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Computational problems

Definition (Computational problem)

A computational problem consists of an input, e.g. a tuple of data, and a

question or expected output. A decision problem has output yes or no.

> If there is a unique output (e.g. for decision problems), then this is just a
function

> For theoretical and practical purposes the input/output needs to be suitably
encoded over some finite alphabet Y; the set of strings of characters is >*

> Decision problems are just subsets A C ¥* (the "yes"-instances)

> Assume that the input is syntactically correct (actually encodes a
number/graph/...)

> Output complexity: How long is the (shortest) output compared to |w|?



The Turing model of computation

Definition (Turing machine)

A deterministic Turing machine M (TM/DTM for short) consists of

i) a finite set of states @, including an initial state gy and final states F' C @);
ii) a tape alphabet I' containing the in/output alphabets and a blank OJ € T’;
i) a transition function : (Q \ F) xI' - @ x ' x {L, R}.

A non-deterministic TM instead has 6: (Q \ F) xI' = P(Q x I x {L,R}).

> Configuration = (current tape (7;);ez, head position ¢ € Z, state ¢ € Q)

> Initial configuration = (input surrounded by ['s, head in position 0, ¢ = q)
> 0 defines transitions between configurations ¢ b, ¢

> DTMs are “roughly” equivalent to computers (steps ~ time, tape ~ memory)



Through time and space

Definition (TIME and SPACE)

Let f: N — N be a function > logn.

i) TIME(f) = {decision prob. A | 3DTM M deciding w € A in O(f(|w]|)) steps}
i) NTIME(f) = {A | 3non-determ. TM M deciding w € A in O(f(|w|)) steps}
i) SPACE(f) = {A | 3DTM M deciding w € A using O(f(|w|)) cells}

> TIME(f) € NTIME(f) C SPACE(f) C TIME(2/(™)
> Hierarchy theorems: If fi € o(f2) (4 technicalities), then

TIME(f,) € TIME(fzlog f2), ~ SPACE(f1) & SPACE(f,)
> Important complexity classes

P = |, TIME(n*), NP = J, NTIME(n*), PSPACE = J, SPACE(n*), ... 4
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For sake of completeness

Definition (Polynomial-time many-one reduction, hardness & completeness)
Let A C X*, B C A* be decision problems.

i) A <P B if there is a function f: ¥* — A* in FP with w € A & f(w) € B.
ii) B is hard for a complexity class C if A <’ B forall A€ C.
iil) B is complete for a complexity class C if B € C and hard for C.

> Informally: Karp-reductions embed/translate problem A into problem B
> gﬁ is reflexive & transitive, formalizes “A is at most as difficult to decide as B”
> Many classes are closed under reduction, i.e. A g}; Band BeC= AeC

> Cook-Levin theorem: 3SAT is NP-complete; stepping stone for hardness results
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Representing polynomials on a computer

Need to encode polynomials f =}, . ca® € Klz1,...,2,].

> Fix encoding enc of K, e.g. bin(a)/ bin(b) for § € Q or {ay,...,a,} for I,
> There are two ways of representing a monomial £*: exponential or unary
X" bin(ay) ... X,” bin(ay,) Vs X, ... % X,... X,
—— ——

aq times oy, times

> Unary encoding ensures that |enc(z®)| > degx®
> To encode the terms of f, list. ..
e all terms of degree < deg f with their coeffients (dense)

e or only those with nonzero coeffients (sparse)

n-+d

> Dense encoding ensures |enc(f)| > ("

), in particular

lexponential+sparse| < |unary+sparse| < |unary-+dense| = O(|exponential-+dense|) 7



Ideal membership

Definition (Ideal membership problem IdealMemy)

Input: fi,...,fs,0 € R=Klxy,...,1,)
Question: g € (fi,..., fo)r? (Decision problem)
Output: hq,...,hy € Rwith g =hyfi1 + -+ hfs (Certification problem)

Theorem (Hermann 1926, Mayr & Meyer 1982)

If g € {fi,...,fs)r, then there exist (h;); with deg h; < deg g + (s - max; deg f;)?".

Theorem (Mayr 1989)

One can compute a certificate using working space 20

Caveat: The certificates are written to an output tape not counted as working space.



The CSG word problem hides in IdealMemy

Theorem (Mayr & Meyer 1982)
The word problem for finitely presented commutative semigroups CSGword is
EXPSPACE-complete.

Lemma (CSGword <P IdealMemy)
Let = be a congruence rel. on N" generated by {co; = 5;};, and o, f € N". Then

i) a = B in the commutative semigroup N"/ = if and only if

i) 2% — xf € ({2 — %} ki, 20

Theorem (Mayr & Meyer 1982, Mayr 1989)

IdealMemg is EXPSPACE-complete, even for dense encodings.

Hermann's degree bound for certificates (h;); is (essentially) sharp.



The scary doubly-exponential examples

Theorem (Dubé 1990, Kiihnle & Mayr 1996)

Let I = (fi,..., fs)Kz1,...zn) be an ideal and d = max; deg f;. The reduced
Grobner basis G = {g;}; of I (w.r.t. an arbitrary monomial order) has degree

—1

2 -

One can enumerate the reduced Grobner basis in exponential working space.

Theorem (Huynh 1986, my MA thesis 2022)
Ther are ideals in K[z, ..., x,] generated by O(n) polynomials of degree O(1),

whose reduced Grébner basis has at least 22" elements and degree > 22"
Membership in the reduced Grobner basis is EXPSPACE-complete.



Not all is lost

Theorem (Mayr 1989, 1997)

IdealMemg restricted to homogeneous polynomials is PSPACE-complete.

> Grobner bases can still be doubly-exponential even for homogeneous ideals

> Deciding whether 1 € (fi, ..., fs)r (the “Nullstellensatz”) is also in PSPACE,
in fact low in the Polynomial Hierarchy (though at least NP-hard)

> Bounding the number of variables also drops the complexity to PSPACE
> There are also dimension-dependent degree bounds available

> The complexity of computing Grobner bases seems to be linked to its
Castelnuovo-Mumford regularity [Bayer & Mumford 1993]
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Definition (Subalgebra membership problem AlgMen, )

Input: f1,...,fs,g € R=Klxy,...,1,)

Question: g € K[f,..., fs]? (Decision problem)
Output: p € K[tq,...,t] with g =p(f1,..., fs) (Certification problem)

Some questions (followed by partial answers):

i) Degree bounds on p depending on n, s, deg f;?

i) Upper and lower bounds on complexity of AlgMem,?

iii) Easier when the polynomials are homogeneous? Or monomials? Or n bounded?

iv) The analogue to Grobner bases for ideals are SAGBI bases for subalgebras.
What is the complexity of SAGBI bases?
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Subalgebra membership using normal forms

> Given fi1,..., fs,q € K[z1,...,2,], want to check if g € K[fi,..., fn]
> Consider the ideal J = (f; —t1,..., fs —ts) C K|z, tq,..., 14
> Let < be a mon. order on K[z, t| such that x; = t* for all z;,t*, e.g. <
> The normal form nfi(g) is the unique ¢’ € g + J such that no term in ¢’ is
divisible by the leading term of any element of J
Theorem (Shannon & Sweedler 1986, attributed to Spear)

g € K[f1,...,fs ifand only if p == nf’(g) € K[z, t] is in K[t].
In this case, considering p as a polynomial in ty,... ts, one has g = p(f1,..., fs)-




A first upper bound

AlgMem, is in EXPSPACE. A certificate p € Q[ty, ... ,t,] can be computed using
200wl working space.

Proof. Combine the previous elimination method with the exponential working space
algorithm for normal forms by [Kiihnle & Mayr 1996]. OJ

> More careful analysis should reveal that the homogeneous problem is in PSPACE
> We also get a degree bound for the certificate using the Dubé bound:

If g€ K[f1,...,fs], then there is a p with p(fi,..., fs) = g of degree

degp < ((2n(d*/2+ d)*"")" deg g)"*".



The McNugget problem

The subalgebra membership restricted to monomial algebras is NP-complete.
This is still true if one bounds the degrees, or one restricts to a single variable.

> Note in the last case a sparse+exp. encoding must be used (otherwise in L)
> Here p can be chosen to be a monomial, this reduces to a problem in (N", +)
> The problem is in NP, as one can non-deterministically guess p

> The univariate case is “exactly” the NP-complete change-making problem
. ? ,
€ Q% 2%, 2] < 43=6a+9b+20c, a,b,c €N

> For bounded degree one can reduce from a problem similar to ILP



A first lower bound

AlgMem, is PSPACE-hard, even when restricted to homogeneous generators.

Proof idea. Inspired by the homogeneous ideal case [Mayr 1997].

> A LBA M is a Turing machine only using its input as working tape

> Assume M has tape alphabet I' = {0, 1} and states @, input length n

> Consider R = K[{z;0,%i1,Yi }1<i<n U Q|

> Configuration (w; ... w, € {0,1}",4,q) = monomial &1 4, - - * Tpuw, Yiq

> Generators are all x; ; and binomials reflecting the transition function

> The resulting subalgebra is N*-graded over K|z, ;| (by the y; and @ variables)
~ This grading is used to prove the reduction LBAword < AlgMem, 0



What if | don’t care about computational complexity?

Corollary

There exists polynomials fi, ..., fs,9 € K[x1,...,Z30400)], s € O(n), such that

> they are homogeneous with deg f; < 2, degg =n + 2,
> ge K[fla"'7f8]'

> each f;, g has at most two terms, but

> every p € K[ty, ..., ts] with p(fi,...,fs) =g has at least 2" terms!

Proof. Build binary counter as an LBA and encode as subalgebra as previously!
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Open questions about SAGBI bases

> The initial algebra in(A) is the subalgebra with basis consisting of initial
monomials of polynomials in A

> A SAGBI basis of A is a subset of A whose initial monomials generate in_(A)

> Not every subalgebra K|[fi,..., fs] € K[x] has a finitely gen'd initial algebra,
e.g. the invariants K[z, 7o, 23]4 = Kley, ey, €3, A

> No known general criterion on finiteness of SAGBI bases
> Conjecture: The finiteness problem is compuationally hard, maybe undecidable

> Initial algebra membership should be at least as difficult as subalgebra
membership; in homogeneous case it is also PSPACE-complete
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Thank you! Questions?
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