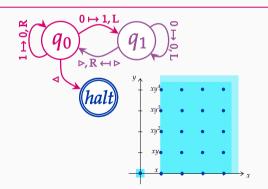


Leonie Kayser leokayser.github.io July 29, 2025

ISSAC'25



The dessert menu

Computational complexity

Subalgebra membership

Monomial and initial algebras

Mathematicians always have problems

Definition (Computational problem, Decision problem)

A **computational problem** consists of an input, e.g. a tuple of data, and a question or expected output. A **decision problem** has output yes or no.

- $hd \ \operatorname{Input/output}$ encoded over **finite alphabet** Σ , $\Sigma^* \coloneqq \{\operatorname{strings} \ \operatorname{over} \ \Sigma\}$
- ho Decision problems are just subsets $A\subseteq \Sigma^*$ (the "yes"-instances)

Definition (Ideal membership problem $IdealMem_K$)

Input: $f_1, \ldots, f_s, g \in \mathbf{R} := K[x_1, \ldots, x_n]$

Question: $g \in \langle f_1, \dots, f_s \rangle_R$? (Decision problem)

Output: $h_1, \ldots, h_s \in R$ with $g = h_1 f_1 + \cdots + h_s f_s$ (Representation problem)

The Turing model of computation

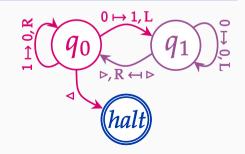
Definition (Turing machine)

A deterministic Turing machine M (DTM) consists of

- i) a finite set of **states** Q, including an initial state q_0 and final states $F \subseteq Q$;
- ii) a tape alphabet Γ containing the in/output alphabet;
- iii) a transition function $\delta \colon Q \times \Gamma \to Q \times \Gamma \times \{L, R\}.$

$$\begin{pmatrix}
\text{current state,} \\
\text{read tape symbol}
\end{pmatrix} \xrightarrow{\delta} \begin{pmatrix}
\text{next state,} \\
\text{overwrite symbol,} \\
\text{move left/right}
\end{pmatrix}$$

ho steps pprox time, tape pprox memory



Through time and space

Definition (TIME and SPACE)

Let $f: \mathbb{N} \to \mathbb{N}$ be a function $\geq \log n$.

- i) TIME $(f) = \{ \text{decision prob. } A \mid \exists \mathsf{DTM} \ M \ \mathsf{deciding} \ w \in A \ \mathsf{in} \ O(f(|w|)) \ \mathsf{steps} \}$
- ii) SPACE $(f) = \{A \mid \exists \mathsf{DTM} \ M \ \mathsf{deciding} \ w \in A \ \mathsf{using} \ O(f(|w|)) \ \mathsf{cells} \}$

$$P = \bigcup_{k} TIME(n^{k}) \quad \stackrel{?}{\subseteq} \quad NP = \bigcup_{k} NTIME(n^{k})$$

$$\subseteq \quad PSPACE = \bigcup_{k} SPACE(n^{k}) \quad \subsetneq \quad EXPSPACE = \bigcup_{k} SPACE(2^{n^{k}})$$

Theorem (Hermann 1926, Mayr & Meyer 1982, Mayr 1989)

- i) If $g = h_1 f_1 + \dots + h_s f_s$, then $\exists (h_i)_i$ with $\deg h_i \leq \deg g + (s \cdot \max_i \deg f_i)^{2^n}$.
- ii) IdealMem $\mathbb{Q} \in \text{EXPSPACE}$. One can compute some $(h_i)_i$ in space $2^{O(|w|)}$.

For sake of completeness

Definition (Karp-reduction, hardness & completeness)

Let $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$ be decision problems.

- i) $A \leq_{\mathbf{m}}^{\mathbf{P}} B$ if there is a "simple" function $f \colon \Sigma^* \to \Delta^*$ with $w \in A \Leftrightarrow f(w) \in B$.
- ii) B is hard for a complexity class C if $A \leq_{m}^{P} B$ for all $A \in C$.
- iii) B is **complete** for a complexity class C if $B \in C$ and hard for C.
 - \triangleright Reduction embeds problem A into problem B, "A is at most as difficult as B"
 - ▷ Cook-Levin theorem: 3SAT is NP-complete; stepping stone for hardness results

Theorem (Mayr & Meyer 1982, Mayr 1989)

- i) Hermann's degree bound $O((sd)^{2^n})$ for certificates $(h_i)_i$ is sharp.
- ii) $IdealMem_{\mathbb{Q}}$ is EXPSPACE-complete, even for binomial ideals.

The scary doubly-exponential examples

Theorem (Dubé 1990, Kühnle & Mayr ISSAC'96)

Let $I = \langle f_1, \dots, f_s \rangle_{K[x_1, \dots, x_n]}$ be an ideal and $d = \max_i \deg f_i$. The reduced Gröbner basis $G = \{g_i\}_i$ of I (w.r.t. any monomial order) has degree

$$\deg g_i \le 2\left(\frac{d^2}{2} + d\right)^{2^{n-1}}.$$

One can enumerate the reduced Gröbner basis in exponential working space.

Theorem (Huynh 1986, my MA thesis 2022)

- i) There are ideals in $K[x_1, ..., x_n]$ generated by O(n) polynomials of degree O(1), whose reduced Gröbner basis has at least 2^{2^n} elements and degree $\geq 2^{2^n}$.
- ii) Membership in the reduced Gröbner basis is EXPSPACE-complete.

The (not so) ideal world

Theorem (Mayr 1989, 1997)

 $IdealMem_{\mathbb{O}}$ restricted to homogeneous polynomials is PSPACE-complete.

- ▷ Gröbner bases can still be doubly-exponential even for homogeneous ideals
- Deciding whether $1 \in \langle f_1, \dots, f_s \rangle_R$ (the "Nullstellensatz") is also in PSPACE, in fact low in the Polynomial Hierarchy (though at least NP-hard)
- ▷ Bounding the number of variables also drops the complexity to PSPACE
- □ There are dimension-dependent degree bounds available [Mayr & Ritscher 2013]
- □ The complexity of computing Gröbner bases seems to be linked to its □ Castelnuovo-Mumford regularity [Bayer & Mumford 1993]

The dessert menu

Computational complexity

Subalgebra membership

Monomial and initial algebras

Subgalgebra Analogue to Membership Problem for Ideals (SAMPI)

Definition (Subalgebra membership problem AlgMem_K)

```
Input: f_1, ..., f_s, g \in K[x_1, ..., x_n]
```

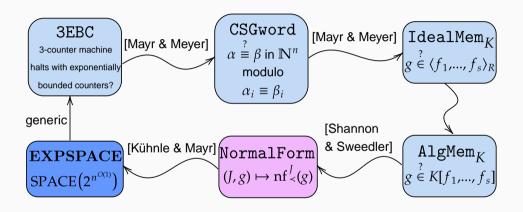
Question: $g \in K[f_1, ..., f_s]$? (Decision problem)

Output: $p \in K[t_1, \dots, t_s]$ with $g = p(f_1, \dots, f_s)$ (Certification problem)

Some questions:

- i) Degree bounds on p depending on $n, s, \deg f_i$?
- ii) Upper and lower bounds on complexity of $AlgMem_{\mathbb{Q}}$? Related to $IdealMem_{\mathbb{Q}}$?
- iii) Easier when the polynomials are homogeneous? Or monomials? Or n bounded?
- iv) The analogue to Gröbner bases for ideals are SAGBI bases for subalgebras. What is the complexity of SAGBI bases?

A chain of reductions



Subalgebra membership using normal forms

- \triangleright Given $f_1, \ldots, f_s, g \in K[x_1, \ldots, x_n]$, want to check if $g \in K[f_1, \ldots, f_n]$
- \triangleright Consider the ideal $J = \langle f_1 t_1, \dots, f_s t_s \rangle \subseteq K[\boldsymbol{x}, t_1, \dots, t_s]$
- \triangleright Let \prec be a mon. order on K[x,t] such that $x_i \succ t^{\alpha}$ for all x_i,t^{α} , e.g. \prec_{lex}
- ightharpoonup The normal form $\inf_{\prec}^J(g)$ is the unique $g' \in g+J$ such that no term in g' is divisible by the leading term of any element of J

Theorem (Shannon & Sweedler 1986, attributed to Spear)

 $g \in K[f_1, \ldots, f_s]$ if and only if $p := \inf_{\prec}^J(g) \in K[x, t]$ is in K[t]. In this case, considering p as a polynomial in t_1, \ldots, t_s , one has $g = p(f_1, \ldots, f_s)$.

Neduces subalgebra membership to normal form calculation

The upper bound

Theorem (K. 2025)

 ${\tt AlgMem}_{\mathbb{Q}} \text{ is in } {\tt EXPSPACE} \text{ and } {\tt AlgMem}_{\mathbb{Q}}({\tt homog}) \text{ is in } {\tt PSPACE}.$

A certificate $p \in \mathbb{Q}[t_1, \dots, t_s]$ can be computed using $2^{O(|w|)}$ working space.

Proof idea. Combine the previous elimination method with the exponential working space algorithm for normal forms by [Kühnle & Mayr 1996].

- \triangleright Careful analysis reveals that the bounded variable case is also in PSPACE
- ▷ We also get a degree bound for the certificate using the Dubé bound:

Theorem (K. 2025)

If $g \in K[f_1, \ldots, f_s]$, $e \coloneqq \deg g$, then there is a p with $p(f_1, \ldots, f_s) = g$ of degree

$$\deg p \le e + \left(\left(\frac{1}{2} d^{2s^2} + d \right)^{2^n} + 1 \right)^{(n+s)^2 + 1} e^{n+s} \approx d^{O((n+s)^4 2^n)} e^{n+s}.$$

The exponential space lower bound

Lemma (K. 2025)

Let $f_1, \ldots, f_s, g \in R = K[x_1, \ldots, x_n]$, then the following are equivalent:

- i) $g \in \langle f_1, \dots, f_s \rangle_R$;
- ii) $ug \in A := K[x_1, \dots, x_n, uf_1, \dots, uf_s] \subseteq R[u].$

The minimal degree of $p \in K[t_1, ..., t_{n+s}]$ with $p(x_1, ..., uf_s) = ug$ is one less than the minimal degree of a representation $\max_i \deg h_i$. The minimal number of terms of p coincides with the minimal total number of terms of $h_1, ..., h_s$.

Theorem (K. 2025)

- i) $IdealMem_{\mathbb{Q}} \leq_m^{P} AlgMem_{\mathbb{Q}}$, thus $AlgMem_{\mathbb{Q}}$ is EXPSPACE-complete.
- ii) Similar for homogen. polynomials, $AlgMem_{\mathbb{Q}}(homog)$ is PSPACE-complete.

Worst-case examples for subalgebra membership

Corollary (The Mayr–Meyer algebras)

For every n, there exists polynomials $f_1, \ldots, f_s, g \in K[x_1, \ldots, x_{O(n)}]$, $s \in O(n)$, such that

- $ightharpoonup \deg f_i, \deg g \leq 6,$
- \triangleright each f_i, g has at most two terms (single variable or binomial),
- $p \in K[f_1, \ldots, f_s]$, but every $p \in K[t_1, \ldots, t_s]$ with $p(f_1, \ldots, f_s) = g$ has degree and number of terms at least 2^{2^n} .

If the f_i, g are homogeneous (degree O(n)), then one can still archieve 2^n terms.

Idea. Build counter machine as a commutative semigroup, embed into subalgebra

The binary counting subalgebra

 \triangleright Tape content $b_1 \cdots b_n \in \{0,1\}^n$, state q_i , head position j, $\hat{=} q_i h_j x_{1,b_1} \cdots x_{n,b_n}$

$$\mathcal{T} = \{q_0, q_1\} \ \dot{\cup} \ \{h_0, \dots, h_n\}, \quad \boldsymbol{x} = \{x_{1,0}, x_{1,1}, \dots, x_{n,0}, x_{n,1}\},$$

$$\mathcal{R} \coloneqq \{q_0 h_i x_{i,0} - q_1 h_{i-1} x_{i,1} \mid 1 \le i \le n\}$$

$$\cup \{q_0 h_i x_{i,1} - q_0 h_{i+1} x_{i,0} \mid 1 \le i \le n-1\}$$

$$\cup \{q_1 h_i x_{i,0} - q_1 h_{i-1} x_{i,0} \mid 1 \le i \le n\}$$

$$\cup \{q_1 h_0 - q_0 h_1\},$$

$$A \coloneqq \mathbb{K}[f_1, \dots, f_{5n}] \coloneqq \mathbb{K}[\mathcal{R} \cup \boldsymbol{x}],$$

$$g \coloneqq q_0 h_1 x_{1,0} \cdots x_{n,0} - q_0 h_n x_{1,0} \cdots x_{n-1,0} x_{n,1}.$$

The dessert menu

Computational complexity

Subalgebra membership

Monomial and initial algebras

The McNugget problem

Theorem (K. 2025)

 $IdealMem_{\mathbb{Q}}$ restricted to monomial algebras is NP-complete.

This is still true if $d \leq n$ or the univariate case¹.

- ho Here p can be chosen to be a monomial, this reduces to a problem in $(\mathbb{N}^n,+)$
- $\,\,\vartriangleright\,\,$ The univariate case is "exactly" the NP-complete change-making problem

$$x^{43} \stackrel{?}{\in} \mathbb{Q}[x^6, x^9, x^{20}] \Leftrightarrow 43 = 6a + 9b + 20c, \ a, b, c \in \mathbb{N}$$

 \triangleright Problem is in NP, one can easily verify p; hardness from combinatorics/ILPs

¹But only with binary exponent encoding: $|\mathtt{enc}(x^e)| \approx \log_2 e$. With unary encoding in TC^0 .

SAGBI bases are complicated ...

Definition (Initial algebra, SAGBI basis)

Given monomial order \prec and subalgebra $A \subseteq K[x_1, \ldots, x_n]$, the **initial algebra** is

$$\operatorname{in}_{\prec}(A) := K[\{ \operatorname{in}_{\prec}(g) \mid g \in A \setminus 0 \}]$$

A **SAGBI** basis of A is a set $S \subseteq A$ whose initial monomials generate $\operatorname{in}_{\prec}(A)$.

ho Not every subalgebra $K[f_1,\ldots,f_s]\subseteq K[m{x}]$ has a finitely gen'd initial algebra

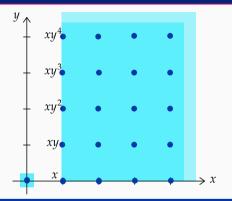
$$A = K[x, xy - y^2, xy^2], \quad \leadsto \quad \text{in}_{\prec}(A) = K[x, xy, xy^2, xy^3, xy^4, \dots]$$

- ▷ No known general criterion on finiteness of SAGBI bases
- ▷ Conjecture: The finiteness problem is computationally hard

Theorem (Robbiano & Sweedler 1990)

 ${\tt SAGBIfinite}_K$ is semi-decidable using the subduction algorithm.

... but may have interesting structure?



$$in_{\prec}(A) = 1K + xK[x, y]$$
$$= \{0\} \cup (e_1 + \mathbb{N}^2)$$

Definition (Affine-linear set, semilinear set)

- i) An affine-linear set $X \subseteq \mathbb{Z}^n$ has the form $X = v_0 + \langle v_1, \dots, v_m \rangle_{\mathbb{N}}$, $v_i \in \mathbb{Z}^n$.
- ii) A semilinear set $X \subseteq \mathbb{Z}^n$ is a finite union of affine-linear sets.

The semilinearity conjecture

Semilinearity conjecture (K. & Reinke 2025+)

The initial monomials of a finitely generated subalgebra form a semilinear set.

- \triangleright Clearly true if $\operatorname{in}_{\prec}(A)$ is finitely generated (even linear set)
- ▷ All known examples seem to have this structure
- ▶ Not true for "wild" monomimal orders, need "reasonable" orders

Theorem (K. & Reinke 2025+)

Let $G \leq \operatorname{GL}(\mathbb{Z}^n)$ be a finite group, $M \subseteq \mathbb{Z}^n$ an affine semigroup invariant under G and \prec a rational weight order. Then the semilin. conjecture holds for $A = K[M]^G$.

- \triangleright Idea: Semilinear sets are exactly sets in \mathbb{N}^n described by Presburger formulas
- ▷ Can define initial algebra membership here as Presburger formula

Hope: Decide SAGBIfinite using effective semilinear presentation of $\operatorname{in}_{\prec}(A)!$

Thank you! Questions?