the following
procedure:

• Let � = (81 , 82) ∈ �2≤, then the “�-th unit” is the tensor " ∈ F�×� with

"( |�) =

1 if , � ∈ {81 , 82}
0 otherwise.

• ( { (′ ∈ FH×�×� is obtained by adjoining�-th unit tensors to ( for each� ∈ �2≤∪�2≤∪ 2
≤.

• Similarly, (′ { (′′ ∈ FH×H×� is obtained by adjoining �-th unit tensors (with the
appropriate index set) to (′ in the second dimension, for each � ∈ �2≤ ∪ �2≤ ∪  2

≤.
• Finally, (′′ { T (() ∈ FH×H×H is constructed in a similar fashion by adjoining �-th unit

tensors in the third dimension.

Notice that T (() is symmetric if ( is symmetric, and both constructions ) ↦→ (()) and
( ↦→ T (() can be carried out over the base ring R in polynomial time. The crucial point of
this construction is that we can relate the tensor rank of a tensor ) ∈ F �×�× to the symmetric
tensor rank of T ((())) ∈ FH×H×H (i. e. the Waring rank of the corresponding form) by the
following formula (under the mild assumption |F | ≥ 9):

WRF T ((())) = rankF ) + 9 ·
(
= + 1
2

)
.

This shows that the tensor rank problem in F �×�× can be polynomial-time reduced to the
Waring problem for degree 3 forms in |H| = 3= + 3

(
=+1
2

)
variables. As a consequence, for any
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field extension  /ℚwe have

WARING_RANK /ℚ ≡P
m NULLSTELLENSATZ /ℚ ,

even when restricting to degree 3 forms, and in particular, the Waring rank problem is NP-
hard.

Remark. This has the (unfortunate) consequence that, if NULLSTELLENSATZℂ/ℚ turns out to be
undecidable, then there is no general algorithm calculating the Waring rank at all!

4.4. Parametrized algorithms

The previous section suggests that it is infeasible to find an efficient general purpose algorithm
for the Waring problem! In order to end this thesis on a positive note, we turn our attention
to the recent work of Kevin Pratt [Pra18], in which he relates Waring decompositions of
certain polynomials to improved parameterized and exact algorithms for various interesting
problems.
In this section we work over the field of complex numbers, in particular all Waring ranks

are understood to be over ℂ. Let � = (+, �) be a directed graph, + = {E1 , . . . , E=}.

Definition 4.11. (i) Awalk of length 3 in� is a sequenceF = (E80 , . . . , E83 )with (E8 9−1 , E8 9 ) ∈ �
for 9 = 1, . . . , 3.

(ii) If 83 = 80, then F is a closed walk. If, additionally, all nodes in F are pairwise distinct
(apart from E80 = E83 ), then F is called a simple cycle.

Problem 4.12. Describe an algorithm which on input 〈�, 3〉 calculates the number of simple cycles in
� of length 3.

Consider the following symbolic adjacency matrix and graph walk polynomial2

�� B [08 9] ∈ Mat(=,ℂ[G]1), 08 9 =


G8 if (E8 , E 9) ∈ �;
0 otherwise.

�� B tr(�3�) ∈ ℂ[G]3 .

We first prove a combinatorial lemma relating �� to closed cycles and walks in �.

Lemma 4.13. (i) The terms of �� represent closed walks of length 3 in �:

�� =
∑

closed walks
(E80 ,...,E83 )

G80 · · · G83−1 .

2These are not established names.
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(ii) The number of simple cycles of length 3 in � is given by the constant value

4=,3
(

%
%G1
, . . . , %

%G=

)
�� .

Here, we meet our action of the polynomial ring of differential operators in -8 = %
%G8

again,
with the notation from chapter 2 we write this expression as 4=,3 ◦ ��.

Proof. (i) By the definition of matrix multiplication, the (8 , :)-th entry of �2
�
consists of the

sum
∑
9 G8G 9 , where 9 runs over all paths (E8 , E 9 , E:). Inductively, the (8 , 9)-th entry of �3

�
is∑

paths from 80 = 8 to 83 = 9

(E80 ,...,E83 )

G80 · · · G83−1 .

Hence the polynomials on the diagonal of �3
�
correspond to closed walks, and taking the

trace yields the desired identity.
(ii) Let 6 = -α be a monomial, then for any form � of degree 3, 6 ◦ � = α! · 2α, or just 2α if

6 has no repeated factors. As 4=,3 consists of all degree 3monomials with no repeated factors,
by linearity and (i) we get

4=,3 ◦ �� = #{simple closed walks in �}. �

So finding an algorithm counting the number of closed cycles in � is synonymous with an
algorithm evaluating 4=,3

(
%
%G1
, . . . , %

%G=

)
��! Here our knowledge from section 2.1 is useful:

Lemma 4.14. Let � ∈ ℂ[G1 , . . . , G=]3, 6 ∈ ℂ[-1 , . . . , -=]3

(i) We can “switch” the roles of � and 6 in the apolarity action, i. e. we have the identity

6(-) ◦ �(G) = �(-) ◦ 6(G).

(ii) If � = �1!
3
1 + · · · + �B!3B , where !8 = 28 ,1G1 + · · · + 28 ,=G= ∈ ℂ[G]1, then

6 ◦ � = 3! ·
A∑
8=1

�8 6(28 ,1 , . . . , 28 ,=).

Proof. (i) By bilinearity of ◦ this breaks down to the fact that for deg � = deg 6,

-α ◦ Gβ =

α! if α = β

0 otherwise.

(ii) This is an immediate consequence of the discussion after Example 2.5. �

Continuingourdiscussion, thismeans that evaluationof 4=,3
(

%
%G1
, . . . , %

%G=

)
�� canbe realized
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as evaluation of 4=,3 on the coefficients of a power sum decomposition of �. This observation
itself is not so helpful, since the algorithmwould have to find a (sufficiently short) power sum
decomposition for ��, which is (probably) a hard problem. But the Lemma also allows us to
switch the roles of �� and 4=,3, so if

4=,3 =

B∑
8=1

�8!
3
8 , !8 =

B∑
8=1

28 ,1-1 + · · · + 28 ,=-=

is a power sum decomposition, then for any � we get

#{simple cycles in �} = 3!
B∑
8=1

�8��(28 ,1 , . . . , 28 ,=).

We obtain an algorithm which counts the number of simple cycles in � by using WR(4=,3)
many black box evaluations of ��! Theorem 2.23 describes such decompositions, so for 3 odd
we get the number of simple cycles in � as (using the notation from 2.23)∑

�⊆{1,...,=}
|� |≤b3/2c

(−1)|� |
23−1

(
= − b3/2c − |� | − 1
b3/2c − |� |

)
· ��

(
�(� , 1), . . . , �(� , =)

)
.

Corollary 4.15. This Formula yields a
(

=
b3/2c

)
poly(=) time and poly(=) space algorithm for counting

simply cycles.

This discussion has the following interesting consequence: Given polynomials �, 6 with
only black-box access to �. Then one can evaluate 6 ◦ � usingWR(6)many queries to �. Pratt
proves that this bound is actually optimal:

Theorem 4.16 ([Pra18, Theorem 6]). Fix 6 ∈ ℂ[G] and let � ∈ ℂ[G] be given as a black-box. The
minimum number of queries to � needed to compute 6( %%G )� isWR(6), assuming unit-cost arithmetic
operations3.

Sketch of proof. The upper bound has already been established.
Claim. Let < < WR(6). For � = {%1 , . . . , %<} ⊆ ℙ(ℂ=) there exists 5 ∈ ℂ[-]3 such that

5 ∈ �(�) but 6( %%- ) 5 ≠ 0

Proof of claim. Indeed, assume the contrary, then �(�) ⊆ 6⊥, but the Apolarity Lemma 2.8
then implies that WR(6) ≤ <. �claim

So assume an algorithm for 6( %%G )�makes< queries to �, let E1 , . . . , E< ∈ ℂ= be these points.
Let 5 be as in the claim for � = {[E1], . . . , [E<]} (possibly discarding identical projective

3This means that we only count the number of queries, discarding the cost of actually evaluating � and summing
up the results.
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points), then
(� + 5 )(E8) = �(E8), 8 = 1, . . . , <.

Since the algorithm only has black-box access, this shows that it cannot distinguish � from
� + 5 . But by construction

6( %%- )(� + 5 ) ≠ 6( %%- )�,

a contradiction!  �





Conclusion

In this thesis we introduced the Waring problem for homogeneous forms and related prob-
lems. We discussed both special cases, such as quadratic forms, binary forms and sums of
monomials, and general statements, i. e. the Alexander-Hirschowitz theorem.
There are many other interesting related topics, open problems and applications of the

Waring problem which we could not discuss here. We give some hints to the literature.

• One possible generalization of the discussion in this thesis is to allow for a base field
of positive characteristic. In order to get an interesting theory for cases such as 0 <

char(¥) ≤ 3, one usually replaces the ring of polynomials by the ring of divided powers
(which coincides with the polynomial ring in the characteristic 0 case) and asks for
power sum decompositions in this ring instead. This is the point of view taken in the
book [IK99], where the generic Waring problem is related to the Alexander-Hirschowitz
theorem in the case char(¥) - 3.

• Another generalization is to ask for theWaring rank over non-algebraically closed fields
such as number fields or the real numbers. In this case some arithmetic subtleties enter,
for example Reznick [Rez13] shows that the form � = 3G5 − 20G3H2 + 10GH4 has the
following ranks over some fields:

WR
ℚ(
√
−1)(�) = 3, WR

ℚ(
√
−2)(�) = 4, WRℝ(�) = 5.

The realWaring rank is particularly of practical interest, in this case (taking the euclidean
topology) there might be several generic rank (i. e. A such that the set of forms of rank A
has nonempty interior) [Ber+18, Section 5.7].

• Instead of asking for some Waring decomposition of a given form, one can try to study
the set of all Waring decompositions at once. If � = �1!

3
1 + · · · + �B!3B is a power sum

decomposition of � ∈ ¥[G0 , . . . , G=]3, then the linear forms [!1], . . . , [!B] are points in
(ℙ=)∨ (as in chapter 2), so they define a point in the Hilbert scheme HilbB((ℙ=)∨). The
variety of power sums is the scheme

VSP(�, B) =
{
{[!1], . . . , [!B]} ∈ HilbB((ℙ=)∨)

�� ∃� ∈ ¥B : � = �1!
3
1 + · · · + �B!3B

}
For example, Silvester already noticed that for binary forms � ∈ ¥[G0 , G1]3, 3 odd with
andWR(�) = (3+1)/2, theWaring decomposition is unique up to scaling and reordering
the forms. In this case the variety of power sums is a single point. Questions about
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dimension, degree, normality/smoothmess are discussed in the book by Iarrobino &
Kanev [IK99] and in the paper by Ranestad & Schreyer [RS98].

• The topic of tensor rank and itswide range of connections into different fields of science is
awhole topic on its own. An introduction to these applications is given in the expository
paper by Kolda & Bader [KB09]. Both tensor rank and symmetric rank have imtimate
connections to complexity theory, for example the exponent of matrix multiplication,
i. e. the lowest $ such that # × # matrix multiplication can be computed with $(#$)
scalar operations (currently the best known bound is $ ≤ 2.3728596).



A
Sage Code

Here is the Sage code I used to test some cases of the Alexander-Hirschowitz theorem. This
code is by nomeans optimized, for example instead of taking the intersection one should solve
the linear system of equations imposed by the set of double points, otherwise the algorithm
becomes very slow for larger values of B.

1 from sage.misc.prandom import randint

2
3 def random_point_ideal(S, max_denominator=10):

4 X = S.gens()

5 num_coordinates = len(X)

6 i_nonzero = randint(0, num_coordinates -1)

7
8 # Sample random point

9 p = [randint(-max_denominator , max_denominator) for i in range(num_coordinates)]

10 p[i_nonzero] = randint(1, max_denominator)

11 linear_generators = []

12
13 # Calculate defining ideal

14 for j in range(0,num_coordinates):

15 if j == i_nonzero:

16 continue

17 linear_generators.append(p[j]*X[i_nonzero] - p[i_nonzero]*X[j])

18
19 m = ideal(linear_generators)

20 return m, p

21
22 def random_double_point_ideal(S, s, max_denominator=10):

23 if s == 0:

24 return S.unit_ideal()

25 m, p = random_point_ideal(S, max_denominator)

26 I = m^2

27 XX = [p]

28 if s == 1:

29 return I, XX

30 ideals_to_intersect = []

31 for i in range(s-1):

32 m, p = random_point_ideal(S, max_denominator)
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33 ideals_to_intersect.append(m^2)

34 XX.append(p)

35 I = I.intersection(*tuple(ideals_to_intersect))

36 return I,XX

37
38 def expected_codimension(n,d,s):

39 N = binomial(n+d,d)

40 return min(s*(n+1), N)

41
42 # Calculate the Hilbert function by using the Hilbert series

43 def hf(ideal, d):

44 if d < 0:

45 return 0

46 t = PowerSeriesRing(QQ, ’t’, default_prec=(d+1)).gen()

47 coefficients = ideal.hilbert_series()(t).coefficients()

48 return coefficients[d]

49
50 # Try to prove the Alexander -Hirschowitz theorem by randomly picking points

51 def check_AH(n,d,s, max_trials=10, max_denominator=10):

52 S = PolynomialRing(QQ, n+1, "X")

53 expdim = expected_codimension(n,d,s)

54 for i in range(max_trials):

55 I,XX = random_double_point_ideal(S, s, max_denominator)

56 if hf(I,d) == expdim:

57 print(f"Found scheme of {s} double points satisfying AH_{n}({d}).")

58 return XX

59 else:

60 print(f"Attempt {i} failed. Defect is <={expdim - hf(I,d)}")

61
62 print(f"Could not verify AH_{n}({d}) on {s} double points.")

63 return None

64
65 def check_AH_on_relevant_s(n,d, max_trials=10, max_denominator=10):

66 l = []

67 for s in relevant_cases(n,d):

68 X = check_AH(n,d,s, max_trials , max_denominator)

69 if not X:

70 return

71 l.append(X)

72 return l

73
74 def relevant_cases(n,d):

75 q = binomial(n+d,d)/(n+1)

76 return set([floor(q), ceil(q)])
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