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A mathematician and an engineer walk into a bar

Engineer Mathematician
Uses calculus Teaches calculus
Can build a bridge but doesn't Will count the number of
know why it holds possible bridges
Likes two columns Hates two columns

Has funding from industry
Likes the smell of whiteboard markers Crazy for specific chalk from Japan

Cares about real solutjons Invents imaginary numbers and points
at oo just to be right

Wants solutions quickly Wants correct solutions



Realization of linear time-invariant difference equations

aogyi + a1¥iv1 + -+ + @, Yipr = 0, i=0,...,d—r

v

Discrete-time (physical) system generating signals v = (yo, y1, ..., yq)' € R

v

Explain observed data with a mathematical model

v

Impose a model class: autonomous LTI models of finite order

e autonomous = no input signals, no influence from outside world

e linear = linear relation between past outputs

e time-invariant = coefficients a = (ay, . . ., ar)T are independent of time
finite order r = the relation involves at most r past outputs

> ¢ “model compliant” data



Roots of a(z) = . ,a;2" determine dynamics of model

> Simple roots: Each root \ generates mode vand()\) = (1, \,\2,..., AT

U= ZCA -vand(\) = [Zc,\ . )\k} -
A A

> Multiple roots introduce confluent Vandermonde vectors a)\] Vand()\)

> Magnitude of \'s determines growth or decay, argument determines phase
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Exact realization = Linear Algebra

> Model population of rabbits § = (2,3,5,8,13)T
> Ty(a)y = 0 is equivalent to H,(7)a =0
> ¢ satisfies LTI difference equation iff rank H,.(7) < r, all such ¢ form a variety

_{UECdH’rankH( <r}—a,ydIP’1

235 =1

> ldentify model a via kernel of Hankel matrix, Kor[g 5 183} = R<—11>
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Qg @1 -0 Gy Ya—r Yd—r+1 - Yd
=:Ty(a) Toeplitz matrix (d—r+1)x(d+1) =: H,(3) Hankel matrix (d—r+1)x(r+1)



Least squares realization

- d 1 1, TA,
> Fix a 2-norm on R, Q(y) = 3|ylI* = 5y Ay
> Real world scenario: Don’t have access to ¢, measure noisy y = ¢ + ¢
~~ y never satisfies a difference equation exactly, rank H,(y) = r + 1 almost surely
> If £ is Gaussian white noise, then closest 7 is maximum likelihood estimator

§ = argmin ||y — 9> = argmin L(j | y = 9 + ¢)
G€Xy - (R) 9E€Xq,r(R)

> Constraint optimization problem: Impose rank condition on ¢

minimize Q(y — 9) subject to rank H,.(y) <r
yERIT!

— minimize Q(y — 1) subject to H.(y)-a=0
JERITL qgeR™\0



Heuristic approaches

> First idea goes back to Prony [PGDB95]
> Cadzow's method [Cad88] (assume standard norm on R%*1)

1. Compute SVD of H,(y) = UxvT, singular values 01 > -+ > 0,41 >0

2. Setting 0,11 ~ 0 yields rank-deficient matrix H’, but lose Hankel structure
3. Approximate H' by Hankel matrix H,.(y'), lose rank-deficiency

4. Iterate 1.-3. until convergence to rank-deficient Hankel matrix

> Eckart—Young theorem: SVD gives optimal low rank approximation of a matrix

> Other heuristic approaches: iterative quadratic maximum likelihood (IQML),
Steiglitz—McBride, for a comparison see [LVVHDMO1]

> What if we care about global minima?



Euclidean Distance Degree

> Given a variety X C C" and a point y € R”, find closest point on X (R)
> Distance measured using non-degenerate quadric Q(z) = zTAx

Definition (Euclidean distance degree, EDD (X))

The number of complex critical points of § — Q(§ — y) on X, for general y € RY
is the Euclidean Distance degree of X (with respect to Q).

> For generic quadric obtain generic EDD; upper bound on specific EDDg(X)

> Here X is the r-th secant variety of the rational normal curve X;; = va(P1)
X = Xdrfaryd]P’l {TESym (C2‘rkT<7"}CCdJrl

> EDDg(X,,) is algebraic degree of approximate rank-r decomposition



Let’s get FONCy!

> P(X,,) is not smooth, { (y,a) € P4 x P" | HY -a = 0} is desingularization
~~ Prefer this formulation of the optimization problem

minimize Q(y — 9) subject to H.(9)-a=0=Ty(a)- -y

gERITL a€R™\0

> Introduce Lagrange multipliers / € R?~"*! to make unconstrained problem

L,(5,a,0)=Q(G—y)+ (" -H.(9)-a

> First order necessary conditions for optimality:

0L,
0=Z=A0-v+ (Ta(a))™
0L %y _ (b)) = T (0)g 0+ % _ g (5)a = Tya)g
da ol 8



Lower-rank solutions are never optimal

Lemma

If (,a,l) is a solution to the FONC with rank H,.(y) < r — 1, then y is not a local
minimum of Q(y — y) on X,

|dea: Can use additional degrees of freedom ¢ + ¢ - vand(\) to decrease norm

Theorem (Characterization of rank r solutions)

Consider a solution (i, a, (), interpret a € S<, = C|z]<,, { € RS =S4 .

1. Ifrank H,(y) = r, then { = ¢ - a (as polynomials) for some g € S<q4_o,

2. Ify is sufficiently random, then { = ¢ - a also implies rank H,(y) = r.

|dea: 1. Linear algebra (apolarity) 2. Dimension argument



Putting it all together

02 55— A —9) + (Tala)0 (g0
i 8£y B - s 6)4,, o P
0=5"="Tir(0)f 0="7 = Tul@)y

> First equation allows to eliminate §: ==y — A~ (a - ()
> Assuming vy is general, we can substitute / := ¢ - a and simplify

For general y, the FONC solutions (1, a, () correspond to solutions (a, g) to

Tula)y = Tula)A™(Tu(a))" (Tur(a))’g = Tu(a)A~'(a”g).

The isomorphism is given by { = a - g, j =y — A (a? - g).



The bad locus

> Reduced to system of d — r + 1 equations in (a,g) € (C"+1\ 0) x C4-2r+!
Tia)y = Bala)g,  Bala) == Tu(@)A™"(Tu(a)"(Tu_r(a))"
> Almost linear in g, homogenize by ¢
YAG = {(y,a,(9-1: 9)) | Tu(a)y - -1 = Ba(a)g } € CH' x G x P=2*!

> g1 can vanish if and only if By (a) becomes rank-deficient for some a # 0
> Good locus G == { a | rank By(a) = d — 2r + 1 }, bad locus B := C"*'\ G

Lemma

YAG is a smooth irreducible global complete intersection of dimension d + 2 and
codimension d — r + 1 in C41 x G x Pd-2+1

Assumption: The set P(B) should be finite. General A: P(B) = () "



The multi-parameter eigenvalue problem

> Rearrange polynomial system to reveal MEP structure

Tal@y g1 =Bala)-g = [Td<a>y|BA<a>J'<_w>=o

-~

= M(a,y)

> This is almost homogeneous in y, after projecting onto (a,y) we have
AY = { (a,y) | rank M(a,y) < d—2r +1} CP(G) x P?

> AY has the structure of a projective subbundle P(F) C P(ngrgl))

AY is a smooth irreducible variety of dimension d and codimension r in P? x PG.

> Restricting to a (general) y € P¢, we obtain a finite reduced set of solutions!



AY is a reduced determinantal variety

Lemma

Let M be a “tall” m x (n+ 1)-matrix with polynomial entries over a variety X and
K={(z,[v]) | M(z) - v=0} C X x P".

Let Z be the projection of KC onto X . If K is reduced and for all x € X one has
rank M (z) € {n,n + 1}, then the ideal of Z is given by the (n + 1)-minors of M.
AY ={(a,y) | rank M(a,y) <d—2r +1} CP(G) x P?

Corollary

1. The prime ideal of AY is locally given by the (d — 2r + 2)-minors of M (a,y).

2. Restricting to a general iy € P, the system of minors of M (a,y) defines a finite
set of reduced points in P(G). 13



Intersection theory saves the day

AY = {(a,y) | rank M (a,y) < k} CP" x P, k=d—2r+1

> Assume B = (), satisfies for general A

> AY has the expected dimension 0, hence Porteous formula applies
> M(a,y) = [Ty(a)y | Ba(a)] has entries of degree (1,1) and (3,0) (k columns)
Theorem (A formula for EDD,, (X))

In the Chow ring A*(P" x P?) = Z[«, B]/{a" T, B4T1) we have

[AY]:{<1—<a+6l>><1—3a} chf:)( SH)QWM'

7=0 =0

For general y, the number of solutions is . _, (HT) (k_ilﬂ) = Z;:o (k_]1.+j)3j.

14



What if the bad locus is non-empty?

> P(B) = 0 iff By(a) = Ty(a)A~1(Ty(a?))" has full rank for all a # 0

> Recovers formula for EDDyge,, (X)) from [0SS14, Theorem 3.7]

> If P(B) is non-empty but finite, then the determinantal formula still applies:
EDDA(Xy,) = 3 ( ; /

j=0

Assume that P(B) is finite. One has

>3j — (multiplicity of B in ideal of minors of M (a,y))

EDDgen(Xa,r) — deg Bred > EDDy (Xy,) > EDDygen(Xy,) — deg(minors of By(a)).

The latter inequality is strict if and only if the multiplicity structure of B in the

ideal of minors of M(a,y) does depend on y. This can be verified explicitly. 15



EDDy(X,,) for special weights

A =1 Unit A = F Frobenius A = © Bombieri
d\r 1 2 3 4 1 2 3 4 1 2 3 4
1 ]
2 2
; s
4 4 7
; s 1
6 10 38 34 6 28 20
: G ¢ s .o
8 14 103 246 113 8 61.65 134.142 | 53
9 1251008 16431| 543 |9 82.88 243.263 | 229

> Bombieri weights for X;, gives the first case where previous inequality is strict

> Efficient implementation in Macaulay2 for extensive experimentation 6



Thank you! Questions?



The ED discriminant

> Fixing A, our computation still relied on genericity of y
> The ED discriminant consists of y € C?*! such that the system has a multiple

solution a.

Figure 1: General (unit) and special (Bombieri) weights .
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