Derived functors done quick

Doing exercise 11.2 the hard way

Leo Kayser (that's me!)
05.07.21

What exactly is going on?

Many functors \mathfrak{T} of abelian groups or, more generally, R-Modules preserve split-exact sequences, but do not preserve exactness in general.

- $A \mapsto \operatorname{Hom}(A, G)$ is contravariant \& left-exact (Satz III.2.3) $A \mapsto \operatorname{Hom}(G, A)$ is covariant \& left-exact
- For fixed $M, A \mapsto A \otimes M$ is covariant \& right-exact
- $A \mapsto \operatorname{Tor}(A)$ (torsion subgroup) is covariant \& left-exact
- M a G-module (G group), then taking invariants $M \mapsto M^{G}$ is covariant \& left-exact

Defining the groups $R^{i} \mathcal{T}(A)$ via free resolution

Fix a contravariant left-exact functor \mathcal{T} such as $\operatorname{Hom}(-, G)$.

- For a given abelian group A choose a free resolution

$$
\cdots \longrightarrow F_{2} \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} A \longrightarrow 0
$$

- Apply the functor \mathcal{T} to obtain a cochain complex

$$
0 \longrightarrow \mathcal{T}(A) \xrightarrow{\mathcal{T}\left(d_{0}\right)} \mathcal{T}\left(F_{0}\right) \xrightarrow{\mathcal{T}\left(d_{1}\right)} \mathcal{T}\left(F_{1}\right) \xrightarrow{\mathcal{T}\left(d_{2}\right)} \mathcal{T}\left(F_{2}\right) \longrightarrow \cdots
$$

- Take cohomology of the complex $C^{\bullet}:=\left(0 \rightarrow \mathcal{T}\left(F_{0}\right) \rightarrow \mathcal{T}\left(F_{1}\right) \rightarrow \mathcal{T}\left(F_{2}\right) \rightarrow \ldots\right)$

$$
\left(R^{i} \mathcal{T}\right)(A):=H^{i}\left(C^{\bullet}\right)
$$

- Observe $R^{0} \mathcal{T}(A)=\operatorname{ker} \mathcal{T}\left(d_{1}\right) \cong \mathcal{T}(A)(\mathcal{T}$ is left-exact!)

Let's turn $R^{i} \mathcal{T}$ into a Functor!

Let $g: A \rightarrow B$ be a homomorphism and fix free resolutions of A, B.
(i) One may extend g to a chain map g_{\bullet} (map basis of F_{j} to suitable preimages)

Apply \mathcal{T} to obtain a cochain map $\mathcal{T}\left(g_{\bullet}\right)$ which induces homomorphisms

$$
0 \longrightarrow \mathcal{T}\left(F_{0}\right) \longrightarrow \mathcal{T}\left(F_{1}\right) \longrightarrow \ldots
$$

(ii) If $\left(g_{i}^{\prime}\right)_{i}$ is another extension, then $\mathcal{T}\left(g_{\bullet}\right)$ and $\mathcal{T}\left(g_{\bullet}^{\prime}\right)$ are chain homotopic, in particular they induce the same map $R^{i} \mathcal{T}(A) \rightarrow R^{i} \mathcal{T}(B)$.

The case $\mathcal{T}=\operatorname{Hom}(-, G)$

- We used two term free resolutions $0 \rightarrow R \xrightarrow{i} F \rightarrow A \rightarrow 0$.

$$
C^{\bullet}=(0 \rightarrow \operatorname{Hom}(A, G) \rightarrow \operatorname{Hom}(F, G) \rightarrow \operatorname{Hom}(R, G) \rightarrow 0)
$$

- We can compare the Ext groups from the lecture to the derived functor of $\operatorname{Hom}(-, G)$:

$$
\operatorname{Ext}(A, G):=\operatorname{Hom}(R, G) / \operatorname{im}\left(i^{\sharp}\right)=: H^{1}\left(C^{\bullet}\right)=\operatorname{Ext}^{1}(A, G)
$$

where $\mathrm{Ext}^{i}=R^{i} \operatorname{Hom}(-, G)$.

- Furthermore, as $C^{i}=0$ for $i \geqslant 2$, we get $\operatorname{Ext}^{i}(A)$ for all $i \geqslant 2$ (,,no higher Ext ")

Hence we get a sequence $\operatorname{Ext}(C, G) \rightarrow \operatorname{Ext}(B, G) \rightarrow \operatorname{Ext}(A, G)$.
\sim Want to obtain a connecting homomorphism

Do snakes dream of long exact sequences?

- Intuition: The groups $R^{i} \mathcal{T}$ measure the failure of \mathcal{T} to be exact.
- Concretely: Given a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ we want to extend the exact sequence

$$
0 \rightarrow \mathcal{T}(C) \rightarrow \mathcal{T}(B) \rightarrow \mathcal{T}(A) \rightarrow \theta
$$

to a long exact sequence

$$
\begin{aligned}
0 & \longrightarrow \mathcal{T}(C) \longrightarrow \mathcal{T}(B) \longrightarrow \mathcal{T}(A) \rightarrow \\
& \leftrightarrow R^{1} \mathcal{T}(C) \rightarrow R^{1} \mathcal{T}(B) \longrightarrow R^{1} \mathcal{T}(A) \\
& \leftrightarrow R^{2} \mathcal{T}(C) \rightarrow R^{2} \mathcal{T}(B) \longrightarrow R^{2} \mathcal{T}(A) \\
& \leftrightarrow R^{3} \mathcal{T}(C) \longrightarrow \ldots
\end{aligned}
$$

The horseshoe lemma - simultaneous resolutions

Given free resolutions $\left(F_{i}\right)_{i}$ of A and $\left(F_{i}^{\prime}\right)_{i}$ of C, there is a free resolution of the form $\left(F_{i} \oplus F_{i}^{\prime}\right)_{i}$ such that the following diagram is commutative and exact:

- Define $\beta_{0}: F_{0}^{\prime} \rightarrow B$ by mapping a basis to preimages of $d_{0}^{\prime}\left(b_{i}\right)$ under g
- Define $d_{0}^{\prime \prime}:=f \circ d_{0} \oplus \beta_{0}$
- Define $\beta_{1}: F_{1}^{\prime} \rightarrow F_{0} \oplus F_{0}^{\prime}$ by mapping a basis to preimages of $d_{1}^{\prime}\left(b_{i}\right)$ under p_{0}
- Define $d_{1}^{\prime \prime}:=i_{0} \circ d_{1} \oplus \beta_{1}$

This is a resolution: Apply the LES of homology to this exact sequence of complexes and use that the outer columns are exact

The long exact sequence on derived functors

The right diagram is a short exact sequence of complexes, as the rows are split-exact.
Apply LES (II.5.1) to obtain
$0 \rightarrow \mathcal{T}(C) \rightarrow \mathcal{T}(B) \rightarrow \mathcal{T}(A) \rightarrow R^{1} \mathcal{T}(C) \rightarrow R^{1} \mathcal{T}(B) \rightarrow R^{1} \mathcal{T}(A) \rightarrow R^{2} \mathcal{T}(C) \rightarrow R^{2} \mathcal{T}(B) \rightarrow R_{7}^{2} \mathcal{J}$

Interesting consequences

This solves the exercise!

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}(C, G) \longrightarrow \operatorname{Hom}(B, G) \longrightarrow \operatorname{Hom}(A, G) \\
& \operatorname{Ext}(C, G) \longrightarrow \operatorname{Ext}(B, G) \longrightarrow \operatorname{Ext}(A, G) \\
& \rightarrow 0
\end{aligned}
$$

In particular $\operatorname{Ext}(B, G) \rightarrow \operatorname{Ext}(A, G)$ is surjective (ex. 11.3(i)).
This construction can be extended to other functors as mentioned in the beginning.
For a nice introduction see
https://r0hilp.github.io/assets/docs/tutorial_derived_functors.pdf

