
The Computational Complexity

of Subalgebra Membership

Leonie Kayser

leo.kayser@mis.mpg.de

December 14, 2023

Nonlinear Algebra Seminar

mailto:leo.kayser@mis.mpg.de


Table of Contents

Computational complexity

Ideal membership

Subalgebra membership

1



Computational problems

Definition (Computational problem)

A computational problem consists of an input, e.g. a tuple of data, and a

question or expected output. A decision problem has output yes or no.

▷ If there is a unique output (e.g. for decision problems), then this is just a

function

▷ For theoretical and practical purposes the input/output needs to be suitably

encoded over some finite alphabet Σ; the set of strings of characters is Σ∗

▷ Decision problems are just subsets A ⊆ Σ∗ (the “yes”-instances)

▷ Assume that the input is syntactically correct (actually encodes a

number/graph/. . . )

▷ Output complexity: How long is the (shortest) output compared to |w|?
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The Turing model of computation

Definition (Turing machine)

A deterministic Turing machine M (TM/DTM for short) consists of

i) a finite set of states Q, including an initial state q0 and final states F ⊆ Q;

ii) a tape alphabet Γ containing the in/output alphabets and a blank □ ∈ Γ;

iii) a transition function δ : (Q \ F )× Γ → Q× Γ× {L,R}.

A non-deterministic TM instead has δ : (Q \ F )× Γ → P(Q× Γ× {L,R}).

▷ Configuration = (current tape (γi)i∈Z, head position i ∈ Z, state q ∈ Q)

▷ Initial configuration = (input surrounded by □’s, head in position 0, q = q0)

▷ δ defines transitions between configurations c ⊢M c′

▷ DTMs are “roughly” equivalent to computers (steps ≈ time, tape ≈ memory)
3



Through time and space

Definition (TIME and SPACE)

Let f : N → N be a function ≥ log n.

i) TIME(f) = {decision prob. A | ∃DTM M deciding w ∈ A in O(f(|w|)) steps}
ii) NTIME(f) = {A | ∃non-determ. TM M deciding w ∈ A in O(f(|w|)) steps}
iii) SPACE(f) = {A | ∃DTM M deciding w ∈ A using O(f(|w|)) cells}

▷ TIME(f) ⊆ NTIME(f) ⊆ SPACE(f) ⊆ TIME(2f(n))

▷ Hierarchy theorems: If f1 ∈ o(f2) (+ technicalities), then

TIME(f1) ⊊ TIME(f2 log f2), SPACE(f1) ⊊ SPACE(f2)

▷ Important complexity classes

P =
⋃

k TIME(nk), NP =
⋃

k NTIME(nk), PSPACE =
⋃

k SPACE(n
k), . . . 4



For sake of completeness

Definition (Polynomial-time many-one reduction, hardness & completeness)

Let A ⊆ Σ∗, B ⊆ ∆∗ be decision problems.

i) A ≤P
m B if there is a function f : Σ∗ → ∆∗ in FP with w ∈ A ⇔ f(w) ∈ B.

ii) B is hard for a complexity class C if A ≤P
m B for all A ∈ C.

iii) B is complete for a complexity class C if B ∈ C and hard for C.

▷ Informally: Karp-reductions embed/translate problem A into problem B

▷ ≤P
m is reflexive & transitive, formalizes “A is at most as difficult to decide as B”

▷ Many classes are closed under reduction, i.e. A ≤P
m B and B ∈ C ⇒ A ∈ C

▷ Cook-Levin theorem: 3SAT is NP-complete; stepping stone for hardness results
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Representing polynomials on a computer

Need to encode polynomials f =
∑

|α|≤d cαx
α ∈ K[x1, . . . , xn].

▷ Fix encoding enc of K, e.g. bin(a)/ bin(b) for a
b
∈ Q or {a1, . . . , aq} for Fq

▷ There are two ways of representing a monomial xα: exponential or unary

X1^ bin(α1) . . . Xn^ bin(αn) vs X1 . . . X1︸ ︷︷ ︸
α1 times

. . . Xn . . . Xn︸ ︷︷ ︸
αn times

▷ Unary encoding ensures that |enc(xα)| ≥ degxα

▷ To encode the terms of f , list. . .

• all terms of degree ≤ deg f with their coeffients (dense)

• or only those with nonzero coeffients (sparse)

▷ Dense encoding ensures |enc(f)| ≥
(
n+d
n

)
, in particular

|exponential+sparse| ≤ |unary+sparse| ≤ |unary+dense| = O(|exponential+dense|) 7



Ideal membership

Definition (Ideal membership problem IdealMemK)

Input: f1, . . . , fs, g ∈ R = K[x1, . . . , xn]

Question: g ∈ ⟨f1, . . . , fs⟩R? (Decision problem)

Output: h1, . . . , hs ∈ R with g = h1f1 + · · ·+ hsfs (Certification problem)

Theorem (Hermann 1926, Mayr & Meyer 1982)

If g ∈ ⟨f1, . . . , fs⟩R, then there exist (hi)i with deg hi ≤ deg g + (s ·maxi deg fi)
2n .

Theorem (Mayr 1989)

One can compute a certificate using working space 2O(|w|).

Caveat: The certificates are written to an output tape not counted as working space.
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The CSG word problem hides in IdealMemK

Theorem (Mayr & Meyer 1982)

The word problem for finitely presented commutative semigroups CSGword is

EXPSPACE-complete.

Lemma (CSGword ≤P
m IdealMemK)

Let ≡ be a congruence rel. on Nn generated by {αi ≡ βi}i, and α, β ∈ Nn. Then

i) α ≡ β in the commutative semigroup Nn/ ≡ if and only if

ii) xα − xβ ∈ ⟨{xαi − xβi}i⟩K[x1,...,xn].

Theorem (Mayr & Meyer 1982, Mayr 1989)

IdealMemQ is EXPSPACE-complete, even for dense encodings.

Hermann’s degree bound for certificates (hi)i is (essentially) sharp.
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The scary doubly-exponential examples

Theorem (Dubé 1990, Kühnle & Mayr 1996)

Let I = ⟨f1, . . . , fs⟩K[x1,...,xn] be an ideal and d = maxi deg fi. The reduced

Gröbner basis G = {gi}i of I (w.r.t. an arbitrary monomial order) has degree

deg gi ≤ 2

(
d2

2
+ d

)2n−1

.

One can enumerate the reduced Gröbner basis in exponential working space.

Theorem (Huynh 1986, my MA thesis 2022)

Ther are ideals in K[x1, . . . , xn] generated by O(n) polynomials of degree O(1),

whose reduced Gröbner basis has at least 22
n
elements and degree ≥ 22

n
.

Membership in the reduced Gröbner basis is EXPSPACE-complete.
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Not all is lost

Theorem (Mayr 1989, 1997)

IdealMemQ restricted to homogeneous polynomials is PSPACE-complete.

▷ Gröbner bases can still be doubly-exponential even for homogeneous ideals

▷ Deciding whether 1 ∈ ⟨f1, . . . , fs⟩R (the “Nullstellensatz”) is also in PSPACE,

in fact low in the Polynomial Hierarchy (though at least NP-hard)

▷ Bounding the number of variables also drops the complexity to PSPACE

▷ There are also dimension-dependent degree bounds available

▷ The complexity of computing Gröbner bases seems to be linked to its

Castelnuovo-Mumford regularity [Bayer & Mumford 1993]
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Big questions

Definition (Subalgebra membership problem AlgMemK)

Input: f1, . . . , fs, g ∈ R = K[x1, . . . , xn]

Question: g ∈ K[f1, . . . , fs]? (Decision problem)

Output: p ∈ K[t1, . . . , ts] with g = p(f1, . . . , fs) (Certification problem)

Some questions (followed by partial answers):

i) Degree bounds on p depending on n, s, deg fi?

ii) Upper and lower bounds on complexity of AlgMemQ?

iii) Easier when the polynomials are homogeneous? Or monomials? Or n bounded?

iv) The analogue to Gröbner bases for ideals are SAGBI bases for subalgebras.

What is the complexity of SAGBI bases?
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Subalgebra membership using normal forms

▷ Given f1, . . . , fs, g ∈ K[x1, . . . , xn], want to check if g ∈ K[f1, . . . , fn]

▷ Consider the ideal J = ⟨f1 − t1, . . . , fs − ts⟩ ⊆ K[x, t1, . . . , ts]

▷ Let ≺ be a mon. order on K[x, t] such that xi ≻ tα for all xi, t
α, e.g. ≺lex

▷ The normal form nfJ≺(g) is the unique g′ ∈ g + J such that no term in g′ is

divisible by the leading term of any element of J

Theorem (Shannon & Sweedler 1986, attributed to Spear)

g ∈ K[f1, . . . , fs] if and only if p := nfJ≺(g) ∈ K[x, t] is in K[t].

In this case, considering p as a polynomial in t1, . . . , ts, one has g = p(f1, . . . , fs).
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A first upper bound

Theorem

AlgMemQ is in EXPSPACE. A certificate p ∈ Q[t1, . . . , ts] can be computed using

2O(|w|) working space.

Proof. Combine the previous elimination method with the exponential working space

algorithm for normal forms by [Kühnle & Mayr 1996]. □

▷ More careful analysis should reveal that the homogeneous problem is in PSPACE

▷ We also get a degree bound for the certificate using the Dubé bound:

Theorem

If g ∈ K[f1, . . . , fs], then there is a p with p(f1, . . . , fs) = g of degree

deg p ≤ ((2n(d2/2 + d)2
n−1

)n deg g)n+1.
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The McNugget problem

Theorem

The subalgebra membership restricted to monomial algebras is NP-complete.

This is still true if one bounds the degrees, or one restricts to a single variable.

▷ Note in the last case a sparse+exp. encoding must be used (otherwise in L)

▷ Here p can be chosen to be a monomial, this reduces to a problem in (Nn,+)

▷ The problem is in NP, as one can non-deterministically guess p

▷ The univariate case is “exactly” the NP-complete change-making problem

x43 ?
∈ Q[x6, x9, x20] ⇔ 43 = 6a+ 9b+ 20c, a, b, c ∈ N

▷ For bounded degree one can reduce from a problem similar to ILP
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A first lower bound

Theorem

AlgMemK is PSPACE-hard, even when restricted to homogeneous generators.

Proof idea. Inspired by the homogeneous ideal case [Mayr 1997].

▷ A LBA M is a Turing machine only using its input as working tape

▷ Assume M has tape alphabet Γ = {0, 1} and states Q, input length n

▷ Consider R = K[{xi,0, xi,1, yi}1≤i≤n ∪Q]

▷ Configuration (w1 . . . wn ∈ {0, 1}n, i, q) =̂ monomial x1,w1 · · ·xn,wnyiq

▷ Generators are all xi,j and binomials reflecting the transition function

▷ The resulting subalgebra is N2-graded over K[xi,j] (by the yi and Q variables)

⇝ This grading is used to prove the reduction LBAword ≤P
m AlgMemK □
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What if I don’t care about computational complexity?

Corollary

There exists polynomials f1, . . . , fs, g ∈ K[x1, . . . , x3n+O(1)], s ∈ O(n), such that

▷ they are homogeneous with deg fi ≤ 2, deg g = n+ 2,

▷ g ∈ K[f1, . . . , fs],

▷ each fi, g has at most two terms, but

▷ every p ∈ K[t1, . . . , ts] with p(f1, . . . , fs) = g has at least 2n terms!

Proof. Build binary counter as an LBA and encode as subalgebra as previously!
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Open questions about SAGBI bases

▷ The initial algebra in≺(A) is the subalgebra with basis consisting of initial

monomials of polynomials in A

▷ A SAGBI basis of A is a subset of A whose initial monomials generate in≺(A)

▷ Not every subalgebra K[f1, . . . , fs] ⊆ K[x] has a finitely gen’d initial algebra,

e.g. the invariants K[x1, x2, x3]
A3 = K[e1, e2, e3,∆]

▷ No known general criterion on finiteness of SAGBI bases

▷ Conjecture: The finiteness problem is compuationally hard, maybe undecidable

▷ Initial algebra membership should be at least as difficult as subalgebra

membership; in homogeneous case it is also PSPACE-complete
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Thank you! Questions?
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