Derived functors done quick

Doing exercise 11.2 the hard way

Leo Kayser (that's me!) 05.07.21

What exactly is going on?

Many functors \mathcal{T} of abelian groups or, more generally, *R*-Modules preserve split-exact sequences, but do *not* preserve exactness in general.

- A → Hom(A, G) is contravariant & left-exact (Satz III.2.3)
 A → Hom(G, A) is covariant & left-exact
- For fixed M, $A \mapsto A \otimes M$ is covariant & right-exact
- $A \mapsto \operatorname{Tor}(A)$ (torsion subgroup) is covariant & left-exact
- M a G-module (G group), then taking invariants M → M^G is covariant & left-exact

Defining the groups $R^{i}\mathfrak{T}(A)$ via free resolution

Fix a contravariant left-exact functor \mathfrak{T} such as Hom(-, G).

• For a given abelian group A choose a free resolution

$$\cdots \longrightarrow F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} A \longrightarrow 0$$

• Apply the functor $\ensuremath{\mathbb{T}}$ to obtain a cochain complex

$$0 \longrightarrow \mathfrak{T}(A) \xrightarrow{\mathfrak{T}(d_0)} \mathfrak{T}(F_0) \xrightarrow{\mathfrak{T}(d_1)} \mathfrak{T}(F_1) \xrightarrow{\mathfrak{T}(d_2)} \mathfrak{T}(F_2) \longrightarrow \cdots$$

• Take cohomology of the complex $C^{\bullet} \coloneqq (0 \to \mathfrak{T}(F_0) \to \mathfrak{T}(F_1) \to \mathfrak{T}(F_2) \to \dots)$

 $(R^{i}\mathfrak{T})(A) \coloneqq H^{i}(C^{\bullet})$

• Observe $R^0 \mathfrak{T}(A) = \ker \mathfrak{T}(d_1) \cong \mathfrak{T}(A)$ (\mathfrak{T} is left-exact!)

Let's turn $R^i \mathfrak{T}$ into a \mathfrak{F} unctor!

Let $g: A \rightarrow B$ be a homomorphism and fix free resolutions of A, B.

(i) One may extend g to a chain map g_{\bullet} (map basis of F_j to suitable preimages)

$$\dots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0 \\ \downarrow_{g_1} \qquad \downarrow_{g_0} \qquad \downarrow_g \\ \dots \longrightarrow F_2 \longrightarrow F_0' \longrightarrow B \longrightarrow 0$$

Apply \mathfrak{T} to obtain a cochain map $\mathfrak{T}(g_{ullet})$ which induces homomorphisms

$$\begin{array}{cccc} 0 & \longrightarrow & \Im(F_0) & \longrightarrow & \Im(F_1) & \longrightarrow & \dots \\ & & & & & & \downarrow^{\Im(g_0)} & & \downarrow^{\Im(g_1)} & & \stackrel{\text{take}}{\underset{\text{cohomology}}{\longrightarrow}} & R^i \Im(g) \colon R^i \Im(A) \to R^i \Im(B) \\ 0 & \longrightarrow & \Im(F_0) & \longrightarrow & \Im(F_1) & \longrightarrow & \dots \end{array}$$

(ii) If $(g'_i)_i$ is another extension, then $\mathcal{T}(g_{\bullet})$ and $\mathcal{T}(g'_{\bullet})$ are chain homotopic, in particular they induce the same map $R^i\mathcal{T}(A) \to R^i\mathcal{T}(B)$.

The case $\mathcal{T} = \text{Hom}(-, G)$

• We used two term free resolutions $0 \to R \xrightarrow{i} F \to A \to 0$.

$$C^{\bullet} = (0 \rightarrow \operatorname{Hom}(A, G) \rightarrow \operatorname{Hom}(F, G) \rightarrow \operatorname{Hom}(R, G) \rightarrow 0)$$

• We can compare the Ext groups from the lecture to the derived functor of Hom(-, G):

$$\operatorname{Ext}(A, G) \coloneqq \operatorname{Hom}(R, G) / \operatorname{im}(i^{\sharp}) \rightleftharpoons H^{1}(C^{\bullet}) = \operatorname{Ext}^{1}(A, G)$$

where $\operatorname{Ext}^{i} = R^{i} \operatorname{Hom}(-, G)$.

• Furthermore, as $C^i = 0$ for $i \ge 2$, we get $\operatorname{Ext}^i(A)$ for all $i \ge 2$ ("no higher Ext")

Hence we get a sequence $Ext(C, G) \rightarrow Ext(B, G) \rightarrow Ext(A, G)$.

 \rightsquigarrow Want to obtain a connecting homomorphism

Do snakes dream of long exact sequences?

- Intuition: The groups $R^{i} \mathcal{T}$ measure the failure of \mathcal{T} to be exact.
- Concretely: Given a short exact sequence $0 \to A \to B \to C \to 0$ we want to extend the exact sequence

$$0 \to \mathfrak{T}(C) \to \mathfrak{T}(B) \to \mathfrak{T}(A) \Longrightarrow \mathfrak{A}$$

to a long exact sequence

The horseshoe lemma - simultaneous resolutions

Given free resolutions $(F_i)_i$ of A and $(F'_i)_i$ of C, there is a free resolution of the form $(F_i \oplus F'_i)_i$ such that the following diagram is commutative and exact:

- Define β₀: F'₀ → B by mapping a basis to preimages of d'₀(b_i) under g
- Define $d_0'' \coloneqq f \circ d_0 \oplus \beta_0$
- Define β₁: F'₁ → F₀ ⊕ F'₀ by mapping a basis to preimages of d'₁(b_i) under p₀
- Define $d_1'' \coloneqq i_0 \circ d_1 \oplus \beta_1$

This is a resolution: Apply the LES of homology to this exact sequence of complexes and use that the outer columns are exact

. . .

The long exact sequence on derived functors

The right diagram is a short exact sequence of complexes, as the rows are split-exact. Apply LES (II.5.1) to obtain

 $0 \to \mathfrak{T}(\mathcal{C}) \to \mathfrak{T}(\mathcal{B}) \to \mathfrak{T}(\mathcal{A}) \to R^{1}\mathfrak{T}(\mathcal{C}) \to R^{1}\mathfrak{T}(\mathcal{B}) \to R^{1}\mathfrak{T}(\mathcal{A}) \to R^{2}\mathfrak{T}(\mathcal{C}) \to R^{2}\mathfrak{T}(\mathcal{B}) \to R^{2}\mathfrak{T}(\mathcal{A}) \to R^{$

Interesting consequences

This solves the exercise!

$$0 \longrightarrow \operatorname{Hom}(C, G) \longrightarrow \operatorname{Hom}(B, G) \longrightarrow \operatorname{Hom}(A, G) \longrightarrow$$
$$\xrightarrow{\leftarrow} \operatorname{Ext}(C, G) \longrightarrow \operatorname{Ext}(B, G) \longrightarrow \operatorname{Ext}(A, G) \longrightarrow$$
$$\xrightarrow{\leftarrow} 0$$

In particular $Ext(B, G) \rightarrow Ext(A, G)$ is surjective (ex. 11.3(i)).

This construction can be extended to other functors as mentioned in the beginning. For a nice introduction see

https://rOhilp.github.io/assets/docs/tutorial_derived_functors.pdf