The Computational Complexity of Subalgebra Membership

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Leonie Kayser

leo.kayser@mis.mpg.de

December 14, 2023

Nonlinear Algebra Seminar

[Computational complexity](#page-1-0)

[Ideal membership](#page-6-0)

[Subalgebra membership](#page-12-0)

Computational problems

Definition (Computational problem)

A computational problem consists of an input, e.g. a tuple of data, and a question or expected output. A **decision problem** has output yes or no.

- \triangleright If there is a unique output (e.g. for decision problems), then this is just a function
- \triangleright For theoretical and practical purposes the input/output needs to be suitably encoded over some finite alphabet Σ ; the set of strings of characters is Σ^*
- \triangleright <code>Decision</code> problems are just subsets $A\subseteq \Sigma^*$ (the "yes"-instances)
- Assume that the input is syntactically correct (actually encodes a number/graph/. . .)
- \triangleright Output complexity: How long is the (shortest) output compared to $|w|$?

The Turing model of computation

Definition (Turing machine)

A deterministic Turing machine M (TM/DTM for short) consists of

- a finite set of **states** Q, including an initial state q_0 and final states $F \subseteq Q$;
- ii) a **tape alphabet** Γ containing the in/output alphabets and a blank $\Box \in \Gamma$;
- iii) a transition function δ : $(Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$.

A non-deterministic TM instead has $\delta: (Q \setminus F) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

- **▷ Configuration = (current tape** $(\gamma_i)_{i \in \mathbb{Z}}$, head position $i \in \mathbb{Z}$, state $q \in Q$)
- Initial configuration = (input surrounded by \square 's, head in position 0, $q = q_0$)
- \triangleright δ defines transitions between configurations $c \vdash_M c'$
- \triangleright DTMs are "roughly" equivalent to computers (steps \approx time, tape \approx memory)

Through time and space

Definition (TIME and SPACE)

Let $f: \mathbb{N} \to \mathbb{N}$ be a function $\geq \log n$.

i) TIME(f) = {decision prob. A | ∃DTM M deciding $w \in A$ in $O(f(|w|))$ steps}

ii) NTIME(f) = {A | ∃non-determ. TM M deciding $w \in A$ in $O(f(|w|))$ steps}

iii) SPACE(f) = {A | ∃DTM M deciding $w \in A$ using $O(f(|w|))$ cells}

- \triangleright TIME(f) \subseteq NTIME(f) \subseteq SPACE(f) \subseteq TIME(2^{f(n)})
- \triangleright Hierarchy theorems: If $f_1 \in o(f_2)$ (+ technicalities), then

TIME(f_1) \subseteq TIME(f_2 log f_2), SPACE(f_1) \subseteq SPACE(f_2)

 \triangleright Important complexity classes

 $P = \bigcup_k \text{TIME}(n^k), \quad \text{NP} = \bigcup_k \text{NTIME}(n^k), \quad \text{PSPACE} = \bigcup_k \text{SPACE}(n^k), \ \dots$

For sake of completeness

Definition (Polynomial-time many-one reduction, hardness & completeness) Let $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$ be decision problems.

- i) $A \leq^P_m B$ if there is a function $f: \Sigma^* \to \Delta^*$ in FP with $w \in A \Leftrightarrow f(w) \in B$.
- ii) B is **hard** for a complexity class C if $A \leq^P_m B$ for all $A \in C$.
- iii) B is **complete** for a complexity class C if $B \in \mathcal{C}$ and hard for C.
	- \triangleright Informally: Karp-reductions embed/translate problem A into problem B
	- $\triangleright \leq^{\mathrm{P}}_{\mathsf{m}}$ is reflexive $\&$ transitive, formalizes " A is at most as difficult to decide as B "
	- \triangleright Many classes are closed under reduction, i.e. $A\leq^{\mathrm{P}}_{\mathsf{m}} B$ and $B\in\mathcal{C}\Rightarrow A\in\mathcal{C}$
	- \triangleright Cook-Levin theorem: 3SAT is NP-complete; stepping stone for hardness results

[Computational complexity](#page-1-0)

[Ideal membership](#page-6-0)

[Subalgebra membership](#page-12-0)

Representing polynomials on a computer

Need to encode polynomials $f=\sum_{|\alpha|\leq d}c_\alpha\boldsymbol{x}^\alpha\in K[x_1,\ldots,x_n].$

- \triangleright Fix encoding $\text{enc of } K$, e.g. $\text{bin}(a)/\text{bin}(b)$ for $\frac{a}{b} \in \mathbb{Q}$ or $\{a_1, \ldots, a_q\}$ for \mathbb{F}_q
- \triangleright There are two ways of representing a monomial \bm{x}^{α} : $\bm{\text{exponential}}$ or <code>unary</code>

$$
X_1 \text{bin}(\alpha_1) \ldots X_n \text{bin}(\alpha_n)
$$
 vs $\underbrace{X_1 \ldots X_1}_{\alpha_1 \text{ times}} \ldots \underbrace{X_n \ldots X_n}_{\alpha_n \text{ times}}$

- \triangleright <code>Unary</code> encoding ensures that $|\text{enc}(\bm{x}^{\alpha})| \geq \deg \bm{x}^{\alpha}$
- \triangleright To encode the terms of f, list...
	- all terms of degree \leq deg f with their coeffients (**dense**)
	- or only those with nonzero coeffients (sparse)
- \triangleright Dense encoding ensures $|\text{enc}(f)| \geq {n+d \choose n}$ $_{n}^{+d}\big),$ in particular

|exponential+sparse| \leq |unary+sparse| \leq |unary+dense| = $O($ |exponential+dense|) $^{-}$ 7

Ideal membership

Definition (Ideal membership problem IdealMem $_K$)

Input: $f_1, \ldots, f_s, q \in R = K[x_1, \ldots, x_n]$ **Question:** $q \in \langle f_1, \ldots, f_s \rangle_R$? (Decision problem) **Output:** $h_1, \ldots, h_s \in R$ with $q = h_1 f_1 + \cdots + h_s f_s$ (Certification problem)

Theorem (Hermann 1926, Mayr & Meyer 1982)

If $g \in \langle f_1, \ldots, f_s \rangle_R$, then there exist $(h_i)_i$ with $\deg h_i \leq \deg g + (s \cdot \max_i \deg f_i)^{2^n}$.

Theorem (Mayr 1989)

One can compute a certificate using working space $2^{O(|w|)}$.

Caveat: The certificates are written to an output tape not counted as working space.

The CSG word problem hides in IdealMem $_K$

Theorem (Mayr & Meyer 1982)

The word problem for finitely presented commutative semigroups CSGword is EXPSPACE-complete.

Lemma (CSGword $\leq^{\mathbf{P}}_{\mathbf{m}}$ IdealMem $_K$)

Let \equiv be a congruence rel. on \mathbb{N}^n generated by $\{\alpha_i \equiv \beta_i\}_i$, and $\alpha, \beta \in \mathbb{N}^n$. Then

i)
$$
\alpha \equiv \beta
$$
 in the commutative semigroup \mathbb{N}^n / \equiv if and only if

$$
\mathsf{ii)}~~\boldsymbol{x}^{\alpha}-\boldsymbol{x}^{\beta}\in\langle\{\boldsymbol{x}^{\alpha_{i}}-\boldsymbol{x}^{\beta_{i}}\}_{i}\rangle_{K[x_{1},...,x_{n}]}.
$$

Theorem (Mayr & Meyer 1982, Mayr 1989)

IdealMem $₀$ is EXPSPACE-complete, even for dense encodings.</sub> Hermann's degree bound for certificates $(h_i)_i$ is (essentially) sharp.

The scary doubly-exponential examples

Theorem (Dubé 1990, Kühnle & Mayr 1996)

Let $I = \langle f_1, \ldots, f_s \rangle_{K[x_1, \ldots, x_n]}$ be an ideal and $d = \max_i \deg f_i$. The reduced Gröbner basis $G = \{q_i\}_i$ of I (w.r.t. an arbitrary monomial order) has degree

$$
\deg g_i \le 2\left(\frac{d^2}{2} + d\right)^{2^{n-1}}
$$

.

One can enumerate the reduced Gröbner basis in exponential working space.

Theorem (Huynh 1986, my MA thesis 2022)

Ther are ideals in $K[x_1, \ldots, x_n]$ generated by $O(n)$ polynomials of degree $O(1)$, whose reduced Gröbner basis has at least 2^{2^n} elements and degree $\geq 2^{2^n}$. Membership in the reduced Gröbner basis is EXPSPACE-complete.

Not all is lost

Theorem (Mayr 1989, 1997)

 I deal M em $_Q$ restricted to homogeneous polynomials is $PSPACE$ -complete.</sub>

- Gröbner bases can still be doubly-exponential even for homogeneous ideals
- Deciding whether $1 \in \langle f_1, \ldots, f_s \rangle_R$ (the "Nullstellensatz") is also in PSPACE, in fact low in the Polynomial Hierarchy (though at least NP-hard)
- Bounding the number of variables also drops the complexity to PSPACE
- There are also dimension-dependent degree bounds available
- The complexity of computing Gröbner bases seems to be linked to its Castelnuovo-Mumford regularity [Bayer & Mumford 1993]

[Computational complexity](#page-1-0)

[Ideal membership](#page-6-0)

[Subalgebra membership](#page-12-0)

Big questions

Some questions (followed by partial answers):

- Degree bounds on p depending on $n, s, \deg f_i$?
- ii) Upper and lower bounds on complexity of $\texttt{AlgMem}_\mathbb{O} ?$
- iii) Easier when the polynomials are homogeneous? Or monomials? Or n bounded?
- $iv)$ The analogue to Gröbner bases for ideals are SAGBI bases for subalgebras. What is the complexity of SAGBI bases?

Subalgebra membership using normal forms

- ▷ Given $f_1, \ldots, f_s, q \in K[x_1, \ldots, x_n]$, want to check if $q \in K[f_1, \ldots, f_n]$
- ▷ Consider the ideal $J = \langle f_1 t_1, \ldots, f_s t_s \rangle \subseteq K[x, t_1, \ldots, t_s]$
- \triangleright Let \prec be a mon. order on $K[\bm{x},\bm{t}]$ such that $x_i \succ \bm{t}^\alpha$ for all x_i,\bm{t}^α , e.g. $\prec_{\sf lex}$
- \triangleright The normal form $\operatorname{nf}^J_{\prec}(g)$ is the unique $g' \in g+J$ such that no term in g' is divisible by the leading term of any element of J

Theorem (Shannon & Sweedler 1986, attributed to Spear)

 $g\in K[f_1,\ldots,f_s]$ if and only if $p\coloneqq\mathrm{nf}_\prec^J(g)\in K[\boldsymbol x,\boldsymbol t]$ is in $K[\boldsymbol t].$ In this case, considering p as a polynomial in t_1, \ldots, t_s , one has $q = p(f_1, \ldots, f_s)$.

A first upper bound

Theorem

AlgMem_Q is in EXPSPACE. A certificate $p \in \mathbb{Q}[t_1,\ldots,t_s]$ can be computed using $2^{O(|w|)}$ working space.

Proof. Combine the previous elimination method with the exponential working space algorithm for normal forms by K Kühnle & Mayr 1996].

More careful analysis should reveal that the homogeneous problem is in PSPACE \triangleright We also get a degree bound for the certificate using the Dubé bound:

Theorem

If $q \in K[f_1, \ldots, f_s]$, then there is a p with $p(f_1, \ldots, f_s) = q$ of degree

$$
\deg p \le ((2n(d^2/2+d)^{2^{n-1}})^n \deg g)^{n+1}.
$$

The McNugget problem

Theorem

The subalgebra membership restricted to monomial algebras is NP-complete. This is still true if one bounds the degrees, or one restricts to a single variable.

- Note in the last case a sparse+exp. encoding must be used (otherwise in L)
- \triangleright Here p can be chosen to be a monomial, this reduces to a problem in $(\mathbb{N}^n,+)$
- The problem is in NP , as one can non-deterministically guess p
- \triangleright The univariate case is "exactly" the NP-complete change-making problem

$$
x^{43} \stackrel{?}{\in} \mathbb{Q}[x^6, x^9, x^{20}] \Leftrightarrow 43 = 6a + 9b + 20c, a, b, c \in \mathbb{N}
$$

For bounded degree one can reduce from a problem similar to ILP

A first lower bound

Theorem

AlgMem_K is PSPACE-hard, even when restricted to homogeneous generators.

Proof idea. Inspired by the homogeneous ideal case [Mayr 1997].

- \triangleright A LBA M is a Turing machine only using its input as working tape
- \triangleright Assume M has tape alphabet $\Gamma = \{0, 1\}$ and states Q, input length n

$$
\triangleright \text{ Consider } R = K[\{x_{i,0}, x_{i,1}, y_i\}_{1 \le i \le n} \cup Q]
$$

- \triangleright Configuration $(w_1 \ldots w_n \in \{0,1\}^n, i, q) \triangleq$ monomial $x_{1,w_1} \cdots x_{n,w_n} y_i q$
- \triangleright Generators are all $x_{i,j}$ and binomials reflecting the transition function
- \triangleright The resulting subalgebra is \mathbb{N}^2 -graded over $K[x_{i,j}]$ (by the y_i and Q variables)
- \rightsquigarrow This grading is used to prove the reduction LBAword $\leq^{\mathrm{P}}_{\mathsf{m}}$ AlgMem $_K$ $\hfill \Box$

Corollary

There exists polynomials $f_1, \ldots, f_s, q \in K[x_1, \ldots, x_{3n+O(1)}], s \in O(n)$, such that

- \triangleright they are homogeneous with deg $f_i \leq 2$, deg $q = n + 2$.
- $\triangleright q \in K[f_1, \ldots, f_s],$
- \triangleright each f_i,g has at most two terms, but
- \triangleright every $p\in K[t_1,\ldots,t_s]$ with $p(f_1,\ldots,f_s)=g$ has at least 2^n terms!

Proof. Build binary counter as an LBA and encode as subalgebra as previously!

- The initial algebra in∠(A) is the subalgebra with basis consisting of initial monomials of polynomials in A
- \triangleright A SAGBI basis of A is a subset of A whose initial monomials generate $in_{\prec}(A)$
- Not every subalgebra $K[f_1, \ldots, f_s] \subseteq K[x]$ has a finitely gen'd initial algebra, e.g. the invariants $K[x_1,x_2,x_3]^{A_3}=K[e_1,e_2,e_3,\Delta]$
- No known general criterion on finiteness of SAGBI bases
- Conjecture: The finiteness problem is compuationally hard, maybe undecidable
- Initial algebra membership should be at least as difficult as subalgebra membership; in homogeneous case it is also PSPACE-complete

Thank you! Questions?