The Computational Complexity of Subalgebra Membership

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Leonie Kayser

leo.kayser@mis.mpg.de

December 14, 2023

Nonlinear Algebra Seminar

Computational complexity

Ideal membership

Subalgebra membership

Computational problems

Definition (Computational problem)

A **computational problem** consists of an input, e.g. a tuple of data, and a question or expected output. A **decision problem** has output yes or no.

- ▷ If there is a unique output (e.g. for decision problems), then this is just a function
- \triangleright For theoretical and practical purposes the input/output needs to be suitably encoded over some **finite alphabet** Σ ; the set of strings of characters is Σ^*
- \triangleright Decision problems are just subsets $A \subseteq \Sigma^*$ (the "yes"-instances)
- Assume that the input is syntactically correct (actually encodes a number/graph/...)
- \triangleright **Output complexity:** How long is the (shortest) output compared to |w|?

The Turing model of computation

Definition (Turing machine)

A deterministic Turing machine M (TM/DTM for short) consists of

- i) a finite set of states Q, including an initial state q_0 and final states $F \subseteq Q$;
- ii) a tape alphabet Γ containing the in/output alphabets and a blank $\Box \in \Gamma$;
- iii) a transition function $\delta \colon (Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}.$

A non-deterministic TM instead has $\delta \colon (Q \setminus F) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\}).$

- \triangleright Configuration = (current tape $(\gamma_i)_{i\in\mathbb{Z}}$, head position $i\in\mathbb{Z}$, state $q\in Q$)
- \triangleright Initial configuration = (input surrounded by \Box 's, head in position 0, $q=q_0$)
- $\triangleright~\delta$ defines transitions between configurations $c \vdash_M c'$
- ho DTMs are "roughly" equivalent to computers (steps pprox time, tape pprox memory)

Through time and space

Definition (TIME and SPACE)

Let $f \colon \mathbb{N} \to \mathbb{N}$ be a function $\geq \log n$.

i) TIME $(f) = \{ \text{decision prob. } A \mid \exists \mathsf{DTM} \ M \ \text{deciding} \ w \in A \ \text{in} \ O(f(|w|)) \ \text{steps} \}$

ii) $\operatorname{NTIME}(f) = \{A \mid \exists \text{non-determ. TM } M \text{ deciding } w \in A \text{ in } O(f(|w|)) \text{ steps} \}$

iii) SPACE $(f) = \{A \mid \exists \mathsf{DTM} \ M \text{ deciding } w \in A \text{ using } O(f(|w|)) \text{ cells} \}$

- $\triangleright \operatorname{TIME}(f) \subseteq \operatorname{NTIME}(f) \subseteq \operatorname{SPACE}(f) \subseteq \operatorname{TIME}(2^{f(n)})$
- \triangleright Hierarchy theorems: If $f_1 \in o(f_2)$ (+ technicalities), then

 $\operatorname{TIME}(f_1) \subsetneq \operatorname{TIME}(f_2 \log f_2), \qquad \operatorname{SPACE}(f_1) \subsetneq \operatorname{SPACE}(f_2)$

Important complexity classes

 $P = \bigcup_k TIME(n^k), NP = \bigcup_k NTIME(n^k), PSPACE = \bigcup_k SPACE(n^k), \dots$

For sake of completeness

Definition (Polynomial-time many-one reduction, hardness & completeness) Let $A \subseteq \Sigma^*$, $B \subseteq \Delta^*$ be decision problems.

- i) $A \leq_{\mathbf{m}}^{\mathbf{P}} B$ if there is a function $f \colon \Sigma^* \to \Delta^*$ in FP with $w \in A \Leftrightarrow f(w) \in B$.
- ii) B is hard for a complexity class C if $A \leq_{m}^{P} B$ for all $A \in C$.
- iii) B is **complete** for a complexity class C if $B \in C$ and hard for C.
 - \triangleright Informally: Karp-reductions embed/translate problem A into problem B
 - $\triangleright \leq_{\mathsf{m}}^{\mathsf{P}}$ is reflexive & transitive, formalizes "A is at most as difficult to decide as B"
 - $\triangleright \text{ Many classes are closed under reduction, i.e. } A \leq^{\mathrm{P}}_{\mathrm{m}} B \text{ and } B \in \mathcal{C} \Rightarrow A \in \mathcal{C}$
 - \triangleright Cook-Levin theorem: 3SAT is NP-complete; stepping stone for hardness results

Computational complexity

Ideal membership

Subalgebra membership

Representing polynomials on a computer

Need to encode polynomials $f = \sum_{|\alpha| \le d} c_{\alpha} \boldsymbol{x}^{\alpha} \in K[x_1, \ldots, x_n].$

- \triangleright Fix encoding enc of K, e.g. bin(a) / bin(b) for $\frac{a}{b} \in \mathbb{Q}$ or $\{a_1, \ldots, a_q\}$ for \mathbb{F}_q
- \triangleright There are two ways of representing a monomial x^{lpha} : **exponential** or **unary**

$$X_1 \widehat{bin}(\alpha_1) \dots X_n \widehat{bin}(\alpha_n)$$
 vs $\underbrace{X_1 \dots X_1}_{\alpha_1 \text{ times}} \dots \underbrace{X_n \dots X_n}_{\alpha_n \text{ times}}$

- $\,\triangleright\,$ Unary encoding ensures that $|\mathrm{enc}({m x}^lpha)|\geq \deg {m x}^lpha$
- $\,\triangleright\,$ To encode the terms of f , list. . .
 - all terms of degree $\leq \deg f$ with their coefficients (dense)
 - or only those with nonzero coeffients (sparse)
- $\,\triangleright\,$ Dense encoding ensures $|\mathrm{enc}(f)| \geq \binom{n+d}{n},$ in particular

 $|exponential+sparse| \le |unary+sparse| \le |unary+dense| = O(|exponential+dense|)$ 7

Ideal membership

Definition (Ideal membership problem $IdealMem_K$)

Input:
$$f_1, \ldots, f_s, g \in R = K[x_1, \ldots, x_n]$$

Question: $g \in \langle f_1, \ldots, f_s \rangle_R$? (Decision problem)
Output: $h_1, \ldots, h_s \in R$ with $g = h_1 f_1 + \cdots + h_s f_s$ (Certification problem)

Theorem (Hermann 1926, Mayr & Meyer 1982)

If $g \in \langle f_1, \ldots, f_s \rangle_R$, then there exist $(h_i)_i$ with $\deg h_i \leq \deg g + (s \cdot \max_i \deg f_i)^{2^n}$.

Theorem (Mayr 1989)

One can compute a certificate using working space $2^{O(|w|)}$.

Caveat: The certificates are written to an output tape not counted as working space.

The CSG word problem hides in $IdealMem_K$

Theorem (Mayr & Meyer 1982)

The word problem for finitely presented commutative semigroups CSGword is EXPSPACE-complete.

Lemma (CSGword $\leq_{\mathbf{m}}^{\mathbf{P}}$ IdealMem_K)

Let \equiv be a congruence rel. on \mathbb{N}^n generated by $\{\alpha_i \equiv \beta_i\}_i$, and $\alpha, \beta \in \mathbb{N}^n$. Then

i)
$$\alpha \equiv \beta$$
 in the commutative semigroup \mathbb{N}^n / \equiv if and only if

ii)
$$\boldsymbol{x}^{lpha}-\boldsymbol{x}^{eta}\in \langle\{\boldsymbol{x}^{lpha_{i}}-\boldsymbol{x}^{eta_{i}}\}_{i}
angle_{K[x_{1},...,x_{n}]}.$$

Theorem (Mayr & Meyer 1982, Mayr 1989)

IdealMem_Q is EXPSPACE-complete, even for dense encodings. Hermann's degree bound for certificates $(h_i)_i$ is (essentially) sharp.

The scary doubly-exponential examples

Theorem (Dubé 1990, Kühnle & Mayr 1996)

Let $I = \langle f_1, \ldots, f_s \rangle_{K[x_1, \ldots, x_n]}$ be an ideal and $d = \max_i \deg f_i$. The reduced Gröbner basis $G = \{g_i\}_i$ of I (w.r.t. an arbitrary monomial order) has degree

$$\deg g_i \le 2\left(\frac{d^2}{2} + d\right)^{2^{n-1}}$$

One can enumerate the reduced Gröbner basis in exponential working space.

Theorem (Huynh 1986, my MA thesis 2022)

Ther are ideals in $K[x_1, ..., x_n]$ generated by O(n) polynomials of degree O(1), whose reduced Gröbner basis has at least 2^{2^n} elements and degree $\geq 2^{2^n}$. Membership in the reduced Gröbner basis is EXPSPACE-complete.

Not all is lost

Theorem (Mayr 1989, 1997)

 $\texttt{IdealMem}_{\mathbb{Q}} \text{ restricted to homogeneous polynomials is } PSPACE\text{-complete.}$

- Gröbner bases can still be doubly-exponential even for homogeneous ideals
- ▷ Deciding whether $1 \in \langle f_1, \ldots, f_s \rangle_R$ (the "Nullstellensatz") is also in PSPACE, in fact low in the Polynomial Hierarchy (though at least NP-hard)
- $\triangleright\,$ Bounding the number of variables also drops the complexity to $\mathrm{PSPACE}\,$
- > There are also dimension-dependent degree bounds available
- The complexity of computing Gröbner bases seems to be linked to its Castelnuovo-Mumford regularity [Bayer & Mumford 1993]

Computational complexity

Ideal membership

Subalgebra membership

Big questions

Definition (Subalgebra membership problem $AlgMem_K$)	
Input: $f_1,, f_s, g \in R = K[x_1,, x_n]$	
Question: $g \in K[f_1, \ldots, f_s]$?	(Decision problem)
Output: $p \in K[t_1, \ldots, t_s]$ with $g = p(f_1, \ldots, f_s)$	(Certification problem)

Some questions (followed by partial answers):

- i) Degree bounds on p depending on $n, s, \deg f_i$?
- ii) Upper and lower bounds on complexity of $AlgMem_{\mathbb{O}}$?
- iii) Easier when the polynomials are homogeneous? Or monomials? Or n bounded?
- iv) The analogue to Gröbner bases for ideals are SAGBI bases for subalgebras. What is the complexity of SAGBI bases?

Subalgebra membership using normal forms

- \triangleright Given $f_1, \ldots, f_s, g \in K[x_1, \ldots, x_n]$, want to check if $g \in K[f_1, \ldots, f_n]$
- \triangleright Consider the ideal $J = \langle f_1 t_1, \dots, f_s t_s \rangle \subseteq K[\boldsymbol{x}, t_1, \dots, t_s]$
- \triangleright Let \prec be a mon. order on $K[{m x},{m t}]$ such that $x_i\succ {m t}^lpha$ for all $x_i,{m t}^lpha$, e.g. $\prec_{\sf lex}$
- \triangleright The normal form $\operatorname{nf}_{\prec}^{J}(g)$ is the unique $g' \in g + J$ such that no term in g' is divisible by the leading term of any element of J

Theorem (Shannon & Sweedler 1986, attributed to Spear)

 $g \in K[f_1, \ldots, f_s]$ if and only if $p := \operatorname{nf}_{\prec}^J(g) \in K[\boldsymbol{x}, \boldsymbol{t}]$ is in $K[\boldsymbol{t}]$. In this case, considering p as a polynomial in t_1, \ldots, t_s , one has $g = p(f_1, \ldots, f_s)$.

A first upper bound

Theorem

AlgMem_Q is in EXPSPACE. A certificate $p \in \mathbb{Q}[t_1, \ldots, t_s]$ can be computed using $2^{O(|w|)}$ working space.

Proof. Combine the previous elimination method with the exponential working space algorithm for normal forms by [Kühnle & Mayr 1996].

More careful analysis should reveal that the homogeneous problem is in PSPACE
 We also get a degree bound for the certificate using the Dubé bound:

Theorem

If $g \in K[f_1, \ldots, f_s]$, then there is a p with $p(f_1, \ldots, f_s) = g$ of degree

$$\deg p \le ((2n(d^2/2+d)^{2^{n-1}})^n \deg g)^{n+1}.$$

The McNugget problem

Theorem

The subalgebra membership restricted to monomial algebras is NP-complete. This is still true if one bounds the degrees, or one restricts to a single variable.

- \triangleright Note in the last case a sparse+exp. encoding must be used (otherwise in L)
- $\,\triangleright\,$ Here p can be chosen to be a monomial, this reduces to a problem in $(\mathbb{N}^n,+)$
- $\,\triangleright\,$ The problem is in NP, as one can non-deterministically guess p
- \triangleright The univariate case is "exactly" the NP-complete change-making problem

$$x^{43} \stackrel{?}{\in} \mathbb{Q}[x^6, x^9, x^{20}] \quad \Leftrightarrow \quad 43 = 6a + 9b + 20c, \ a, b, c \in \mathbb{N}$$

 $\triangleright\,$ For bounded degree one can reduce from a problem similar to ILP

A first lower bound

Theorem

 $AlgMem_K$ is PSPACE-hard, even when restricted to homogeneous generators.

Proof idea. Inspired by the homogeneous ideal case [Mayr 1997].

- $\,\triangleright\,$ A LBA M is a Turing machine only using its input as working tape
- $\triangleright\,$ Assume M has tape alphabet $\Gamma=\{0,1\}$ and states Q, input length n
- $\triangleright \text{ Consider } R = K[\{x_{i,0}, x_{i,1}, y_i\}_{1 \le i \le n} \cup Q]$
- \triangleright Configuration $(w_1 \dots w_n \in \{0,1\}^n, i,q) \stackrel{}{=}$ monomial $x_{1,w_1} \cdots x_{n,w_n} y_i q$
- $\triangleright\,$ Generators are all $x_{i,j}$ and binomials reflecting the transition function
- \triangleright The resulting subalgebra is \mathbb{N}^2 -graded over $K[x_{i,j}]$ (by the y_i and Q variables)
- \rightsquigarrow This grading is used to prove the reduction LBAword $\leq^{\mathrm{P}}_{\mathtt{m}} \mathtt{AlgMem}_{K}$

Corollary

There exists polynomials $f_1, \ldots, f_s, g \in K[x_1, \ldots, x_{3n+O(1)}]$, $s \in O(n)$, such that

- \triangleright they are homogeneous with deg $f_i \leq 2$, deg g = n + 2,
- $\triangleright g \in K[f_1,\ldots,f_s],$
- \triangleright each f_i, g has at most two terms, but
- \triangleright every $p \in K[t_1, \ldots, t_s]$ with $p(f_1, \ldots, f_s) = g$ has at least 2^n terms!

Proof. Build binary counter as an LBA and encode as subalgebra as previously!

Open questions about SAGBI bases

- $\triangleright\,$ The initial algebra ${\rm in}_\prec(A)$ is the subalgebra with basis consisting of initial monomials of polynomials in A
- \triangleright A SAGBI basis of A is a subset of A whose initial monomials generate $in_{\prec}(A)$
- \triangleright Not every subalgebra $K[f_1, \ldots, f_s] \subseteq K[\mathbf{x}]$ has a finitely gen'd initial algebra, e.g. the invariants $K[x_1, x_2, x_3]^{A_3} = K[e_1, e_2, e_3, \Delta]$
- ▷ No known general criterion on finiteness of SAGBI bases
- ▷ Conjecture: The finiteness problem is computionally hard, maybe undecidable
- Initial algebra membership should be at least as difficult as subalgebra membership; in homogeneous case it is also PSPACE-complete

Thank you! Questions?