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Mathematicians always have problems

Definition (Computational problem, Decision problem)

A computational problem consists of an input, e.g. a tuple of data, and a

question or expected output. A decision problem has output yes or no.

▷ Input/output encoded over finite alphabet Σ, Σ∗ := {strings over Σ}
▷ Decision problems are just subsets A ⊆ Σ∗ (the “yes”-instances)

Definition (Ideal membership problem IdealMemK)

Input: f1, . . . , fs, g ∈ R := K[x1, . . . , xn]

Question: g ∈ ⟨f1, . . . , fs⟩R? (Decision problem)

Output: h1, . . . , hs ∈ R with g = h1f1 + · · ·+ hsfs (Representation problem)
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The Turing model of computation

Definition (Turing machine)

A deterministic Turing machine M (DTM) consists of

i) a finite set of states Q, including an initial state q0 and final states F ⊆ Q;

ii) a tape alphabet Γ containing the in/output alphabet;

iii) a transition function δ : Q× Γ → Q× Γ× {L,R}.

(
current state,

read tape symbol

)
δ7→

 next state,

overwrite symbol,

move left/right


▷ steps ≈ time, tape ≈ memory
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Through time and space

Definition (TIME and SPACE)

Let f : N → N be a function ≥ log n.

i) TIME(f) = {decision prob. A | ∃DTM M deciding w ∈ A in O(f(|w|)) steps}
ii) SPACE(f) = {A | ∃DTM M deciding w ∈ A using O(f(|w|)) cells}

P =
⋃

k TIME(nk)
?

⊆ NP =
⋃

k NTIME(nk)

⊆ PSPACE =
⋃

k SPACE(n
k) ⊊ EXPSPACE =

⋃
k SPACE(2

nk
)

Theorem (Hermann 1926, Mayr & Meyer 1982, Mayr 1989)

i) If g = h1f1 + · · ·+ hsfs, then ∃(hi)i with deg hi ≤ deg g + (s ·maxi deg fi)
2n .

ii) IdealMemQ ∈ EXPSPACE. One can compute some (hi)i in space 2O(|w|).
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For sake of completeness

Definition (Karp-reduction, hardness & completeness)

Let A ⊆ Σ∗, B ⊆ ∆∗ be decision problems.

i) A ≤P
m B if there is a “simple” function f : Σ∗ → ∆∗ with w ∈ A ⇔ f(w) ∈ B.

ii) B is hard for a complexity class C if A ≤P
m B for all A ∈ C.

iii) B is complete for a complexity class C if B ∈ C and hard for C.

▷ Reduction embeds problem A into problem B, “A is at most as difficult as B”

▷ Cook-Levin theorem: 3SAT is NP-complete; stepping stone for hardness results

Theorem (Mayr & Meyer 1982, Mayr 1989)

i) Hermann’s degree bound O((sd)2
n
) for certificates (hi)i is sharp.

ii) IdealMemQ is EXPSPACE-complete, even for binomial ideals.
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The scary doubly-exponential examples

Theorem (Dubé 1990, Kühnle & Mayr ISSAC’96)

Let I = ⟨f1, . . . , fs⟩K[x1,...,xn] be an ideal and d = maxi deg fi. The reduced

Gröbner basis G = {gi}i of I (w.r.t. any monomial order) has degree

deg gi ≤ 2

(
d2

2
+ d

)2n−1

.

One can enumerate the reduced Gröbner basis in exponential working space.

Theorem (Huynh 1986, my MA thesis 2022)

i) There are ideals in K[x1, . . . , xn] generated by O(n) polynomials of degree

O(1), whose reduced Gröbner basis has at least 22
n
elements and degree ≥ 22

n
.

ii) Membership in the reduced Gröbner basis is EXPSPACE-complete.
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The (not so) ideal world

Theorem (Mayr 1989, 1997)

IdealMemQ restricted to homogeneous polynomials is PSPACE-complete.

▷ Gröbner bases can still be doubly-exponential even for homogeneous ideals

▷ Deciding whether 1 ∈ ⟨f1, . . . , fs⟩R (the “Nullstellensatz”) is also in PSPACE,

in fact low in the Polynomial Hierarchy (though at least NP-hard)

▷ Bounding the number of variables also drops the complexity to PSPACE

▷ There are dimension-dependent degree bounds available [Mayr & Ritscher 2013]

▷ The complexity of computing Gröbner bases seems to be linked to its

Castelnuovo-Mumford regularity [Bayer & Mumford 1993]
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Subgalgebra Analogue to Membership Problem for Ideals (SAMPI)

Definition (Subalgebra membership problem AlgMemK)

Input: f1, . . . , fs, g ∈ K[x1, . . . , xn]

Question: g ∈ K[f1, . . . , fs]? (Decision problem)

Output: p ∈ K[t1, . . . , ts] with g = p(f1, . . . , fs) (Certification problem)

Some questions:

i) Degree bounds on p depending on n, s, deg fi?

ii) Upper and lower bounds on complexity of AlgMemQ? Related to IdealMemQ?

iii) Easier when the polynomials are homogeneous? Or monomials? Or n bounded?

iv) The analogue to Gröbner bases for ideals are SAGBI bases for subalgebras.

What is the complexity of SAGBI bases?
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A chain of reductions

in
modulo

3-counter machine

halts with exponentially

bounded counters?

generic

[Mayr & Meyer] [Mayr & Meyer]

[Shannon
& Sweedler][Kühnle & Mayr]
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Subalgebra membership using normal forms

▷ Given f1, . . . , fs, g ∈ K[x1, . . . , xn], want to check if g ∈ K[f1, . . . , fn]

▷ Consider the ideal J = ⟨f1 − t1, . . . , fs − ts⟩ ⊆ K[x, t1, . . . , ts]

▷ Let ≺ be a mon. order on K[x, t] such that xi ≻ tα for all xi, t
α, e.g. ≺lex

▷ The normal form nfJ≺(g) is the unique g′ ∈ g + J such that no term in g′ is

divisible by the leading term of any element of J

Theorem (Shannon & Sweedler 1986, attributed to Spear)

g ∈ K[f1, . . . , fs] if and only if p := nfJ≺(g) ∈ K[x, t] is in K[t].

In this case, considering p as a polynomial in t1, . . . , ts, one has g = p(f1, . . . , fs).

⇝ Reduces subalgebra membership to normal form calculation
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The upper bound

Theorem (K. 2025)

AlgMemQ is in EXPSPACE and AlgMemQ(homog) is in PSPACE.

A certificate p ∈ Q[t1, . . . , ts] can be computed using 2O(|w|) working space.

Proof idea. Combine the previous elimination method with the exponential working

space algorithm for normal forms by [Kühnle & Mayr 1996]. □

▷ Careful analysis reveals that the bounded variable case is also in PSPACE

▷ We also get a degree bound for the certificate using the Dubé bound:

Theorem (K. 2025)

If g ∈ K[f1, . . . , fs], e := deg g, then there is a p with p(f1, . . . , fs) = g of degree

deg p ≤ e+
((

1
2
d2s

2
+ d
)2n

+ 1
)(n+s)2+1

en+s ≈ dO((n+s)42n)en+s.
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The exponential space lower bound

Lemma (K. 2025)

Let f1, . . . , fs, g ∈ R = K[x1, . . . , xn], then the following are equivalent:

i) g ∈ ⟨f1, . . . , fs⟩R;
ii) ug ∈ A := K[x1, . . . , xn, uf1, . . . , ufs] ⊆ R[u].

The minimal degree of p ∈ K[t1, . . . , tn+s] with p(x1, . . . , ufs) = ug is one less

than the minimal degree of a representation maxi deg hi.The minimal number of

terms of p coincides with the minimal total number of terms of h1, . . . , hs.

Theorem (K. 2025)

i) IdealMemQ ≤P
m AlgMemQ, thus AlgMemQ is EXPSPACE-complete.

ii) Similar for homogen. polynomials, AlgMemQ(homog) is PSPACE-complete.
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Worst-case examples for subalgebra membership

Corollary (The Mayr–Meyer algebras)

For every n, there exists polynomials f1, . . . , fs, g ∈ K[x1, . . . , xO(n)], s ∈ O(n),

such that

▷ deg fi, deg g ≤ 6,

▷ each fi, g has at most two terms (single variable or binomial),

▷ g ∈ K[f1, . . . , fs], but every p ∈ K[t1, . . . , ts] with p(f1, . . . , fs) = g has degree

and number of terms at least 22
n
.

If the fi, g are homogeneous (degree O(n)), then one can still archieve 2n terms.

Idea. Build counter machine as a commutative semigroup, embed into subalgebra

14



The binary counting subalgebra

▷ Tape content b1 · · · bn ∈ {0, 1}n, state qi, head position j, =̂ qihjx1,b1 · · ·xn,bn

T = {q0, q1} ∪̇ {h0, . . . , hn}, x = {x1,0, x1,1, . . . , xn,0, xn,1},
R := { q0hixi,0 − q1hi−1xi,1 | 1 ≤ i ≤ n }

∪ { q0hixi,1 − q0hi+1xi,0 | 1 ≤ i ≤ n− 1 }
∪ { q1hixi,0 − q1hi−1xi,0 | 1 ≤ i ≤ n }
∪ { q1h0 − q0h1 } ,

A := K[f1, . . . , f5n] := K[R∪ x],

g := q0h1x1,0 · · ·xn,0 − q0hnx1,0 · · ·xn−1,0xn,1.
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The McNugget problem

Theorem (K. 2025)

IdealMemQ restricted to monomial algebras is NP-complete.

This is still true if d ≤ n or the univariate case1.

▷ Here p can be chosen to be a monomial, this reduces to a problem in (Nn,+)

▷ The univariate case is “exactly” the NP-complete change-making problem

x43 ?
∈ Q[x6, x9, x20] ⇔ 43 = 6a+ 9b+ 20c, a, b, c ∈ N

▷ Problem is in NP, one can easily verify p; hardness from combinatorics/ILPs

1But only with binary exponent encoding: |enc(xe)| ≈ log2 e. With unary encoding in TC0.
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SAGBI bases are complicated . . .

Definition (Initial algebra, SAGBI basis)

Given monomial order ≺ and subalgebra A ⊆ K[x1, . . . , xn], the initial algebra is

in≺(A) := K[{ in≺(g) | g ∈ A \ 0 }]

A SAGBI basis of A is a set S ⊆ A whose initial monomials generate in≺(A).

▷ Not every subalgebra K[f1, . . . , fs] ⊆ K[x] has a finitely gen’d initial algebra

A = K[x, xy − y2, xy2], ⇝ in≺(A) = K[x, xy, xy2, xy3, xy4, . . . ]

▷ No known general criterion on finiteness of SAGBI bases

▷ Conjecture: The finiteness problem is computationally hard

Theorem (Robbiano & Sweedler 1990)

SAGBIfiniteK is semi-decidable using the subduction algorithm. 18



. . . but may have interesting structure?

Definition (Affine-linear set, semilinear set)

i) An affine-linear set X ⊆ Zn has the form X = v0 + ⟨v1, . . . , vm⟩N, vi ∈ Zn.

ii) A semilinear set X ⊆ Zn is a finite union of affine-linear sets.
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The semilinearity conjecture

Semilinearity conjecture (K. & Reinke 2025+)

The initial monomials of a finitely generated subalgebra form a semilinear set.

▷ Clearly true if in≺(A) is finitely generated (even linear set)

▷ All known examples seem to have this structure

▷ Not true for “wild” monomimal orders, need “reasonable” orders

Theorem (K. & Reinke 2025+)

Let G ≤ GL(Zn) be a finite group, M ⊆ Zn an affine semigroup invariant under G

and ≺ a rational weight order. Then the semilin. conjecture holds for A = K[M ]G.

▷ Idea: Semilinear sets are exactly sets in Nn described by Presburger formulas

▷ Can define initial algebra membership here as Presburger formula

Hope: Decide SAGBIfinite using effective semilinear presentation of in≺(A)!
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Thank you! Questions?
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