Gröbner Bases and Their Complexity

Master's thesis presentation

Leo Kayser
23.11.2022

Institut für Theoretische Informatik

Gröbner bases provide a vital tool for polynomial ideal computations in computer algebra and its applications.
While useful in practice, its worst-case complexity is located in EXPSPACE and the size of a Gröbner basis may grow double-exponentially.

Polynomial equations are everywhere

Task: Given $f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, find solutions to $f_{1}(x)=\cdots=f_{s}(x)=0$.

- Wide range of applications in areas such as robotics, biochemical reaction networks, computer vision, statistics, ...
- Applications in cryptography require exact solutions (e.g. over finite fields)
- Example: "Automatic" theorem proving

Figure 1: The perpendicular bisectors of a triangle meet in a common point.

The ideal membership problem

- Consider polynomials $f_{1}, \ldots, f_{s} \in R:=\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$, represented as strings, e.g.

$$
f_{1}=3 / 10 \text { X_1^3 - 4/2 X_1X_2 }
$$

- The ideal generated by the f_{i} is $\left\langle f_{1}, \ldots, f_{s}\right\rangle:=\left\{h_{1} f_{1}+\cdots+h_{s} f_{s} \mid h_{i} \in R\right\}$, any such set is called an ideal
- Hilbert's Nullstellensatz:

$$
\exists x \in \mathbb{C}^{n} \text { with } f_{1}(x)=\cdots=f_{s}(x)=0 \quad \text { if and only if } \quad 1 \notin\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

Problem: (Ideal membership problem, $\mathrm{IM}_{\mathbb{Q}}$)
Input: $\left(f, g_{1}, \ldots, g_{s}\right)$ multivariate polynomials from $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$
Output: Decide whether $f \in\left\langle g_{1}, \ldots, g_{n}\right\rangle$.

A first approach to solving ideal membership

- Intuitive approach for deciding $f \in\left\langle g_{1}, \ldots, g_{s}\right\rangle$: "Divide f by the g_{i} and check if the remainder is zero":

$$
f=q_{1} g_{1}+\cdots+q_{s} g_{s}+r, \quad r \text { "small" }(?)
$$

$~$ Need a way to compare polynomials

- A monomial order \prec is a total order on the set of monomials $\left\{X^{\alpha} \mid \alpha \in \mathbb{N}^{n}\right\}$ with
$\triangleright 1 \prec X^{\alpha}$ for all $\alpha \neq 0$
\triangleright if $X^{\alpha} \prec X^{\beta}$, then $X^{\alpha} X^{\gamma} \prec X^{\beta} X^{\gamma}$ for all γ
- Examples: Lexicographic $\prec_{\text {lex }}$, degree-lexicographic $\prec_{\text {deglex }}, \ldots$
- The leading term $\operatorname{LT}(f)$ is the term in f with the largest monomial w.r.t. \prec, for example in the lexicographic order $\left(X_{1} \succ X_{2}\right)$ we have $\operatorname{LT}\left(3 X_{1} X_{2}-X_{2}^{3}\right)=3 X_{1} X_{2}$

The normal form algorithm

- Given f and g_{1}, \ldots, g_{s}, repeat the following steps until $f=0$:
$\triangleright \operatorname{If} \operatorname{LT}\left(g_{i}\right) \mid \operatorname{LT}(f)$ for some i, then subtract a multiple of g_{i} from f (cancelling the leading term)
\triangleright Otherwise move the leading term f to the remainder r.
- This produces a decomposition of the form

$$
f=q_{1} g_{1}+\cdots+q_{s} g_{s}+r, \quad \text { no term of } r \text { divisible by any } \operatorname{LT}\left(g_{i}\right)
$$

- If we always choose the least possible i, then $r=: \operatorname{rem}\left(f ; g_{1}, \ldots, g_{s}\right)$
- Example: $f=X Y^{2}-X, g_{1}=X Y+1, g_{2}=Y^{2}-1$ and $\prec=\prec_{\text {lex }}$, then

$$
\operatorname{rem}\left(f ; g_{1}, g_{2}\right)=-X-Y, \quad \operatorname{rem}\left(f ; g_{2}, g_{1}\right)=0, \quad f=X \cdot g_{2} \in\left\langle g_{1}, g_{2}\right\rangle
$$

The star of the show: Gröbner bases

Theorem 1: (Characterizations of Gröbner bases)
Let I be an ideal and $\left\{g_{1}, \ldots, g_{s}\right\} \subseteq I$. The following are equivalent:
(a) For all $0 \neq f \in I$ there is a g_{i} with $\operatorname{LT}\left(g_{i}\right) \mid \operatorname{LT}(f)$
(b) For all $f \in R$ there is a unique $r \in R$ with $f-r \in I$ such that no $\operatorname{LT}\left(g_{i}\right)$ divides any term in r.
(c) For all $f \in R$ we have $f \in I$ if and only if $\operatorname{rem}\left(f ; g_{1}, \ldots, g_{s}\right)=0$.

- Any such sequence g_{1}, \ldots, g_{s} is called a Gröbner basis of the ideal I
- Buchberger's algorithm computes a Gröbner basis of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ [Buc06]
\sim For Gröbner bases the normal form algorithm solves $\mathrm{IM}_{\mathbb{Q}}$!

Uniqueness of Gröbner bases

- Gröbner bases are far from being unique, for example if G is a Gröbner basis, then so is $G \cup\{f\}$ for any $f \in I$
- A Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is reduced if the leading terms of all g_{i} have coefficient 1 and no term in g_{i} is divisible by any $\operatorname{LT}\left(g_{j}\right)$ for $i \neq j$.

Lemma Every ideal I $\subseteq R$ has a unique reduced Gröbner basis.

Problem: (Reduced Gröbner basis membership problem, GROEBM $\mathbb{Q}_{\mathbb{Q}}$) Input: $\left(g, f_{1}, \ldots, f_{s}\right)$ multivariate polynomials from $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ Output: Decide if g is contained in the reduced Gröbner basis of $\left\langle f_{1}, \ldots, f_{n}\right\rangle$.

Summary of the main complexity results

Theorem 2: (Mayr \& Meyer [MM82], Mayr [May89], Kühnle \& Mayr [KM96])
The problems $I M_{\mathbb{Q}}$ and GROEBM $_{\mathbb{Q}}$ are EXPSPACE-complete. A Gröbner basis of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ can be enumerated using exponential working space.

Theorem 3: (Möller \& Mora [MM84], Huynh [Huy86])
There exists a sequence F_{k} of sets of polynomials of size $\mathcal{O}(k)$ such that the reduced Gröbner basis of $\left\langle F_{k}\right\rangle$ consists of $>2^{2^{k}}$ elements of degree $>2^{2^{k}}$.
\sim Any algorithm which on input $F=\left(f_{1}, \ldots, f_{s}\right)$ computes the reduced Gröbner basis of $I=\langle F\rangle$ with respect to a degree-dominating monomial order uses in the

Deciding ideal membership in exponential space

- Given $f, g_{1}, \ldots, g_{s} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right], d=\max _{i} \operatorname{deg}\left(g_{i}\right)$
- Hermann [Her26]: If $f=h_{1} g_{1}+\cdots+h_{s} g_{s}$, then one can choose the h_{i} to satisfy

$$
\operatorname{deg}\left(h_{i}\right) \leq D:=\operatorname{deg}(f)+(s d)^{2^{n}}, \quad i=1, \ldots, n .
$$

- Consider the $h_{i}=\sum_{|\alpha| \leq D} h_{i, \alpha} X^{\alpha}$ with unknown coefficients $h_{i, \alpha} \in \mathbb{Q}$
(1) The equation $f=h_{1} g_{1}+\cdots+h_{s} g_{s}$ describes a system of linear equations in the $h_{i, \alpha}$ of size $2^{2^{(\mathcal{(})}}$, where $\ell=\operatorname{size}\left(f, g_{1}, \ldots, g_{s}\right)$
(2) One can solve systems of linear equations of size $N \times N$ on a PRAM in parallel time $\mathcal{O}\left(\log ^{2} N\right)$ using $N^{\mathcal{O}(1)}$ processors
(3) Parallel computation thesis [FW78]: If L is accepted by a PRAM in parallel time $t(n)$, then $L \in \operatorname{SPACE}\left(t(n)^{2}\right)$
$\sim(1)+(2)+(3)$ yield an exponential space algorithm for $\mathrm{IM}_{\mathbb{Q}}$

Enumerating a Gröbner basis in exponential work space

- Consider $f_{1}, \ldots, f_{s} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right], d=\max _{i} \operatorname{deg}\left(g_{i}\right)$
- Dubé [Dub90]: Any element g of the reduced Gröbner basis of I satisfies

$$
\operatorname{deg}(g) \leq \tilde{D}:=2 \cdot\left(\frac{1}{2} d^{2}+d\right)^{2^{n-1}}
$$

(1) Idea: Enumerate monomials m of degree $\leq \tilde{D}$ and check if m is leading term of an element of the reduced Gröbner basis G of $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$

- Define the normal form $\mathrm{NF}_{I}(f):=\operatorname{rem}(f ; G)$ for $f \in R$
(2) Criterion: $m=\operatorname{LT}(g)$ for an element $g \in G$ if and only if $m \neq \mathrm{NF}_{l}(m)$ but $\mathrm{NF}_{l}\left(m^{\prime}\right)=m^{\prime}$ for all $m^{\prime} \mid m$ (strictly); in that case $g=m-\mathrm{NF}_{l}(m)$
(3) There is an exponential work space algorithm calculating $\mathrm{NF}_{I}(f)$
$\sim(1)+(2)+(3)$ enumerate the reduced Gröbner basis in exponential work space

The path to EXPSPACE-hardness

Figure 2: The chain of \leq_{m}^{P}-reductions proving EXPSPACE-hardness of $I M_{\mathbb{Q}}$ and $G R O E B M_{\mathbb{Q}}$.

The starting point: Exponentially bounded counter machines

- A k-counter machine $\left(Q, \delta, q_{0}, q_{\mathrm{a}}\right)$ consists of a finite set of states $Q \ni q_{0}, q_{\mathrm{a}}$ and $\delta: Q \rightarrow\left(\left\{\mathrm{INC}_{1}, \ldots, \mathrm{INC}_{k}, \mathrm{DEC}_{1}, \ldots, \mathrm{DEC}_{k}\right\} \times Q\right) \cup\left(\left\{\mathrm{BZ}_{1}, \ldots, \mathrm{BZ}_{k}\right\} \times Q \times Q\right)$
\triangleright A configuration is a tuple $\left(q, c_{1}, \ldots, c_{k}\right) \in Q \times \mathbb{Z}^{k}$
\triangleright Instructions $\mathrm{INC}_{i}, \mathrm{DEC}_{i}$ increase/decrease the value of counter $c_{i} \in \mathbb{Z}$ by 1
$\triangleright \mathrm{BZ}_{i}$ branches the program flow depending on the counter value $c_{i} \stackrel{?}{=} 0$
- A counter machine C accepts 0 if $\left(q_{0}, 0, \ldots, 0\right) \vdash^{*}{ }_{C}\left(q_{\mathrm{a}}, 0, \ldots, 0\right)$
- Its computation is bounded by e if $0 \leq c_{i} \leq e$ for all i in all steps
- The following language is EXPSPACE-complete:

Problem: (Exponentially bounded 3-counter machines, EBC)
Input: $C=\left(Q, \delta, q_{0}, q_{\mathrm{a}}\right)$, a 3-counter-machine
Output: Decide whether C accepts 0 and has computation bounded by $2^{2^{|Q|}}$.

From EBC to CSG

- A commutative semigroup presentation (Σ, \mathcal{P}) consists of
\triangleright a finite set Σ of "commuting" letters; Σ^{\oplus} is the set of commutative words
\triangleright a set of replacement rules $\mathcal{P}=\left\{\alpha_{1} \leftrightarrow \beta_{1}, \ldots, \alpha_{s} \leftrightarrow \beta_{s}\right\}, \alpha_{i}, \beta_{i} \in \Sigma^{\oplus}$
- (Σ, \mathcal{P}) induces a congruence relation $\equiv \mathcal{P}$ on Σ^{\oplus} by successive string replacement

Problem: (Word problem for commutative semigroups, CSG)
Input: $(\Sigma, \mathcal{P}, \alpha, \beta)$, where (Σ, \mathcal{P}) is a comm. semigroup presentation, $\alpha, \beta \in \Sigma^{\oplus}$ Output: Decide whether $\alpha \equiv_{\mathcal{P}} \beta$.

- One way to encode counter machines using commutative strings $\left(e:=2^{2^{|Q|}}\right)$:

$$
\operatorname{rep}\left(q, c_{1}, c_{2}, c_{3}\right):=q A_{1}^{c_{1}} B_{1}^{e-c_{1}} A_{2}^{c_{2}} B_{2}^{e-c_{2}} A_{3}^{c_{3}} B_{3}^{e-c_{3}} \in\left(Q \cup\left\{A_{1}, \ldots, B_{3}\right\}\right)^{\oplus}
$$

- Example: $q \mapsto\left(\mathrm{BZ}_{i}, q^{\prime}, q^{\prime \prime}\right)$ becomes $\left\{q B_{i}^{e} \leftrightarrow q^{\prime} B_{i}^{e}, q A_{i} \leftrightarrow q^{\prime \prime} A_{i}\right\}$

A commutative semigroup counting to $2^{2^{n}}$

- Problem: The rules and configurations require strings of length $e_{n}=2^{2^{n}}, n=|Q|$

Theorem 4: (Mayr \& Meyer [MM82])
There is a commutative semigroup presentation $\left(\Sigma_{n}, \mathcal{P}_{n}\right)$ of size $\mathcal{O}(n)$ containing $S, F, B_{1}, \ldots, B_{4}, C_{1}, \ldots, C_{4} \in \Sigma_{n}$ such that

$$
S C_{i} \equiv \mathcal{P}_{n} F C_{i} B_{i}^{e_{n}}
$$

and these are the only strings equivalent to $S C_{i}$ containing S or F.

- Solution: Expand or collapse $B_{i}^{e_{n}}$ when needed using ($\Sigma_{n}, \mathcal{P}_{n}$)
- Example: $\left\{q B_{i}^{e_{n}} \leftrightarrow q^{\prime} B_{i}^{e_{n}}\right\}$ becomes $\left\{q \leftrightarrow q_{\downarrow} F C_{i}, q_{\downarrow} S C_{i} \leftrightarrow q_{\uparrow} S C_{i}, q_{\uparrow} F C_{i} \leftrightarrow q^{\prime}\right\}$

From CSG to $\mathrm{IM}_{\mathbb{Q}}$

- Let $\left(\Sigma=\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{P}=\left\{\alpha_{1} \leftrightarrow \beta_{1}, \ldots, \alpha_{s} \leftrightarrow \beta_{s}\right\}\right)$ be a commutative semigroup presentation
- For $\gamma=x_{1}^{d_{1}} \ldots x_{n}^{d_{n}} \in \Sigma^{\oplus}$ let X^{γ} be the monomial $X_{1}^{d_{1}} \ldots X_{n}^{d_{n}} \in R$

Theorem 5: (Mayr \& Meyer [MM82])
For $\alpha, \beta \in \Sigma^{\oplus}$ we have

$$
\alpha \equiv \mathcal{P} \beta \quad \text { if and only if } \quad X^{\alpha}-X^{\beta} \in\left\langle X^{\alpha_{1}}-X^{\beta_{1}}, \ldots, X^{\alpha_{s}}-X^{\beta_{s}}\right\rangle .
$$

$\sim \operatorname{Reduction}(\Sigma, \mathcal{P}, \alpha, \beta) \mapsto\left(X^{\alpha}-X^{\beta}, X^{\alpha_{1}}-X^{\beta_{1}}, \ldots, X^{\alpha_{s}}-X^{\beta_{s}}\right)$

From $\mathrm{IM}_{\mathbb{Q}}$ to $\mathrm{GROEBM}_{\mathbb{Q}}$

- Reduction from EBC shows that $\mathrm{IM}_{\mathbb{Q}}$ is EXPSPACE-hard even in the case that
\triangleright all polynomials are binomials $X^{\alpha}-X^{\beta}$ with $\alpha, \beta \neq 0$;
\triangleright the polynomial to test membership of has the form $g=X_{1}-X_{2}$
- Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and G its reduced Gröbner basis
- Criterion (special case): Let $X^{\alpha} \succ X^{\beta}$, then

$$
X^{\alpha}-X^{\beta} \in G \quad \text { if and only if } \quad X^{\alpha}-X^{\beta} \in I \text { and } X^{\alpha}-X^{\beta^{\prime}} \notin I \text { for all } X^{\beta^{\prime}} \prec X^{\beta}
$$

- May assume X_{2} is the smallest variable with respect to \prec, then $X_{1}-X_{2}$ is in G if and only if $X_{1}-X_{2} \in I$
$\sim($ Trivial $)$ reduction $\left(g, f_{1}, \ldots, f_{s}\right) \mapsto\left(g, f_{1}, \ldots, f_{s}\right)$

Further results and outlook

- Consider special classes of ideals with (potentially) better bounds
\triangleright For homogeneous ideals the complexity of ideal membership drops into PSPACE [May97], but the size of Gröbner bases doesn't necessarily improve
- Which parameters of an ideal determine the complexity/size of its Gröbner bases?
\triangleright The dimension $r=\operatorname{dim} I$ of an ideal $I \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ has some influence on the degree of a Gröbner basis of I, loosely described as $2^{n^{\ominus(1)} 2^{\Theta(r)}}$ [MR13]
\triangleright The notion of regularity of I provides an insight on why Gröbner bases work well in practice, despite the Mayr \& Meyer ideals [BM93]
- Instead of computing the whole Gröbner basis one might consider approximations
\triangleright If one may restrict to an arbitrary ε-fraction of the input polynomials f_{1}, \ldots, f_{s}, then computing Gröbner bases is still NP-hard [RS19]

Thank you!

Bibliography i

[BM93] Dave Bayer and David Mumford. What can be computed in algebraic geometry? 1993. DOI: 10.48550/ARXIV.ALG-GEOM/9304003.
[Buc06] Bruno Buchberger. "Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal". In: Journal of Symbolic Computation 41.3 (2006). Logic, Mathematics and Computer Science: Interactions in honor of Bruno Buchberger (60th birthday), pp. 475-511. ISSN: 0747-7171. DOI: https://doi.org/10.1016/j.jsc.2005.09.007.
[Dub90] Thomas W. Dubé. "The Structure of Polynomial Ideals and Gröbner Bases". In: SIAM Journal on Computing 19.4 (Aug. 1990), pp. 750-773. DOI: 10.1137/0219053.

Bibliography it

[FW78] Steven Fortune and James Wyllie. "Parallelism in Random Access Machines". In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing. STOC '78. San Diego, California, USA: Association for Computing Machinery, 1978, pp. 114-118. ISBN: 9781450374378. DOI: 10.1145/800133.804339.
[Her26] Grete Hermann. "Die Frage der endlich vielen Schritte in der Theorie der Polynomideale". In: Mathematische Annalen 95 (1926), pp. 736-788.
[Huy86] Dung T. Huynh. "A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems". In: Inf. Control. 68 (1986), pp. 196-206.

Bibliography iif

[KM96] Klaus Kühnle and Ernst W. Mayr. "Exponential Space Computation of Gröbner Bases". In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. ISSAC '96. Zurich, Switzerland: Association for Computing Machinery, 1996, pp. 63-71. ISBN: 0897917960. DOI: $10.1145 / 236869.236900$.
[May89] Ernst W. Mayr. "Membership in polynomial ideals over Q is exponential space complete". In: STACS 89. Ed. by B. Monien and R. Cori. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 400-406. ISBN: 978-3-540-46098-5.
[May97] Ernst W. Mayr. "Some Complexity Results for Polynomial Ideals". In: Journal of Complexity 13.3 (1997), pp. 303-325. ISSN: 0885-064X. DOI: 10.1006/jcom.1997.0447.

Bibliography iv

[MM82] Ernst W. Mayr and Albert R. Meyer. "The complexity of the word problems for commutative semigroups and polynomial ideals". In: Advances in Mathematics 46.3 (Dec. 1982), pp. 305-329. Doi: 10.1016/0001-8708(82) 90048-2.
[MM84] H. Michael Möller and Ferdinando Mora. "Upper and lower bounds for the degree of Groebner bases". In: EUROSAM 84. Ed. by John Fitch. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 172-183. ISBN: 978-3-540-38893-7.

Bibliography

[MR13] Ernst W. Mayr and Stephan Ritscher. "Dimension-dependent bounds for Gröbner bases of polynomial ideals". In: Journal of Symbolic Computation 49 (2013). The International Symposium on Symbolic and Algebraic Computation, pp. 78-94. ISSN: 0747-7171. DOI: doi.org/10.1016/j.jsc.2011.12.018.
[RS19] David Rolnick and Gwen Spencer. "On the robust hardness of Gröbner basis computation". In: Journal of Pure and Applied Algebra 223.5 (2019), pp. 2080-2100. ISSN: 0022-4049. DOI:
https://doi.org/10.1016/j.jpaa.2018.08.016.

