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Two computational problems

e Fix a field K whose elements can be represented in a computer, e.g. Q
e Consider polynomials from K[Xi, ..., X,] represented as strings, e.g.

f=23/10 X.1°3 - 4/2 X_1X.2

Problem: (ldeal membership problem, IM)

Input: (f,fi,...,fs) multivariate polynomials from K[Xi, ..., X,]
Output: Decide whether f € (f1,...,fs).

Problem: (Reduced Grobner basis membership problem, GROEBMy)

Input: (g, f,...,fs) multivariate polynomials from K[Xi,..., X;]<
Output: Decide if g is contained in the reduced Grobner basis of (fi,. .., f).



A crash course in complexity theory

e An algorithm M computes a function f: ¥* — A* in space t: N — N if on input
x € X* it writes f(x) to the output and uses O(t(|x|)) internal memory cells

ESPACE = {A ‘ XA can be computed in space 52 }

e A language A C X* can be log-lin reduced to B C A* (in symbols: A < B) if
> there is a function f: X* — A* computable in logarithmic space such that
> |f(x)| = O(|x|) for all x € ¥* and
> x € Aif and only if f(x) € B
e Ais hard for a class of languages C if Ag < A VAp € C; it is complete if also A € C
~ If Ais ESPACE-hard, then any algorithm deciding A requires working space
> 2¢IX for infinitely many x € ¥*
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Summary of the main complexity results

Theorem 1: (Mayr & Meyer [MM82], Mayr [May89])

The problem IMg is ESPACE-complete.

Theorem 2: (Moller & Mora [MM84], Huynh [Huy86])
There exists a sequence Fy of sets of polynomials of size O(k) such that the

reduced Grobner basis of (Fx) consists of > 22" elements of degree > 22"

Theorem 3: (Kiihnle & Mayr [KM96])

A Grobner basis of (f1, ..., fs) over Q can be enumerated using exponential space.
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The path to ESPACE-hardness

ESPACE

Generic problem

EBC

Exp. bounded
counter machines

CSG

Commutative semi-
group word problem

IMg

Ideal membership
problem

GROEBMy

Red. Grobner basis
membership

Figure 1: The chain of reductions proving ESPACE-hardness of IMg and GROEBMk.
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The starting point: Exponentially bounded counter machines

e A k-counter machine (Q, d, qo, ga) consists of a finite set of states Q > qo, g and
0: Q — ({INCl, ..., INC,DECy,... ,DECk} X Q) U ({le, e ,BZk} X @ X Q)

> A configuration is a tuple (g, c1,...,ck) € Q x Z*

> INC; = increment ¢;, DEC; = decrement ¢;, BZ; = branch program on ¢; ~ 0
e A counter machine C accepts 0 if (qo,0,...,0) ¢ (ga,0,...,0)
e lts computation is bounded by e if 0 < ¢; < e for all / in all steps
e The following language is ESPACE-complete:

Problem: (Exponentially bounded 3-counter machines, EBC)

Input: C =(Q, 6, qo,qa), a 3-counter-machine
Output: Decide whether C accepts 0 and has computation bounded by 2219
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EBC < CSG: Expressing counter machines with semigroups

e A commutative semigroup presentation (X, P) consists of
> a finite set ¥ of “commuting” letters; X% is the set of commutative words
> a set of replacement rules P = {a1 <> f1,...,as <> Bs}, a;, Bi € 9

e (X,P) induces a congruence relation =p on X% by successive string replacement

Problem: (Word problem for commutative semigroups, CSG)

Input: (X, P, ,3), where (X, P) is a comm. semigroup presentation, «, 3 € %
Output: Decide whether o =p S.

e One way to encode counter machines using commutative strings (e = 22‘Q‘):
rep(q, c1, &2, ¢3) = gAT' By TAZBS ?ATB; ¢ € (QU{Ay,..., B3})®

e Example: ¢ — (BZ;, q’,q") becomes {¢Bf <+ ¢'Bf, qA; «+» q"A;}
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A commutative semigroup counting to 2

e Problem: The rules and configurations require strings of length e, = 22", n = |Q|

Theorem 4: (Mayr & Meyer [MM82])

There is a commutative semigroup presentation (X,, P,) of size O(n) containing
S,F,By,...,By, Gy, ..., C4 € X, such that

SC,' Epn FC,'B,-e"

and these are the only strings equivalent to SC; containing S or F.

e Solution: Expand or collapse B" when needed using (X,,P5)
e Example: {gB" <> ¢'B"} becomes {q + q,FC;, q,SC; <+ ¢15C;, ;FC; < q'}
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CSG < IMk: From words to monomials

o Let (X ={x1,....,xs},P={c1 ¢ b1,...,0s <> s}) be a commutative
semigroup presentation

o Fory=x™.. . x% c¥% let X be the monomial X ... X% ¢ R

Lemma: (Mayr & Meyer [MM82])
lent:

(a) a=p B;
(b) X« —XB e (Xxu— XA, . X —XP)
(c) X¥—=XFP e (X —XP .. X — XPs)

For a, 3 € X% the following are equiva-

Z[Xl,...,X,,]'

K[Xl,...,X,,]'

~» Reduction (X, P,a, 8) — (X — XP X1 — XP1 . X — XP)
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“IMg < GROEBMk”: Exploiting the structure of binomial ideals

e Reduction from EBC shows that IMg is ESPACE-hard even in the case that

> all polynomials are binomials X* — X# with «, 3 # 0;
> the polynomial to test membership of has the form g = X1 — X5

o Let | =(f1,...,f) and G its reduced Grobner basis
e Criterion: Let X® = X7, then

X*— X% e G ifandonlyif X*—X’eland X*— X ¢ forall X* < x#

e May assume Xj is the smallest variable with respect to <, then X; — X5 is in G if
and only if Xy — X5 €/
~> (Trivial) reduction (f, f1,...,f) — (f, f,..., 1)
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