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A mathematician and an engineer walk into a bar

Engineer Mathematician

Uses calculus Teaches calculus

Can build a bridge but doesn’t

know why it holds

Will count the number of

possible bridges

Likes two columns Hates two columns

Has funding from industry

Likes the smell of whiteboard markers Crazy for specific chalk from Japan

Cares about real solutjons Invents imaginary numbers and points

at ∞ just to be right

Wants solutions quickly Wants correct solutions
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Realization of linear time-invariant difference equations

a0ŷi + a1ŷi+1 + · · ·+ arŷi+r = 0, i = 0, . . . , N − 1− r

▷ Discrete-time (physical) system generating signals y = (y0, y1, . . . , yN−1)
T ∈ RN

▷ Explain observed data with a mathematical model

▷ Impose a model class: autonomous LTI models of finite order

• autonomous = no input signals, no influence from outside world

• linear = linear relation between past outputs

• time-invariant = coefficients a = (a0, . . . , ar)
T are independent of time

• finite order r = the relation involves at most r past outputs

▷ ŷ “model compliant” data
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Roots of a(z) =
∑r

i=0 aiz
i determine dynamics of model

▷ Simple roots: Each root λ generates mode vand(λ) = (1, λ, λ2, . . . , λN−1)T

ŷ =
∑
λ

cλ · vand(λ) =
[∑

λ

cλ · λk
]N−1

k=0

▷ Multiple roots introduce confluent Vandermonde vectors ∂j

∂λj vand(λ)

▷ Magnitude of λ’s determines growth or decay, argument determines phase
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Exact realization = Linear Algebra

▷ Model population of rabbits ŷ = (2, 3, 5, 8, 13)T

▷ T a
N−rŷ = 0 is equivalent to H ŷ

r a = 0

▷ ŷ satisfies LTI difference equation iff rankH ŷ
r ≤ r, all such ŷ form a variety

Xr :=
{
ŷ ∈ CN

∣∣ rankH ŷ
r ≤ r

}
▷ Identify model a via kernel of Hankel matrix, Ker

[
2 3 5
3 5 8
5 8 13

]
= R

( −1
−1
1

)

a0 a1 · · · ar

a0 a1 · · · ar
. . . . . . . . . . . .

a0 a1 · · · an


︸ ︷︷ ︸

=:Ta
N−r Toeplitz matrix (N−r)×N

 ŷ0
...

ŷN−1

 =


ŷ0 ŷ1 · · · ŷr
ŷ1 ŷ2 · · · ŷr+1

...
...

. . .
...

ŷN−r−1 ŷN−r · · · yN−1


︸ ︷︷ ︸
=:H ŷ

r Hankel matrix (N−r)×(r+1)

a0
...

ar

 !
= 0
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Least squares realization

▷ Fix a 2-norm on RN , Q(y) = 1
2
∥y∥2 = 1

2
yTΛy

▷ Real world scenario: Don’t have access to ŷ, measure noisy y = ŷ + ε

⇝ y never satisfies a difference equation exactly, rankHy
r = r + 1 almost surely

▷ If ε is Gaussian white noise, then closest ŷ is maximum likelihood estimator

ŷ = argmin
ŷ∈Xr(R)

∥y − ŷ∥2 = argmin
ŷ∈Xr(R)

L(ŷ | y = ŷ + ε)

▷ Constraint optimization problem: Impose rank condition on ŷ

minimize
ŷ∈RN

Q(y − ŷ) subject to rankH ŷ
r ≤ r

⇐⇒ minimize
ŷ∈RN , a∈Rr\0

Q(y − ŷ) subject to H ŷ
r · a = 0
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Heuristic approaches

▷ First idea goes back to Prony [PGDB95]

▷ Cadzow’s method [Cad88] (assume standard norm on RN)

1. Compute SVD of Hy
r = UΣV T, singular values σ1 ≥ · · · ≥ σr+1 > 0

2. Setting σr+1 ⇝ 0 yields rank-deficient matrix H ′, but lose Hankel structure

3. Approximate H ′ by Hankel matrix Hy′
r , lose rank-deficiency

4. Iterate 1.-3. until convergence to rank-deficient Hankel matrix

▷ Eckart–Young theorem: SVD gives optimal low rank approximation of a matrix

▷ Other heuristic approaches: iterative quadratic maximum likelihood (IQML),

Steiglitz–McBride, for a comparison see [LVVHDM01]

▷ What if we care about global minima?
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Let’s get FONCy!

▷ P(Xr) is not smooth, { (y, a) ∈ PN−1 × Pr | Hy
r · a = 0 } is desingularization

⇝ Prefer this formulation of the optimization problem

minimize
ŷ∈RN , a∈Rr\0

Q(y − ŷ) subject to H ŷ
r · a = 0 = T a

N−r · ŷ

▷ Introduce Lagrange multipliers ℓ ∈ RN−r to make unconstrained problem

Ly(ŷ, a, ℓ) = Q(ŷ − y) + ℓT ·H ŷ
r · a

▷ First order necessary conditions for optimality:

0
!
=

∂Ly

∂ŷ
= Λ(ŷ − y) + (T a

N−r)
Tℓ

0
!
=

∂Ly

∂a
= (H ŷ

r )
Tℓ = T ℓ

N−2rŷ, 0
!
=

∂Ly

∂ℓ
= H ŷ

r a = T a
N−rŷ
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Lower-rank solutions are never optimal

Lemma

If (ŷ, a, ℓ) is a solution to the FONC with rankH ŷ
r ≤ r − 1, then ŷ is not a local

minimum of Q(ŷ − y) on Xr.

Idea: Can use additional degrees of freedom ŷ + c · vand(λ) to decrease norm

Theorem (Characterization of rank r solutions)

Consider a solution (ŷ, a, ℓ), interpret a ∈ S≤r := R[z]≤r, ℓ ∈ RN−r = S≤N−r−1.

1. If rankH ŷ = r, then ℓ = g · a (as polynomials) for some g ∈ S≤N−2r−1

2. If y is sufficiently random, then ℓ = g · a also implies rankH ŷ = r.

Idea: 1. Linear algebra (apolarity) 2. Dimension argument
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Putting it all together

0
!
=

∂Ly

∂ŷ
= Λ(ŷ − y) + (T a

N−r)
Tℓ ℓ

!
= g · a

0
!
=

∂Ly

∂a
= T ℓ

N−2rŷ 0
!
=

∂Ly

∂ℓ
= T a

N−rŷ

▷ First equation allows to eliminate ŷ: ŷ := y − Λ−1(a · ℓ)
▷ Assuming y is general, we can substitute ℓ := g · a and simplify

Theorem

For general y, the FONC solutions (ŷ, a, ℓ) correspond to solutions (a, g) to

T a
N−ry = T a

N−rΛ
−1(T a

N−r)
T(T a

N−2r)
Tg = T a

N−rΛ
−1(a2 · g).

The isomorphism is given by ℓ = a · g, ŷ = y − Λ−1(a2 · g).
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The bad locus

▷ Reduced to system of N − r polynomial equations in (a, g) ∈ (Cr+1 \ 0)×CN−2r

T a
N−ry = BΛ(a)g, BΛ(a) := T a

N−rΛ
−1(T a

N−r)
T(T a

N−2r)
T

▷ Almost linear in g, homogenize by g−1

YAG :=
{
(y, a, (g−1 : g))

∣∣ T a
N−ry · g−1 = BΛ(a)g

}
⊆ CN × G × PN−2r

▷ g−1 can vanish if and only if BΛ(a) becomes rank-deficient for some a ̸= 0

▷ Good locus G := { a ∈ Cr+1 | rankBΛ(a) = N − 2r }, bad locus B := Cr+1 \ G
Lemma

YAG is a smooth irreducible global complete intersection of dimension N + 1 and

codimension N − r in CN × G × PN−2r

Assumption: The set P(B) should be finite. General Λ: P(B) = ∅ 10



The multi-parameter eigenvalue problem

▷ Rearrange polynomial system to reveal MEP structure

T a
N−ry · g−1 = BΛ(a) · g ⇐⇒ [T a

N−ry | BΛ(a)]︸ ︷︷ ︸
=:M(a,y)

·

(
−g−1

g

)
= 0

▷ This is almost homogeneous in y, after projecting onto (a, y) we have

AY := { (a, y) | rankM(a, y) ≤ N − 2r } ⊆ P(G)× PN−1

▷ AY has the structure of a projective subbundle P(F) ⊆ P(ON
P(G))

Theorem

AY is a smooth irreducible variety of dimension N − 1 and codimension r in

PN−1 × PG.

▷ Restricting to a (general) y ∈ PN−1, we obtain a finite reduced set of solutions! 11



AY is a determinantal variety

Lemma

Let M be a “tall” m× (n+ 1)-matrix with polynomial entries over a variety X and

K = { (x, [v]) | M(x) · v = 0 } ⊆ X × Pn.

Let Z be the projection of K onto X. If K is reduced and for all x ∈ X one has

rankM(x) ∈ {n, n+ 1}, then the ideal of Z is given by the (n+ 1)-minors of M .

AY := { (a, y) | rankM(a, y) ≤ N − 2r } ⊆ P(G)× PN−1

Corollary

1. The prime ideal of AY is locally given by the (N − 2r + 1)-minors of M(a, y).

2. Restricting to a general y ∈ PN−1, the system of minors of M(a, y) defines a

finite set of reduced points in P(G), and hence in Pr (assuming P(B) finite). 12



Intersection theory saves the day

AY := { (a, y) | rankM(a, y) ≤ k } ⊆ Pr × PN−1, k := N − 2r

▷ Assume B = ∅, satisfies for general Λ
▷ AY has the expected dimension 0, hence Porteous formula applies

▷ M(a, y) = [T a
N−ry | BΛ(a)] has entries of degree (1, 1) and (3, 0) (k columns)

Theorem (A formula for EDDgen(Xr))

In the Chow ring A•(Pr × PN−1) = Z[α, β]/⟨αr+1, βN⟩ we have

[AY ] =

{
1

(1− (α + β))(1− 3α)k

}r

=
r∑

j=0

j∑
i=0

(
k + r

j − i

)(
k − 1 + i

i

)
2iαjβr−j.

For general y, the number of solutions is
∑r

i=0

(
k+r
r−i

)(
k−1+i

i

)
2i =

∑r
j=0

(
k−1+j

j

)
3j.
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What if the bad locus is non-empty?

▷ P(B) = ∅ iff BΛ(a) = T a
N−rΛ

−1(T a
N−r)

T(T a
N−2r)

T has full rank for all a ̸= 0

▷ Recovers formula for EDDgen(Xr) from [OSS14, Theorem 3.7]

▷ If P(B) is non-empty but finite, then the determinantal formula still applies:

EDDΛ(Xr) =
r∑

j=0

(
k − 1 + j

j

)
3j − (multiplicity of B in ideal of minors of M(a, y))

Theorem

Assume that P(B) is finite. One has

EDDgen(Xr)− degBred ≥ EDDΛ(Xr) ≥ EDDgen(Xr)− deg(minors of BΛ(a)).

The latter inequality is strict if and only if the multiplicity structure of B in the

ideal of minors of M(a, y) does depend on y. This can be verified explicitly. 14



Some special weights

N ⧹ r 1 2 3

3 4

4 7

5 10 13

6 13 34

7 16 64 40

8 19 103 142

N ⧹ r 1 2 3

3 2

4 3

5 4 7

6 5 16

7 6 28 20

8 7 43 134

▷ EDD’s for standard norm (left) and Bombieri–Weyl norm (right)

▷ Bombieri–Weyl & (N, r) = (8, 2) is the first case where the inequality is strict

▷ Efficient implementation in Macaulay2
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The weight discriminant

▷ The weight discriminant is the set of norms giving subgeneric ED degree

∇EDw(Xr) = { Λ | rankΛ = N, EDDΛ(Xr) < EDDgen(Xr) } ⊆ P(Sym(N))

▷ This is an irreducible variety, expected to be a hypersurface

▷ Using diagonal weights Λ in the definition gives ∇EDw,diag(Xr) ⊆ P(Diag(N))

Theorem (The case r = 1)

For r = 1, N ≥ 3 the discriminants are irreducible hypersurfaces

deg∇EDw(X1) = 4N − 6, deg∇EDw,diag(X1) = 2N − 4.

∇EDw,diag is the discriminant of a degree N − 1 polynomial, the two are related by

∆EDw(X1)|Diag(N) = λ0 · λN−1 ·∆EDw,diag(X1)
2.
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The ED discriminant

▷ Fixing Λ, our computation still relied on genericity of y

▷ The ED discriminant consists of y ∈ CN such that the system has a multiple

solution a.

Figure 1: General and special (Bombieri–Weyl) weights
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Thank you! Questions?
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