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Gröbner bases provide a vital tool for polynomial ideal

computations in computer algebra and its applications.

While useful in practice, its worst-case complexity is

located in EXPSPACE and the size of a Gröbner basis

may grow double-exponentially.



Polynomial equations are everywhere

Task: Given f1, . . . , fs ∈ C[X1, . . . ,Xn], find solutions to f1(x) = · · · = fs(x) = 0.

• Wide range of applications in areas such as robotics, biochemical reaction

networks, computer vision, statistics, . . .

• Applications in cryptography require exact solutions (e.g. over finite fields)

• Example: “Automatic” theorem proving

Figure 1: The perpendicular bisectors of a triangle meet in a common point.
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The ideal membership problem

• Consider polynomials f1, . . . , fs ∈ R := Q[X1, . . . ,Xn], represented as strings, e.g.

f1 = 3/10 X 1^3 - 4/2 X 1X 2

• The ideal generated by the fi is ⟨f1, . . . , fs⟩ := { h1f1 + · · ·+ hs fs | hi ∈ R }, any
such set is called an ideal

• Hilbert’s Nullstellensatz:

∃x ∈ Cn with f1(x) = · · · = fs(x) = 0 if and only if 1 /∈ ⟨f1, . . . , fs⟩

Problem: (Ideal membership problem, IMQ)

Input: (f , g1, . . . , gs) multivariate polynomials from Q[X1, . . . ,Xn]

Output: Decide whether f ∈ ⟨g1, . . . , gn⟩.
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A first approach to solving ideal membership

• Intuitive approach for deciding f ∈ ⟨g1, . . . , gs⟩: “Divide f by the gi and check if

the remainder is zero”:

f = q1g1 + · · ·+ qsgs + r , r “small”(?)

; Need a way to compare polynomials

• A monomial order ≺ is a total order on the set of monomials { Xα | α ∈ Nn } with

▷ 1 ≺ Xα for all α ̸= 0

▷ if Xα ≺ X β, then XαX γ ≺ X βX γ for all γ

• Examples: Lexicographic ≺lex, degree-lexicographic ≺deglex, . . .

• The leading term lt(f ) is the term in f with the largest monomial w.r.t. ≺, for

example in the lexicographic order (X1 ≻ X2) we have lt(3X1X2 − X 3
2 ) = 3X1X2
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The normal form algorithm

• Given f and g1, . . . , gs , repeat the following steps until f = 0:

▷ If lt(gi ) | lt(f ) for some i , then subtract a multiple of gi from f (cancelling

the leading term)

▷ Otherwise move the leading term f to the remainder r .

• This produces a decomposition of the form

f = q1g1 + · · ·+ qsgs + r , no term of r divisible by any lt(gi )

• If we always choose the least possible i , then r =: rem(f ; g1, . . . , gs)

• Example: f = XY 2 − X , g1 = XY + 1, g2 = Y 2 − 1 and ≺ = ≺lex, then

rem(f ; g1, g2) = −X − Y , rem(f ; g2, g1) = 0, f = X · g2 ∈ ⟨g1, g2⟩
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The star of the show: Gröbner bases

Theorem 1: (Characterizations of Gröbner bases)

Let I be an ideal and {g1, . . . , gs} ⊆ I . The following are equivalent:

(a) For all 0 ̸= f ∈ I there is a gi with lt(gi ) | lt(f )
(b) For all f ∈ R there is a unique r ∈ R with f − r ∈ I such that no lt(gi )

divides any term in r .

(c) For all f ∈ R we have f ∈ I if and only if rem(f ; g1, . . . , gs) = 0.

• Any such sequence g1, . . . , gs is called a Gröbner basis of the ideal I

• Buchberger’s algorithm computes a Gröbner basis of ⟨f1, . . . , fs⟩ [Buc06]
; For Gröbner bases the normal form algorithm solves IMQ!
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Uniqueness of Gröbner bases

• Gröbner bases are far from being unique, for example if G is a Gröbner basis, then

so is G ∪ {f } for any f ∈ I

• A Gröbner basis G = {g1, . . . , gs} is reduced if the leading terms of all gi have

coefficient 1 and no term in gi is divisible by any lt(gj) for i ̸= j .

Lemma Every ideal I ⊆ R has a unique reduced Gröbner basis.

Problem: (Reduced Gröbner basis membership problem, GROEBMQ)

Input: (g , f1, . . . , fs) multivariate polynomials from Q[X1, . . . ,Xn]

Output: Decide if g is contained in the reduced Gröbner basis of ⟨f1, . . . , fn⟩.
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Summary of the main complexity results

Theorem 2: (Mayr & Meyer [MM82], Mayr [May89], Kühnle & Mayr [KM96])

The problems IMQ and GROEBMQ are EXPSPACE-complete. A Gröbner basis

of ⟨f1, . . . , fs⟩ can be enumerated using exponential working space.

Theorem 3: (Möller & Mora [MM84], Huynh [Huy86])

There exists a sequence Fk of sets of polynomials of size O(k) such that the

reduced Gröbner basis of ⟨Fk⟩ consists of > 22
k
elements of degree > 22

k
.

; Any algorithm which on input F = (f1, . . . , fs) computes the reduced Gröbner

basis of I = ⟨F ⟩ with respect to a degree-dominating monomial order uses in the

worst case at least space 2Ω(size(F )) and time 22
Ω(size(F ))

.
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Deciding ideal membership in exponential space

• Given f , g1, . . . , gs ∈ Q[X1, . . . ,Xn], d = maxi deg(gi )

• Hermann [Her26]: If f = h1g1+ · · ·+ hsgs , then one can choose the hi to satisfy

deg(hi ) ≤ D := deg(f ) + (sd)2
n
, i = 1, . . . , n.

• Consider the hi =
∑

|α|≤D hi ,αX
α with unknown coefficients hi ,α ∈ Q

(1) The equation f = h1g1 + · · ·+ hsgs describes a system of linear equations in the

hi ,α of size 22
O(ℓ)

, where ℓ = size(f , g1, . . . , gs)

(2) One can solve systems of linear equations of size N × N on a PRAM in parallel

time O(log2N) using NO(1) processors

(3) Parallel computation thesis [FW78]: If L is accepted by a PRAM in parallel

time t(n), then L ∈ SPACE(t(n)2)

; (1)+(2)+(3) yield an exponential space algorithm for IMQ
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Enumerating a Gröbner basis in exponential work space

• Consider f1, . . . , fs ∈ Q[X1, . . . ,Xn], d = maxi deg(gi )

• Dubé [Dub90]: Any element g of the reduced Gröbner basis of I satisfies

deg(g) ≤ D̃ := 2 ·
(
1
2d

2 + d
)2n−1

(1) Idea: Enumerate monomials m of degree ≤ D̃ and check if m is leading term of

an element of the reduced Gröbner basis G of I = ⟨f1, . . . , fs⟩
• Define the normal form NFI (f ) := rem(f ;G ) for f ∈ R

(2) Criterion: m = lt(g) for an element g ∈ G if and only if m ̸= NFI (m) but

NFI (m
′) = m′ for all m′ | m (strictly); in that case g = m − NFI (m)

(3) There is an exponential work space algorithm calculating NFI (f )

; (1)+(2)+(3) enumerate the reduced Gröbner basis in exponential work space
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The path to EXPSPACE-hardness

Figure 2: The chain of ≤P
m-reductions proving EXPSPACE-hardness of IMQ and GROEBMQ.
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The starting point: Exponentially bounded counter machines

• A k-counter machine (Q, δ, q0, qa) consists of a finite set of states Q ∋ q0, qa and

δ : Q → ({INC1, . . . , INCk , DEC1, . . . , DECk} × Q) ∪ ({BZ1, . . . , BZk} × Q × Q)

▷ A configuration is a tuple (q, c1, . . . , ck) ∈ Q × Zk

▷ Instructions INCi , DECi increase/decrease the value of counter ci ∈ Z by 1

▷ BZi branches the program flow depending on the counter value ci
?
= 0

• A counter machine C accepts 0 if (q0, 0, . . . , 0) ⊢∗
C (qa, 0, . . . , 0)

• Its computation is bounded by e if 0 ≤ ci ≤ e for all i in all steps

• The following language is EXPSPACE-complete:

Problem: (Exponentially bounded 3-counter machines, EBC)

Input: C = (Q, δ, q0, qa), a 3-counter-machine

Output: Decide whether C accepts 0 and has computation bounded by 22
|Q|
.
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From EBC to CSG

• A commutative semigroup presentation (Σ,P) consists of

▷ a finite set Σ of “commuting” letters; Σ⊕ is the set of commutative words

▷ a set of replacement rules P = {α1 ↔ β1, . . . , αs ↔ βs}, αi , βi ∈ Σ⊕

• (Σ,P) induces a congruence relation ≡P on Σ⊕ by successive string replacement

Problem: (Word problem for commutative semigroups, CSG)

Input: (Σ,P, α, β), where (Σ,P) is a comm. semigroup presentation, α, β ∈ Σ⊕

Output: Decide whether α ≡P β.

• One way to encode counter machines using commutative strings (e := 22
|Q|
):

rep(q, c1, c2, c3) := qAc1
1 Be−c1

1 Ac2
2 Be−c2

2 Ac3
3 Be−c3

3 ∈ (Q ∪ {A1, . . . ,B3})⊕

• Example: q 7→ (BZi , q
′, q′′) becomes {qBe

i ↔ q′Be
i , qAi ↔ q′′Ai}
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A commutative semigroup counting to 22
n

• Problem: The rules and configurations require strings of length en = 22
n
, n = |Q|

Theorem 4: (Mayr & Meyer [MM82])

There is a commutative semigroup presentation (Σn,Pn) of size O(n) containing

S ,F ,B1, . . . ,B4,C1, . . . ,C4 ∈ Σn such that

SCi ≡Pn FCiB
en
i

and these are the only strings equivalent to SCi containing S or F .

• Solution: Expand or collapse Ben
i when needed using (Σn,Pn)

• Example: {qBen
i ↔ q′Ben

i } becomes {q ↔ q↓FCi , q↓SCi ↔ q↑SCi , q↑FCi ↔ q′}
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From CSG to IMQ

• Let (Σ = {x1, . . . , xn},P = {α1 ↔ β1, . . . , αs ↔ βs}) be a commutative

semigroup presentation

• For γ = xd11 . . . xdnn ∈ Σ⊕ let X γ be the monomial X d1
1 · · ·X dn

n ∈ R

Theorem 5: (Mayr & Meyer [MM82])

For α, β ∈ Σ⊕ we have

α ≡P β if and only if Xα − X β ∈
〈
Xα1 − X β1 , . . . ,Xαs − X βs

〉
.

; Reduction (Σ,P, α, β) 7→ (Xα − X β,Xα1 − X β1 , . . . ,Xαs − X βs )
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From IMQ to GROEBMQ

• Reduction from EBC shows that IMQ is EXPSPACE-hard even in the case that

▷ all polynomials are binomials Xα − X β with α, β ̸= 0;

▷ the polynomial to test membership of has the form g = X1 − X2

• Let I = ⟨f1, . . . , fs⟩ and G its reduced Gröbner basis

• Criterion (special case): Let Xα ≻ X β, then

Xα − X β ∈ G if and only if Xα − X β ∈ I and Xα − X β′
/∈ I for all X β′ ≺ X β

• May assume X2 is the smallest variable with respect to ≺, then X1 − X2 is in G if

and only if X1 − X2 ∈ I

; (Trivial) reduction (g , f1, . . . , fs) 7→ (g , f1, . . . , fs)
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Further results and outlook

• Consider special classes of ideals with (potentially) better bounds

▷ For homogeneous ideals the complexity of ideal membership drops into

PSPACE [May97], but the size of Gröbner bases doesn’t necessarily improve

• Which parameters of an ideal determine the complexity/size of its Gröbner bases?

▷ The dimension r = dim I of an ideal I ⊆ Q[X1, . . . ,Xn] has some influence on

the degree of a Gröbner basis of I , loosely described as 2n
Θ(1)2Θ(r)

[MR13]

▷ The notion of regularity of I provides an insight on why Gröbner bases work

well in practice, despite the Mayr & Meyer ideals [BM93]

• Instead of computing the whole Gröbner basis one might consider approximations

▷ If one may restrict to an arbitrary ε-fraction of the input polynomials

f1, . . . , fs , then computing Gröbner bases is still NP-hard [RS19]
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Thank you!
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[KM96] Klaus Kühnle and Ernst W. Mayr. “Exponential Space Computation of
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