

Master's thesis presentation

Leo Kayser

23.11.2022

Institut für Theoretische Informatik

Gröbner bases provide a vital tool for polynomial ideal computations in computer algebra and its applications. While useful in practice, its worst-case complexity is located in EXPSPACE and the size of a Gröbner basis may grow double-exponentially.

Polynomial equations are everywhere

Task: Given $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, find solutions to $f_1(x) = \cdots = f_s(x) = 0$.

- Wide range of applications in areas such as robotics, biochemical reaction networks, computer vision, statistics, ...
- Applications in cryptography require exact solutions (e.g. over finite fields)
- Example: "Automatic" theorem proving

Figure 1: The perpendicular bisectors of a triangle meet in a common point.

The ideal membership problem

• Consider polynomials $f_1, \ldots, f_s \in R := \mathbb{Q}[X_1, \ldots, X_n]$, represented as strings, e.g.

 $f_1 = 3/10 \text{ X}_1^3 - 4/2 \text{ X}_1 \text{X}_2$

- The *ideal generated by the* f_i is $\langle f_1, \ldots, f_s \rangle \coloneqq \{ h_1 f_1 + \cdots + h_s f_s \mid h_i \in R \}$, any such set is called an ideal
- Hilbert's Nullstellensatz:

 $\exists x \in \mathbb{C}^n$ with $f_1(x) = \cdots = f_s(x) = 0$ if and only if $1 \notin \langle f_1, \ldots, f_s \rangle$

Problem: (Ideal membership problem, $IM_{\mathbb{Q}}$) *Input:* (f, g_1, \ldots, g_s) multivariate polynomials from $\mathbb{Q}[X_1, \ldots, X_n]$ *Output:* Decide whether $f \in \langle g_1, \ldots, g_n \rangle$.

A first approach to solving ideal membership

 Intuitive approach for deciding f ∈ ⟨g₁,...,g_s⟩: "Divide f by the g_i and check if the remainder is zero":

$$f = q_1 g_1 + \dots + q_s g_s + r,$$
 r "small" (?)

- \rightsquigarrow Need a way to compare polynomials
 - A monomial order \prec is a total order on the set of monomials $\{X^{\alpha} \mid \alpha \in \mathbb{N}^n\}$ with
 - $\triangleright \ 1 \prec X^{\alpha}$ for all $\alpha \neq 0$
 - $\triangleright \text{ if } X^{\alpha} \prec X^{\beta} \text{, then } X^{\alpha} X^{\gamma} \prec X^{\beta} X^{\gamma} \text{ for all } \gamma$
 - Examples: Lexicographic \prec_{lex} , degree-lexicographic \prec_{deglex} , ...
 - The leading term LT(f) is the term in f with the largest monomial w.r.t. \prec , for example in the lexicographic order $(X_1 \succ X_2)$ we have $LT(3X_1X_2 X_2^3) = 3X_1X_2$

The normal form algorithm

- Given f and g_1, \ldots, g_s , repeat the following steps until f = 0:
 - ▷ If $LT(g_i) | LT(f)$ for some *i*, then subtract a multiple of g_i from *f* (cancelling the leading term)
 - \triangleright Otherwise move the leading term *f* to the remainder *r*.
- This produces a decomposition of the form

$$f = q_1g_1 + \cdots + q_sg_s + r$$
, no term of r divisible by any LT (g_i)

- If we always choose the least possible *i*, then $r =: rem(f; g_1, \ldots, g_s)$
- Example: $f = XY^2 X$, $g_1 = XY + 1$, $g_2 = Y^2 1$ and $\prec = \prec_{\mathsf{lex}}$, then

$$\operatorname{rem}(f; g_1, g_2) = -X - Y, \quad \operatorname{rem}(f; g_2, g_1) = 0, \qquad f = X \cdot g_2 \in \langle g_1, g_2 \rangle$$

Theorem 1: (Characterizations of Gröbner bases)

- Let I be an ideal and $\{g_1, \ldots, g_s\} \subseteq I$. The following are equivalent:
- (a) For all $0 \neq f \in I$ there is a g_i with $LT(g_i) \mid LT(f)$
- (b) For all $f \in R$ there is a *unique* $r \in R$ with $f r \in I$ such that no $LT(g_i)$ divides any term in r.

(c) For all $f \in R$ we have $f \in I$ if and only if $rem(f; g_1, \ldots, g_s) = 0$.

- Any such sequence g_1, \ldots, g_s is called a *Gröbner basis* of the ideal *I*
- Buchberger's algorithm computes a Gröbner basis of $\langle f_1, \ldots, f_s \rangle$ [Buc06]
- \rightsquigarrow For Gröbner bases the normal form algorithm solves $\mathsf{IM}_{\mathbb{Q}}!$

Uniqueness of Gröbner bases

- Gröbner bases are far from being unique, for example if G is a Gröbner basis, then so is G ∪ {f} for any f ∈ I
- A Gröbner basis G = {g₁,...,g_s} is reduced if the leading terms of all g_i have coefficient 1 and no term in g_i is divisible by any LT(g_j) for i ≠ j.

Lemma Every ideal $I \subseteq R$ has a *unique* reduced Gröbner basis.

Problem: (Reduced Gröbner basis membership problem, GROEBM_Q) *Input:* (g, f_1, \ldots, f_s) multivariate polynomials from $\mathbb{Q}[X_1, \ldots, X_n]$ *Output:* Decide if g is contained in the reduced Gröbner basis of $\langle f_1, \ldots, f_n \rangle$.

Summary of the main complexity results

Theorem 2: (Mayr & Meyer [MM82], Mayr [May89], Kühnle & Mayr [KM96])

The problems $IM_{\mathbb{Q}}$ and $GROEBM_{\mathbb{Q}}$ are EXPSPACE-complete. A Gröbner basis of $\langle f_1, \ldots, f_s \rangle$ can be enumerated using exponential working space.

Theorem 3: (Möller & Mora [MM84], Huynh [Huy86])

There exists a sequence F_k of sets of polynomials of size $\mathcal{O}(k)$ such that the reduced Gröbner basis of $\langle F_k \rangle$ consists of $> 2^{2^k}$ elements of degree $> 2^{2^k}$.

 \sim Any algorithm which on input $F = (f_1, \dots, f_s)$ computes the reduced Gröbner basis of $I = \langle F \rangle$ with respect to a degree-dominating monomial order uses in the worst case at least space $2^{\Omega(\text{size}(F))}$ and time $2^{2^{\Omega(\text{size}(F))}}$.

Deciding ideal membership in exponential space

- Given $f, g_1, \ldots, g_s \in \mathbb{Q}[X_1, \ldots, X_n]$, $d = \max_i \deg(g_i)$
- Hermann [Her26]: If $f = h_1g_1 + \cdots + h_sg_s$, then one can choose the h_i to satisfy

$$\deg(h_i) \leq D \coloneqq \deg(f) + (sd)^{2^n}, \qquad i = 1, \ldots, n.$$

- Consider the $h_i = \sum_{|\alpha| \leq D} h_{i,\alpha} X^{\alpha}$ with unknown coefficients $h_{i,\alpha} \in \mathbb{Q}$
- (1) The equation $f = h_1g_1 + \cdots + h_sg_s$ describes a system of linear equations in the $h_{i,\alpha}$ of size $2^{2^{\mathcal{O}(\ell)}}$, where $\ell = \text{size}(f, g_1, \ldots, g_s)$
- (2) One can solve systems of linear equations of size N × N on a PRAM in parallel time O(log² N) using N^{O(1)} processors
- (3) Parallel computation thesis [FW78]: If L is accepted by a PRAM in parallel time t(n), then L ∈ SPACE(t(n)²)
- \rightsquigarrow (1)+(2)+(3) yield an exponential space algorithm for $\mathsf{IM}_\mathbb{Q}$

Enumerating a Gröbner basis in exponential work space

- Consider $f_1, \ldots, f_s \in \mathbb{Q}[X_1, \ldots, X_n]$, $d = \max_i \deg(g_i)$
- Dubé [Dub90]: Any element g of the reduced Gröbner basis of I satisfies

$$\deg(g) \leq ilde{D} \coloneqq 2 \cdot \left(rac{1}{2} d^2 + d
ight)^{2^{n-1}}$$

- (1) Idea: Enumerate monomials m of degree $\leq \tilde{D}$ and check if m is leading term of an element of the reduced Gröbner basis G of $I = \langle f_1, \ldots, f_s \rangle$
 - Define the normal form $NF_I(f) := rem(f; G)$ for $f \in R$
- (2) Criterion: m = LT(g) for an element $g \in G$ if and only if $m \neq NF_I(m)$ but $NF_I(m') = m'$ for all $m' \mid m$ (strictly); in that case $g = m NF_I(m)$
- (3) There is an exponential work space algorithm calculating $NF_I(f)$
- \sim (1)+(2)+(3) enumerate the reduced Gröbner basis in exponential work space

The path to EXPSPACE-hardness

Figure 2: The chain of \leq_{m}^{P} -reductions proving EXPSPACE-hardness of IM_Q and GROEBM_Q.

The starting point: Exponentially bounded counter machines

• A *k*-counter machine (Q, δ, q_0, q_a) consists of a finite set of states $Q \ni q_0, q_a$ and

 $\delta \colon Q \to (\{\texttt{INC}_1, \dots, \texttt{INC}_k, \texttt{DEC}_1, \dots, \texttt{DEC}_k\} \times Q) \cup (\{\texttt{BZ}_1, \dots, \texttt{BZ}_k\} \times Q \times Q)$

hinspace A configuration is a tuple $(q, c_1, \ldots, c_k) \in Q imes \mathbb{Z}^k$

- ho Instructions INC, DEC, increase/decrease the value of counter $c_i \in \mathbb{Z}$ by 1
- \triangleright BZ_i branches the program flow depending on the counter value $c_i \stackrel{?}{=} 0$
- A counter machine *C* accepts 0 if $(q_0, 0, \ldots, 0) \vdash^*_C (q_a, 0, \ldots, 0)$
- Its computation is bounded by e if $0 \le c_i \le e$ for all i in all steps
- The following language is EXPSPACE-complete:

Problem: (Exponentially bounded 3-counter machines, EBC) *Input:* $C = (Q, \delta, q_0, q_a)$, a 3-counter-machine *Output:* Decide whether C accepts 0 and has computation bounded by $2^{2^{|Q|}}$.

From EBC to CSG

- A commutative semigroup presentation (Σ, \mathcal{P}) consists of
 - $\triangleright\,$ a finite set Σ of "commuting" letters; Σ^\oplus is the set of commutative words
 - \triangleright a set of replacement rules $\mathcal{P} = \{\alpha_1 \leftrightarrow \beta_1, \dots, \alpha_s \leftrightarrow \beta_s\}$, $\alpha_i, \beta_i \in \Sigma^{\oplus}$
- (Σ, \mathcal{P}) induces a congruence relation $\equiv_{\mathcal{P}}$ on Σ^{\oplus} by successive string replacement

Problem: (Word problem for commutative semigroups, CSG) *Input:* $(\Sigma, \mathcal{P}, \alpha, \beta)$, where (Σ, \mathcal{P}) is a comm. semigroup presentation, $\alpha, \beta \in \Sigma^{\oplus}$

Output: Decide whether $\alpha \equiv_{\mathcal{P}} \beta$.

• One way to encode counter machines using commutative strings ($e := 2^{2^{|Q|}}$):

$$\mathsf{rep}(q, c_1, c_2, c_3) \coloneqq qA_1^{c_1}B_1^{e-c_1}A_2^{c_2}B_2^{e-c_2}A_3^{c_3}B_3^{e-c_3} \in (Q \cup \{A_1, \dots, B_3\})^{\oplus}$$

• Example: $q \mapsto (BZ_i, q', q'')$ becomes $\{qB_i^e \leftrightarrow q'B_i^e, qA_i \leftrightarrow q''A_i\}$

A commutative semigroup counting to 2^{2^n}

• Problem: The rules and configurations require strings of length $e_n = 2^{2^n}$, n = |Q|

Theorem 4: (Mayr & Meyer [MM82])

There is a commutative semigroup presentation $(\Sigma_n, \mathcal{P}_n)$ of size $\mathcal{O}(n)$ containing $S, F, B_1, \ldots, B_4, C_1, \ldots, C_4 \in \Sigma_n$ such that

 $SC_i \equiv_{\mathcal{P}_n} FC_i B_i^{e_n}$

and these are the only strings equivalent to SC_i containing S or F.

- Solution: Expand or collapse $B_i^{e_n}$ when needed using $(\Sigma_n, \mathcal{P}_n)$
- Example: $\{qB_i^{e_n} \leftrightarrow q'B_i^{e_n}\}$ becomes $\{q \leftrightarrow q_{\downarrow}FC_i, q_{\downarrow}SC_i \leftrightarrow q_{\uparrow}SC_i, q_{\uparrow}FC_i \leftrightarrow q'\}$

From CSG to $\mathsf{IM}_\mathbb{Q}$

• For
$$\gamma = x_1^{d_1} \dots x_n^{d_n} \in \Sigma^\oplus$$
 let X^γ be the monomial $X_1^{d_1} \cdots X_n^{d_n} \in R$

Theorem 5: (Mayr & Meyer [MM82])

For
$$\alpha, \beta \in \Sigma^{\oplus}$$
 we have

$$\alpha \equiv_{\mathcal{P}} \beta \qquad \text{if and only if} \qquad X^{\alpha} - X^{\beta} \in \big\langle X^{\alpha_1} - X^{\beta_1}, \dots, X^{\alpha_s} - X^{\beta_s} \big\rangle.$$

 $\rightsquigarrow \mathsf{Reduction}\ (\Sigma, \mathcal{P}, \alpha, \beta) \mapsto (X^{\alpha} - X^{\beta}, X^{\alpha_1} - X^{\beta_1}, \dots, X^{\alpha_s} - X^{\beta_s})$

- Reduction from EBC shows that $\mathsf{IM}_\mathbb{Q}$ is $\mathrm{EXPSPACE}\text{-hard}$ even in the case that
 - ▷ all polynomials are *binomials* $X^{\alpha} X^{\beta}$ with $\alpha, \beta \neq 0$;
 - $\triangleright\,$ the polynomial to test membership of has the form $g=X_1-X_2$
- Let $I = \langle f_1, \ldots, f_s \rangle$ and G its reduced Gröbner basis
- Criterion (special case): Let $X^{\alpha} \succ X^{\beta}$, then

 $X^{lpha} - X^{eta} \in G$ if and only if $X^{lpha} - X^{eta} \in I$ and $X^{lpha} - X^{eta'} \notin I$ for all $X^{eta'} \prec X^{eta}$

- May assume X_2 is the smallest variable with respect to \prec , then $X_1 X_2$ is in G if and only if $X_1 X_2 \in I$
- $\rightsquigarrow (\mathsf{Trivial}) \ \mathsf{reduction} \ (g, f_1, \dots, f_s) \mapsto (g, f_1, \dots, f_s)$

Further results and outlook

- Consider special classes of ideals with (potentially) better bounds
 - For homogeneous ideals the complexity of ideal membership drops into PSPACE [May97], but the size of Gröbner bases doesn't necessarily improve
- Which parameters of an ideal determine the complexity/size of its Gröbner bases?
 - ▷ The dimension $r = \dim I$ of an ideal $I \subseteq \mathbb{Q}[X_1, \dots, X_n]$ has some influence on the degree of a Gröbner basis of I, loosely described as $2^{n^{\Theta(1)}2^{\Theta(r)}}$ [MR13]
 - ▷ The notion of *regularity* of *I* provides an insight on why Gröbner bases work well in *practice*, despite the Mayr & Meyer ideals [BM93]
- Instead of computing the whole Gröbner basis one might consider approximations
 ▷ If one may restrict to an arbitrary ε-fraction of the input polynomials
 f₁,..., f_s, then computing Gröbner bases is still NP-hard [RS19]

Thank you!

Bibliography i

- [BM93] Dave Bayer and David Mumford. What can be computed in algebraic geometry? 1993. DOI: 10.48550/ARXIV.ALG-GEOM/9304003.
- [Buc06] Bruno Buchberger. "Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal". In: *Journal of Symbolic Computation* 41.3 (2006). Logic, Mathematics and Computer Science: Interactions in honor of Bruno Buchberger (60th birthday), pp. 475–511. ISSN: 0747-7171. DOI: https://doi.org/10.1016/j.jsc.2005.09.007.
- [Dub90] Thomas W. Dubé. "The Structure of Polynomial Ideals and Gröbner Bases".
 In: SIAM Journal on Computing 19.4 (Aug. 1990), pp. 750–773. DOI: 10.1137/0219053.

Bibliography ii

- [FW78] Steven Fortune and James Wyllie. "Parallelism in Random Access Machines". In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing. STOC '78. San Diego, California, USA: Association for Computing Machinery, 1978, pp. 114–118. ISBN: 9781450374378. DOI: 10.1145/800133.804339.
- [Her26] Grete Hermann. "Die Frage der endlich vielen Schritte in der Theorie der Polynomideale". In: *Mathematische Annalen* 95 (1926), pp. 736–788.
- [Huy86] Dung T. Huynh. "A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems". In: Inf. Control. 68 (1986), pp. 196–206.

Bibliography iii

- [KM96] Klaus Kühnle and Ernst W. Mayr. "Exponential Space Computation of Gröbner Bases". In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. ISSAC '96. Zurich, Switzerland: Association for Computing Machinery, 1996, pp. 63–71. ISBN: 0897917960. DOI: 10.1145/236869.236900.
- [May89] Ernst W. Mayr. "Membership in polynomial ideals over Q is exponential space complete". In: STACS 89. Ed. by B. Monien and R. Cori. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 400–406. ISBN: 978-3-540-46098-5.
- [May97] Ernst W. Mayr. "Some Complexity Results for Polynomial Ideals". In: Journal of Complexity 13.3 (1997), pp. 303–325. ISSN: 0885-064X. DOI: 10.1006/jcom.1997.0447.

- [MM82] Ernst W. Mayr and Albert R. Meyer. "The complexity of the word problems for commutative semigroups and polynomial ideals". In: Advances in Mathematics 46.3 (Dec. 1982), pp. 305–329. DOI: 10.1016/0001-8708(82)90048-2.
- [MM84] H. Michael Möller and Ferdinando Mora. "Upper and lower bounds for the degree of Groebner bases". In: EUROSAM 84. Ed. by John Fitch. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 172–183. ISBN: 978-3-540-38893-7.

Bibliography v

- [MR13] Ernst W. Mayr and Stephan Ritscher. "Dimension-dependent bounds for Gröbner bases of polynomial ideals". In: Journal of Symbolic Computation 49 (2013). The International Symposium on Symbolic and Algebraic Computation, pp. 78–94. ISSN: 0747-7171. DOI: doi.org/10.1016/j.jsc.2011.12.018.
- [RS19] David Rolnick and Gwen Spencer. "On the robust hardness of Gröbner basis computation". In: Journal of Pure and Applied Algebra 223.5 (2019), pp. 2080–2100. ISSN: 0022-4049. DOI:

https://doi.org/10.1016/j.jpaa.2018.08.016.