60 minutes of local cohomology

Seminar on Nonlinear Algebra

Leonie Kayser
May 26, 2023

MAX PLANCK INSTITUTE

FOR MATHEMATICS
IN THE SCIENCES

How many equations define a curve in \mathbb{P}^{3} set-theoretically?

Figure 1: The twisted cubic C_{3}.

$$
\begin{aligned}
I\left(C_{3}\right) & =\left\langle\text { minors of }\left(\begin{array}{ccc}
x & y & z \\
y & z & w
\end{array}\right)\right\rangle \\
& =\left\langle x z-y^{2}, y w-z^{2}, x w-y z\right\rangle \\
C_{3} & =\mathrm{V}\binom{x z-y^{2},}{z\left(y w-z^{2}\right)-w(x w-y z)}
\end{aligned}
$$

Figure 2: Two skew lines $L \cup L^{\prime}$.

$$
\begin{aligned}
I\left(L \cup L^{\prime}\right) & =\langle x, y\rangle \cap\langle z, w\rangle \\
& =\langle x z, x w, y z, y w\rangle \\
L \cup L^{\prime} & =\mathrm{V}(x z, y w, x w+y z)
\end{aligned}
$$

Local cohomology - an apéritif

Let R be a Noetherian ring and $\mathfrak{a} \subseteq R$ an ideal. There exist additive functors of R-modules $\mathrm{H}_{\mathfrak{a}}^{i}(-), i=0,1, \ldots$ with the following properties:

1. $\left(\mathrm{H}_{I}^{i}(-)\right)_{i}$ is a universal δ-functor: $0 \rightarrow K \rightarrow L \rightarrow M \rightarrow 0$ induces LES

$$
0 \rightarrow \mathrm{H}_{\mathfrak{a}}^{0}(K) \rightarrow \mathrm{H}_{\mathfrak{a}}^{0}(L) \rightarrow \mathrm{H}_{\mathfrak{a}}^{0}(M) \rightarrow \mathrm{H}_{\mathfrak{a}}^{1}(K) \rightarrow \mathrm{H}_{\mathfrak{a}}^{1}(L) \rightarrow \mathrm{H}_{\mathfrak{a}}^{1}(M) \rightarrow \mathrm{H}_{\mathfrak{a}}^{2}(K) \rightarrow \cdots
$$

2. Depends only on radical: $\mathrm{H}_{\mathfrak{a}}^{i}(-)=\mathrm{H}_{\sqrt{\mathfrak{a}}}^{i}(-)$
3. Lower bounds on no. of generators: If $\mathfrak{a}=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, then $\mathrm{H}_{\mathfrak{a}}^{i}(-)=0$ for $i>s$
4. Detects algebraic invariants of M : dimension, depth, regularity, ...

First definition: Derived functors

\triangleright Consider the left-exact \mathfrak{a}-power torsion functor

$$
\Gamma_{\mathfrak{a}}(M):=\left\{m \in M \mid \mathfrak{a}^{k} m=0, k \gg 0\right\} \subseteq M
$$

\triangleright Example: $\Gamma_{\mathfrak{m}}\left(\mathbb{k}\left[x_{0}, \ldots, x_{n}\right] / I\right)=I^{\text {sat }} / I$
\triangleright Observe: $\sqrt{\mathfrak{a}}^{r} \subseteq \mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$ for some r, hence $\Gamma_{\mathfrak{a}}(M)=\Gamma_{\sqrt{\mathfrak{a}}}(M)$
$\triangleright \mathrm{H}_{\mathfrak{a}}^{i}$ are the right derived functors of $\Gamma_{\mathfrak{a}}$: For M choose an injective resolution $0 \rightarrow M \rightarrow E^{0} \rightarrow E^{1} \rightarrow \ldots$, then

$$
\mathrm{H}_{\mathfrak{a}}^{i}(M):=\mathrm{H}^{i}\left(\Gamma_{\mathfrak{a}}\left(E^{\bullet}\right)\right)=\frac{\operatorname{Im}\left(\Gamma_{\mathfrak{a}}\left(E^{i-1}\right) \rightarrow \Gamma_{\mathfrak{a}}\left(E^{i}\right)\right)}{\operatorname{Ker}\left(\Gamma_{\mathfrak{a}}\left(E^{i}\right) \rightarrow \Gamma_{\mathfrak{a}}\left(E^{i+1}\right)\right)}
$$

\triangleright Alternative abstract nonsense definition

$$
\Gamma_{\mathfrak{a}}(M) \cong \operatorname{colim}_{k} \operatorname{Hom}_{R}\left(R / \mathfrak{a}^{k}, M\right) \quad \rightsquigarrow \quad \mathrm{H}_{\mathfrak{a}}^{i}(M) \cong \operatorname{colim}_{k} \operatorname{Ext}_{R}^{i}\left(R / \mathfrak{a}^{k}, M\right)
$$

Example: Modules over a principal ideal domain

Let $R=\mathbb{k}[x], \mathfrak{a}=\langle x\rangle, M$ finite R-module
\triangleright By the structure theorem, suffices to consider $M=R$ and $M=R /\langle f\rangle$
$\triangleright R$ has an injective resolution $0 \rightarrow R \rightarrow K \rightarrow K / R \rightarrow 0, K=\operatorname{Frac}(R)$

$$
\mathrm{H}_{\langle x\rangle}^{0}(R)=0, \quad \mathrm{H}_{\langle x\rangle}^{1}(R)=\Gamma_{\langle x\rangle}(K / R)=R\left[x^{-1}\right] / R, \quad \mathrm{H}_{\langle x\rangle}^{i}(R)=0, \quad i \geq 2
$$

จ If $f=x^{n} g$, then $\mathrm{H}_{\langle x\rangle}^{0}(R /\langle f\rangle)=\langle g\rangle /\langle f\rangle \cong R /\left\langle x^{n}\right\rangle$
\triangleright The long exact sequence to $0 \rightarrow R \xrightarrow{\cdot f} R \rightarrow R /\langle f\rangle \rightarrow 0$ yields

$$
0 \longrightarrow \mathrm{H}_{\langle x\rangle}^{0}(R /\langle f\rangle) \longrightarrow R\left[x^{-1}\right] / R \xrightarrow{\cdot f} R\left[x^{-1}\right] / R \longrightarrow \mathrm{H}_{\langle x\rangle}^{1}(R /\langle f\rangle) \longrightarrow 0
$$

\triangleright Multiplication with f is surjective, hence $\mathrm{H}_{\langle x\rangle}^{i}(R /\langle f\rangle)=0$ for $i \geq 1$

Second definition: Čech complex

Pick a generating set $\mathfrak{a}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. For $J \subseteq\{1, \ldots, n\}$ let $M\left[x_{J}^{-1}\right]$ be the localization of M at $x_{J}:=\prod_{j \in J} x_{i}$. Define $\left(C^{\bullet}, d\right)$ via

$$
C^{i}\left(x_{1}, \ldots, x_{n} ; M\right):=\bigoplus_{\# J=i} M\left[x_{J}^{-1}\right], \quad d: M\left[x_{J}^{-1}\right] \ni m_{J} \mapsto \sum_{j \notin J}(-1)^{\#\{J<j\}} m_{J \cup\{j\}}
$$

This complex has terms C^{0}, \ldots, C^{n}

$$
0 \longrightarrow M \xrightarrow{d^{0}} \bigoplus_{j=1}^{n} M\left[x_{j}^{-1}\right] \xrightarrow{d^{1}} \bigoplus_{\# J=2} M\left[x_{J}^{-1}\right] \xrightarrow{d^{2}} \cdots \xrightarrow{d^{n-1}} M\left[x_{\{1, \ldots, n\}}^{-1}\right] \longrightarrow 0
$$

Theorem

$$
\mathrm{H}_{\mathfrak{a}}^{i}(M) \cong \mathrm{H}^{i}\left(C^{\bullet}\left(x_{1}, \ldots, x_{n} ; M\right)\right) \text { for } i \geq 0
$$

Consequence: $\mathrm{H}_{\left\langle x_{1}, \ldots, x_{n}\right\rangle}^{i}(M)=0$ for $i>n$

Example: The polynomial ring

\triangleright For $n=1$ one has $\mathrm{H}_{\langle x\rangle}^{1}(\mathbb{k}[x]) \cong x^{-1} \mathbb{k}\left[x^{-1}\right]$, since the Čech complex is

$$
0 \longrightarrow \mathbb{k}[x] \longrightarrow \mathbb{k}\left[x, x^{-1}\right] \longrightarrow 0
$$

\triangleright For $n=2$ we have

$$
0 \longrightarrow \mathbb{k}[x, y] \xrightarrow{\binom{1}{1}} \mathbb{k}\left[x^{ \pm 1}, y\right] \oplus \mathbb{k}\left[x, y^{ \pm 1}\right] \xrightarrow{(1,-1)} \mathbb{k}\left[x^{ \pm 1}, y^{ \pm 1}\right], \longrightarrow 0
$$

here $\mathrm{H}_{\langle x, y\rangle}^{1}(\mathbb{k}[x, y])=0$ and $\mathrm{H}_{\langle x, y\rangle}^{2}(\mathbb{k}[x, y]) \cong\left\langle x^{-1}, y^{-1}\right\rangle \mathbb{k}\left[x^{-1}, y^{-1}\right]$

Theorem

Let $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]=M, \mathfrak{m}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then all local cohomology modules vanishes except

$$
\mathrm{H}_{\mathfrak{m}}^{n}(S) \cong\left\langle x_{1}^{-1}, \ldots, x_{n}^{-1}\right\rangle \mathbb{k}\left[x_{1}^{-1}, \ldots, x_{n}^{-1}\right] \cong S[-n]^{\vee}
$$

A Mayer-Vietoris-like sequence

Theorem

Let $\mathfrak{a}, \mathfrak{b} \subseteq R$ be ideals, then there is a long exact sequence

$$
\cdots \rightarrow \mathrm{H}_{\mathfrak{a} \cap \mathfrak{b}}^{i-1}(M) \rightarrow \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{i}(M) \rightarrow \mathrm{H}_{\mathfrak{a}}^{i}(M) \oplus \mathrm{H}_{\mathfrak{b}}^{i}(M) \rightarrow \mathrm{H}_{\mathfrak{a} \cap \mathfrak{b}}^{i}(M) \rightarrow \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{i+1}(M) \rightarrow \ldots
$$

\triangleright Proof idea: Apply $\operatorname{Ext}_{R}^{i}(-, M)$ to the short exact sequence

$$
0 \longrightarrow R /\left(\mathfrak{a}^{k} \cap \mathfrak{b}^{k}\right) \longrightarrow R / \mathfrak{a}^{k} \oplus R / \mathfrak{b}^{k} \longrightarrow R /\left(\mathfrak{a}^{k}+\mathfrak{b}^{k}\right) \longrightarrow 0,
$$

then take the appropriate colimit
\triangleright Example: $R=\mathbb{k}[x, y, z, w], \mathfrak{a}=\langle x, y\rangle, \mathfrak{b}=\langle z, w\rangle, I=\mathfrak{a} \cap \mathfrak{b}$, then

$$
\cdots \rightarrow \underbrace{\mathrm{H}_{\langle x, y\rangle}^{3}(M) \oplus \mathrm{H}_{\langle z, w\rangle}^{3}(M)}_{=0} \rightarrow \mathrm{H}_{I}^{3}(M) \stackrel{\cong}{\rightrightarrows} \mathrm{H}_{\mathfrak{m}}^{4}(M) \rightarrow \underbrace{\mathrm{H}_{\langle x, y\rangle}^{4}(M) \oplus \mathrm{H}_{\langle z, w\rangle}^{4}(M)}_{=0} \rightarrow \cdots
$$

Putting the pieces together

Assume $I=\langle x z, x w, y z, y w\rangle=\sqrt{\left\langle f_{1}, f_{2}\right\rangle}$ for $f_{1}, f_{2} \in R=\mathbb{k}[x, y, z, w]$
\triangleright Being two-generated, one has $\mathrm{H}_{\left\langle f_{1}, f_{2}\right\rangle}^{3}(-)=0$
\triangleright Local cohomology only depends on the radical, so $\mathrm{H}_{I}^{3}(-)=0$
\triangleright The previous Mayer-Vietoris example showed $\mathrm{H}_{I}^{3}(-) \cong \mathrm{H}_{\mathfrak{m}}^{4}(-)$
\triangleright The calculation of local cohomology of polynomial rings showed $\mathrm{H}_{\mathfrak{m}}^{4}(R) \neq 0$.
Open problem: Is the following rational quartic curve

$$
C=\left\{\left(s^{4}: s^{3} t: s t^{3}: t^{4}\right) \mid(s: t) \in \mathbb{P}^{1}(\mathbb{C})\right\}
$$

a set-theoretic complete intersection? Here $\mathrm{H}_{I(C)}^{3}(-)=0$.

Let's go deeper!

From now on let M be a finitely generated R-module with $\mathfrak{a} M \subsetneq M$
$\triangleright \operatorname{depth}_{\mathfrak{a}}(M)$ is the maximal length of a M-regular sequence $f_{1}, \ldots, f_{d} \in I$.
$\triangleright \operatorname{dim}(M)$ is the $\operatorname{dimension~} \operatorname{dim} R / \operatorname{Ann}_{R}(M)$
$\triangleright \operatorname{depth}_{\mathfrak{a}}(M) \leq \operatorname{dim}(M)$
\triangleright If R is local/graded, then the Cohen-Macaulay-property is $\operatorname{depth}_{\mathfrak{m}}(M) \stackrel{!}{=} \operatorname{dim}(M)$

Theorem

1. $\mathrm{H}_{\mathfrak{a}}^{i}(M)=0$ for $i<\operatorname{depth}_{\mathfrak{a}}(M), \mathrm{H}_{\mathfrak{a}}^{\operatorname{depth}(M)}(M) \neq 0$.
2. $\mathrm{H}_{\mathfrak{a}}^{i}(M)=0$ for $i>\operatorname{dim}(M), \mathrm{H}_{\mathfrak{m}}^{\operatorname{dim}(M)}(M) \neq 0$ if R is local or graded.

Consequence: M is Cohen-Macaulay iff there is a single nonzero $\mathrm{H}_{\mathfrak{m}}^{d}(M)$

Local vs. sheaf cohomology

Let R be a standard-graded Noetherian ring, $\mathfrak{m}:=R_{>0}$ and M finite graded.
$\triangleright \mathrm{H}_{\mathfrak{m}}^{i}(M)$ is a graded module, $\mathrm{H}_{\mathfrak{m}}^{i}(M)_{n}$ is finitely generated over R_{0}
\triangleright Let $X=\operatorname{Proj}(R), \widetilde{M}$ the sheaf associated to $M, \widetilde{M}(d)=\widetilde{M[d]}=\widetilde{M} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(d)$
\triangleright The direct sum of the twists form a graded R-module $\bigoplus_{d \in \mathbb{Z}} \mathrm{H}^{i}(X, \widetilde{M}(d))$

Theorem (Comparison theorem)

There is an exact sequence of graded R-modules

$$
0 \rightarrow \mathrm{H}_{\mathfrak{m}}^{0}(M) \hookrightarrow M \rightarrow \bigoplus_{d} \Gamma(X, \widetilde{M}(d)) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(M) \rightarrow 0
$$

and isomorphisms $\bigoplus_{d} \mathrm{H}^{i}(X, \widetilde{M}(d)) \cong \mathrm{H}_{\mathrm{m}}^{i+1}(M), i \geq 1$.
Serre vanishing: $\mathrm{H}_{\mathfrak{m}}^{i}(M)_{n}=0$ for $i \geq 0$ and $n \gg 0$.

The Hilbert polynomial - demystified

Now assume $R_{0}=\mathbb{k}$, i.e. R is an affine graded \mathbb{k}-algebra
\triangleright Let $h_{M}(d)=\operatorname{dim}_{\mathbb{k}} M_{d}$ be the Hilbert function and P_{M} the Hilbert polynomial
\triangleright The Euler characteristic of a sheaf \mathcal{F} on \mathbb{P}^{n} is

$$
\chi(\mathcal{F}):=\sum_{i \geq 0}(-1)^{i} \mathrm{~h}^{i}(\mathcal{F}):=\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{\mathbb{k}} \mathrm{H}^{i}(X, \mathcal{F}) .
$$

$\triangleright P_{M}(d)=\chi(\widetilde{M}(d))$ for all $d \in \mathbb{Z}$ and $\chi(\widetilde{M}(d))=\mathrm{h}^{0}(\widetilde{M}(d))$ for $d \gg 0$
\triangleright Using the comparison theorem, we obtain the formula

$$
\begin{aligned}
h_{M}(d) & =\operatorname{dim}_{\mathbb{k}} \mathrm{H}_{\mathfrak{m}}^{0}(M)_{d}+\mathrm{h}^{0}(\widetilde{M}(d))-\operatorname{dim}_{\mathbb{k}} \mathrm{H}_{\mathfrak{m}}^{1}(M)_{d} \\
& =\chi(\widetilde{M}(d))-\sum_{i \geq 1}(-1)^{i} \mathrm{~h}^{i}(\widetilde{M}(d))+\sum_{i=0,1}(-1)^{i} \operatorname{dim}_{\mathbb{k}} \mathrm{H}_{\mathfrak{m}}^{i}(M)_{d} \\
& =P_{M}(d)+\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{\mathbb{k}} \mathrm{H}_{\mathfrak{m}}^{i}(M)_{d}
\end{aligned}
$$

Castelnuovo-Mumford regularity

$\triangleright M$ admits a minimal graded free resolution $\left(\varphi_{i}\left(F_{i}\right) \subseteq \mathfrak{m} F_{i-1}\right)$

$$
0 \longrightarrow F_{\delta} \xrightarrow{\varphi_{\delta}} \cdots \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \longrightarrow M \longrightarrow 0, \quad F_{i}=\bigoplus_{j} R[-j]^{\beta_{i, j}}
$$

\triangleright The exponents $\beta_{i, j}=\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}^{R}(M, \mathbb{k})_{j}$ are the graded Betti numbers of M
$\triangleright \operatorname{reg}_{\mathrm{CM}}(M):=\max \left\{i+j \mid \beta_{i, j} \neq 0\right\}$ is the Castelnuovo-Mumford regularity of M
\triangleright For a graded module N let $\operatorname{end}(N):=\sup \left\{d \mid N_{d} \neq 0\right\}$

Theorem

$\operatorname{reg}_{\mathrm{CM}}(M)=\max _{i} \operatorname{end}\left(\mathrm{H}_{\mathfrak{m}}^{i}(M)\right)+i$.
If M is Cohen-Macaulay of dim. d, then $\operatorname{reg}_{\mathrm{CM}}(M)=\operatorname{end}\left(\mathrm{H}_{\mathfrak{m}}^{d}(M)\right)+d$

Hilbert regularity over $S=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$

\triangleright Let $\operatorname{reg}_{\mathrm{H}}(M):=\min \left\{d \mid h_{M}(j)=P_{M}(j)\right.$ for all $\left.j \geq d\right\}$
\triangleright A free resolution gives a way to calculate $h_{M}(d)$:

$$
0 \longrightarrow F_{\delta} \longrightarrow \cdots \longrightarrow F_{0} \longrightarrow M \longrightarrow 0 \quad \rightsquigarrow \quad h_{M}(d)=\sum_{i=0}^{\delta} \sum_{j}(-1)^{i} \beta_{i, j} \cdot h_{S}(d-j)
$$

$\triangleright h_{S}(d-j)$ agrees with the polynomial $(\underset{n}{d-j+n})$ as soon as $d \geq j-n$
\triangleright Estimating this yields a bound on the Hilbert regularity

$$
\operatorname{reg}_{\mathrm{H}}(M) \leq \max _{\beta_{i, j} \neq 0} j-n \leq \operatorname{reg}_{\mathrm{CM}}(M)+\delta-n=\operatorname{reg}_{\mathrm{CM}}(M)-\operatorname{depth}_{\mathfrak{m}}(M)+1
$$

using the Auslander-Buchsbaum formula depth $\mathfrak{m}_{\mathfrak{m}}(M)+\operatorname{pdim}_{S}(M)=\operatorname{depth}_{\mathfrak{m}}(S)$
\triangleright If M is CM , then equality holds, as $h_{M}(j)-P_{M}(j)=(-1)^{d} \operatorname{dim}_{\mathbb{k}} H_{\mathfrak{m}}^{d}(M)_{j}$

Example: Ideals of points

Let I be an ideal with $Z=V(I) \subseteq \mathbb{P}^{n}$ finite of length r
$\triangleright \operatorname{dim} S / I=1$, so $\mathrm{H}_{\mathfrak{m}}^{i}(S / I)=0$ for $i \geq 2 ; \mathrm{H}_{\mathfrak{m}}^{0}(S / I)=I^{\text {sat }} / I$
\triangleright The long exact sequence associated to $0 \rightarrow I^{\text {sat }} / I \rightarrow S / I \rightarrow S / I^{\text {sat }} \rightarrow 0$ yields

$$
\cdots \longrightarrow \underbrace{\mathrm{H}_{\mathfrak{m}}^{1}\left(I^{\mathrm{sat}} / I\right)}_{=0} \longrightarrow \mathrm{H}_{\mathfrak{m}}^{1}(S / I) \stackrel{\cong}{\longrightarrow} \mathrm{H}_{\mathfrak{m}}^{1}\left(S / I^{\mathrm{sat}}\right) \longrightarrow \underbrace{\mathrm{H}_{\mathfrak{m}}^{2}\left(I^{\mathrm{sat}} / I\right)}_{=0} \longrightarrow \cdots
$$

\triangleright The comparison sequence for $J=I^{\text {sat }}$ reads

$$
0 \longrightarrow S / J \longrightarrow \Gamma\left(\mathbb{P}^{n}, \mathcal{O}_{Z}(d)\right) \longrightarrow \mathrm{H}_{\mathfrak{m}}^{1}(S / J) \longrightarrow 0
$$

\triangleright Middle term has constant dim. $r \quad \rightsquigarrow \quad$ end $H_{\mathfrak{m}}^{1}(S / J)+1=\operatorname{reg}_{\mathrm{H}}(S / J)$

Theorem (Regularity for one-dimensional ideals)

$$
\operatorname{reg}_{\mathrm{CM}}(S / I)=\max \left\{\operatorname{reg}_{\mathrm{H}}(S / I)-1, \operatorname{reg}_{\mathrm{H}}\left(S / I^{\mathrm{sat}}\right)\right\}
$$

Consequence: Minimal generators of J live in degree $\leq \operatorname{reg}_{\mathrm{H}}(S / J)+1$

Further topics

\triangleright Local duality: $\mathrm{H}_{\mathfrak{m}}^{i}(M) \cong \operatorname{Ext}_{S}^{n+1-i}(M, S[-n-1])^{\vee}$ This generalizes to more general graded or local rings
\triangleright McMullen's Upper bound theorem: Cyclic polytopes have the largest number of faces among convex polytopes with the same dimension and number of vertices Stanley's proof of the simplicial version involves Cohen-Macaulayness of the Stanley-Reisner ring, local cohomology being an important ingredient
$\triangleright D$-modules: The local cohomology modules are D-modules in a natural way. As such, they are finitely generated (!) and better suited for computation. Also, GKZ A-hypergeometric systems!

Thank you! Questions?

