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(symmetric) tensor decomposition



What is a tensor?

A tensor. ..
> ...is an object that transforms like a tensor
> ...is an element of a tensor product of vector spaces U @ V @ W
> ...is a multidimensional array of numbers A = (A;j)i jk
> ...in V&% is symmetric if its entries are invariant under permutations o € &4

> Symmetric tensors can be identified with homogeneous polynomials (in char. 0)
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Tensor decomposition and rank

> A tensor of the form (w;vjwg)ijr = ® v ® w is simple

> Every tensor is a sum of simple tensors

A=Y 2 @ v @ uw
i=1

> The smallest such r is the tensor rank of A

> Generalizes matrix rank: A = S - diag(1,...,1,0,...,0)-T
k A
ran

If the simple tensors are unique up to scaling, then A is called identifiable

v

> Symmetric case: Simple tensor p®d = pd o= Z;:l )\Mf, symmetric tensor rank, ...



We will identify symmetric tensors with homogeneous polynomials in T' = C[ X, ..., X,,].
> Rank 1 = powers of linear forms /¢ = (cone over) Veronese variety
Vip = va®(T1) CP(Ty),  va([l) = [¢]

> Quadratic forms = sym. matrices: F = x'Az, then rk F' = rank A
> Fun exercise: tk(X{ +---+ X3) =n

> tk(X0X1) =2, as XoX1 = $(Xo + X1)? — 3(Xo — X1)?

> rk(XoX{l_l) = d, more generally for ag < a1 < ...

h(Xg? - X37) = (01 + 1)+ (an +1)

> But dXOXf*l = lim._.q %(EX() + Xl)d — %de so rk is not lower semi-continuous



A general form walks into the door

Theorem (Alexander—Hirschowitz)

Forr(n+1) < (”;d) the affine cone

n+d)

@:{Ferhk(F)gk}gTd:A( n
has the expected dimension r(n + 1) except for

(d,n,r) =(2,>2,>2),(3,4,7),(4,2,5), (4,3,9), (4,4, 14).

In particular, a general polynomial has rank {%—i—l ("Zd)—‘ :

Running example:

A general F' € C[ Xy, X1, X2]10 has rk F' = %(2*'210) = 22. The set of such forms of rank
18 has dimension 54 in A%6



General forms of subgeneric rank are identifiable

Theorem (Ballico, Mella, Chiantini—Ottaviani—-Vannieuwenhoven, ...

Forr(n+1) < ("zlrd) a general form of rank r is identifiable except in the cases

(d,n,r) = (2,>2,>2), (6,2,9), (4,3,8), (3,5,9).

> For applications tensors are often of subgeneric rank ~~ generic identifiability

> A general F' € C[Xy, X1, X2]10 of rank 18 has an essentially unique representation
18
F:Z)\Z’E}O, 4 EC[Xo,Xl,XQh
i=1

> Given F', how do we find the ¢; algorithmically?



Apolarity and eigenvalue methods



The fundamental theorem of tensor decomposition

> There is a the natural apolar action S?V* x Sym” V — SymP—4V
> Let S =S4V* = C[dy,...,0,) then S acts on T = C[Xy, ..., X,,] by differentiation

0" e 2P = 2P if 8> «, else 0

(8 —a)!

> In this way S is the homogeneous coordinate ring of P(T}): g([¢]) = g e £4¢&9
> For FET let F- = Anng(F)={gecS|geF=0}

Theorem (Apolarity lemma)

For ' € Tp and ¢y, ...,¢. € T the following are equivalent:

1. F= )\16{3 + o+ /\TET,D for some \; € C;
2. I(lta],...,[&-]) CF+in S,



The Catalecticant method

> I F =" At + -+ M\ tP, then L contains equations vanishing on [¢;]
> For d < %, r< (dzn) —mn and F' € Tp general of rank r, then actually
(FHa=I(la],..., [&:])a
> By definition (F1+); = Ker Caty p_4(F) where
Catg p—q(F): Sq = Tp—d, gr—rge I

> Algorithmic approach:
e Compute basis F of kernel
e Solve polynomial system {F = 0} to get Z = {[¢4],..., [(+]},
e Solve linear equations to get A;

~ When is V(FdL) = Z7 Equivalently V(I(Z2)y) = Z7?



Eigenvalue methods for polynomial system solving

Task: Given 0-dim'l system J C S, compute Z = {z1,...,2.} = V(J) CP"
> For t large enough, hg/;(t) = dimc(S/J); = r and J; = I(Z);
> Multiplication map for g € Se:
My: (S/D)a == (S/J)dre
> Under “suitable conditions” M, 'Mg: (S/J)q — (S/J)q has left eigenpairs
{ (eVth7 %(zl)) ‘ i = 1; cee ,7“} ) evzi(f) = f(z7)/h<zl)

~~ Translate problem into large eigenvalue problem, solve numerically
> For this need hg/;(d +e) = hg/;(d) = r, want d,d + e as small as possible

Example: J saturated
If J=1(Z) and Z is a general set of points, then hg/ () = min{hs(t), r}.
Hence d = min{¢ | hg(t) > r} and e = 1 work.



Recap

We are lead to the following setup:

> Given a general form F = "" | \ill € C[X1,..., X,]p of rank r < (nﬂf/%) —n
> Decomposition is unique, want to find Z = {[¢4],...,[¢;]} € P"

> Have access to F = I(Z)4 only for d < £

> Want to solve polynomial system F using the eigenvalue method

> Is V(F) = Z (scheme-theoretically)?

> What is the Hilbert function of the subideal (F)s C I(Z)? When = r?

Running example

n=2 D=10,r=18 F =32 M € C[Xo, X1, X2]10.
Only interesting: d = D/2 =5, since for d < 4 we have I(Z)4 = 0!




Some nice geometry behind this!

Mathematics > Commutative Algebra

[Submitted on 5 Jul 2023]
Hilbert Functions of Chopped Ideals

Fulvio Gesmundo, Leonie Kayser, Simon Telen

A chopped ideal is obtained from a homogeneous ideal by considering only the generators of a fixed degree. We investigate
cases in which the chopped ideal defines the same finite set of points as the original one-dimensional ideal. The complexity of
computing these points from the chopped ideal is governed by the Hilbert function and regularity. We conjecture values for
these invariants and prove them in manv cases. We show that our conijecture is of practical relevance for symmetric tensor



Rediscovering a notion introduced by [Ahmed—Froberg—Rafiq]

Definition (Chopped ideal)

The chopped ideal of a homogeneous ideal I C S in degree d is Iy := (I4)s.

From now on Z C P™ is a general set of r points, j‘f".ae“‘““'“:
I=1(Z),d=min{t| hg(t) >r}.
> The minimal generators of I live in degrees
{d,d+1}
> Can we recover Z from I(Z)4)?
> When does (I(Z)@qy)dtre = I(Z)aye?
> What is the Hilbert function hy(z) (t)?
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Example: Z = 18 points in the plane

2 3 4 5 6 7

t ... 3 4 5 6 7T t
hs(t) 10 15 21 28 36 hs(t)
hi(t) 0 0 3 10 18 hsy1(t)
hig() ... 0 0 3 9 18 hsy1s, (t)

Figure 1: Three quintics
(a1, 92,q3)c = I5 passing
through 18 general points
(left) and the missing split

sextic ¢’ € Ig (right).

— = = O

6 10 15 21 28 36
6 10 15 18 18 18
6 10 15 18 19 18

W W W
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Recovering the points from their chopped ideal

> Generally [i4y € I, but maybe
?

= (I<d>)3at = U (I<d> : mk) — V(I) = V(I<d>) cp?

schemes
k>0

Let Z C P™ be a general set of r points and d € N.

1. Ifr> (":d) —mn, then V(I 4) is a positive-dimensional complete intersection.
2. Ifr= ("Zd) —mn, then V(I 4) is a complete intersection of d" points.

3. Ifr < (") —n, then Iy cuts out Z scheme-theoretically.

In particular, I = (I<d>)sat if and only if r < ("+d) —norr=1or(n,r)=(24).

n



Towards the expected Hilbert function — naively

> Graded components of I, are images of multiplication map
pe: Se®cly = laye, g fr—>g-f

> One may expect . to have maximal rank, i.e. to be injective or surjective:
hiy (8) = min{Ar(8), hs(t —d) - hr(d)}

~» e = 1: |deal generation conjecture (IGC) predicting number of minimal generators of

> This turns out to be too optimistic; u. has elements in its kernel, for example

f1® fa— fo® f1 € Ker pg, fi,f2 €1,

> This does happen, e.g. r = 52 points in P2, then us does not have maximal rank

13



Towards the expected Hilbert function — more carefully

> The kernel of u. contains the Koszul syzygies Ksz. generated by

9fi® f; —9f; ® fi, 9E€ Seq, firfi €14

Expecting Ker . = Ksz, a first estimate of dim¢ Ker i, is hg(e — d) - (hI(d))

>
> Expect the syzygies to also only have Koszul syzygies, correct by hg(e — 2d) - (hfs(d))
> And these also only have Koszul syzygies and ...

>

This leads to the following estimate for hg7 , (?):

hs(t) — hg(t — d)hy(d) + hs(t — 2d) (’”;d)> — hg(t — 3d) (hf?fd)> +...

gen's of I
Koszul syzygies Koszul syzygy syzygies

> On the other hand, as soon as hy, (to) > hi(to), then Iy = (I1g)): for ¢ > to

14



The main conjecture

Expected syzygy conjecture (ESC)
hi(d
St hste—kd)- (M) t<

sy (£) = 4 k20
r t Z th

where t( is the least integer > d such that the sum is at most r.

> This is always a (lexicographic) lower bound due to Fréberg (and recently Nenashev)

> Alternative expression for the ideal:

S0 nste = k) (M) <

hig, (1) = 4 k>1
hi(t) ¢ > to,



Is the complicated alternating sum really needed?

> For P? the (ESC) “actually” says hi g, (t) = min{h;(d) - hs(t — d), hr(t)}
> This is no longer true in higher dimension — in general n summands are required
> Smallest example: 52 points in P3

100 hs/[“)(d)
hs/1(d)
80 |
hsy1s (t) = 60 |
40 |
hs(t) — 4hs(t — 5) + 6hs(t —10) t<11, | I
52 t>11 e ! I d
o 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: The Hilbert function of the chopped
ideal of 52 general points in P3.
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Main results

Conjecture (ESC) is true in the following cases:

> Tmax = hg(d) — (n+ 1) for all d in all dimensions n.
> In the plane for i, = 3(d + 1)? when d is odd.
>r< %((n + 1)hg(d) — hg(d + 1)) and [n < 4 or generally whenever (IGC) holds].

> In a large number of individual cases in low dimension (next slide).

The length of the saturation gap is bounded above by
min{e > 0| (Ligy)dare = lare } < (n—1)d = (n +1).

Whenever Iq) is non-saturated, one has regcm S/ 1(g) = regu S/Iigy —1=d +e— 1.



Verification using computer algebra

> Testing the conjecture for particular values of (n,7):
e Sample r random points from P"(Q)
e Calculate hs/1(z)., using a computer algebra system
e If the sample satisfies (ESC), then the conjecture is true for general such Z

The map Z hS/I(Z)<d) (t) is upper semicontinuous on the set U C (P™)" of points with

generic Hilbert function.

> To speed up computation, perform calculations over a finite field I,
> Using Macaulay?2 we verified the conjecture in the following cases

n 2 3 4 ) 6 7 8 9 10
r <1825 <1534 <991 <600 <447 <316 <333 <204 <259
d <58 <18 <9 <6 <4 <3 <3 <2 <2




Visualization of the saturation gaps in P?

> ESC predicts exactly how large the difference between I and I is

25

20 -

15

gap [d,d + €]

mn”

|
10 20 30 40 50 60 70 80 90
r = #points

Figure 3: The saturation gaps for all values of » < 102 in P?.

|
100
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Visualization of the saturation gaps in

25
20 |
T s |
~
~
‘ | mHH” ’
{ unttsssstssetett] H EAAALAARLARRRRRR
’ il mmn]H nmmmHH |
1
!
0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 Qb 160 1 ‘10 0

r = #points

Figure 4: The saturation gaps for all values of » < 116 in P3.
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> Characteristic p > 07
Result expected to carry over, but char. 0 methods used (generic smoothness)

> Proving the conjecture in P2?

Monomial degenerations seem to not work (despite resolving (MRC) & Froberg)

> Generalizations multi-graded setting, e.g. points in P™ x P™ (original motivation)

~~ non-symmetric tensor decomposition problems

> State a conjecture for the minimal free resolution of 1(Z) 4

21



Thank you! Questions?
arXiv:2307.02560


https://arxiv.org/abs/2307.02560
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