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Grobner bases provide a vital tool for polynomial ideal
computations in computer algebra and its applications.
While useful in practice, its worst-case complexity is
located in EXPSPACE and the size of a Grobner basis

may grow double-exponentially.




Polynomial equations are everywhere

Task: Given fi,...,fs € C[X1,...,X,], find solutions to fi(x) = --- = f;(x) = 0.

e Wide range of applications in areas such as robotics, biochemical reaction
networks, computer vision, statistics, ...

e Applications in cryptography require exact solutions (e.g. over finite fields)
e Example: “Automatic” theorem proving
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Figure 1: The perpendicular bisectors of a triangle meet in a common point.
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The ideal membership problem

e Consider polynomials f1,...,f € R == Q[Xi, ..., X,], represented as strings, e.g.
fi=3/10 X_1°3 - 4/2 X_1X.2

e The ideal generated by the fiis (fi,...,fs) ={ hfi +---+ hsfs | h € R}, any
such set is called an ideal
e Hilbert’s Nullstellensatz:

dx € C" with fi(x) =---=f(x) =0 if and only if 1¢(f,....1s)

Problem: (Ideal membership problem, IMq)

Input: (f,g1,...,8s) multivariate polynomials from Q[Xi, ..., Xj]
Output: Decide whether € (gi,...,gn).
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A first approach to solving ideal membership

e Intuitive approach for deciding f € (g1,...,8s): "Divide f by the g; and check if
the remainder is zero":

f=qg1+ - +9sg +r, r “small”(7)

~> Need a way to compare polynomials
e A monomial order < is a total order on the set of monomials { X¢ | @ € N” } with
> 1< X*foralla#0
> if X < XP, then X“X7 < XPX7 for all «
e Examples: Lexicographic <|e,, degree-lexicographic <geglex. - - -
e The leading term LT(f) is the term in f with the largest monomial w.r.t. <, for
example in the lexicographic order (X; > X3) we have LT(3X1 X, — X23) =3X1 X
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The normal form algorithm

e Given f and gi,...,gs, repeat the following steps until f = 0:

> If LT(g;) | LT(f) for some i, then subtract a multiple of g; from f (cancelling
the leading term)
> Otherwise move the leading term f to the remainder r.

e This produces a decomposition of the form
f=qg1+ - +qsg +r, no term of r divisible by any LT(g;)

e If we always choose the least possible 7, then r =: rem(f; g1,...,gs)
e Example: f = XY? - X, g=XY+1 o= Y2_1and <= ~lex, then

rem(f;g1,8)=—-X—-Y, rem(f;g,81) =0, f=X-g € (g, )
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The star of the show: Grobner bases

Theorem 1: (Characterizations of Grobner bases)
Let / be an ideal and {g1,...,8s} C /. The following are equivalent:
(a) For all 0 # f € [ there is a g; with LT(g;) | LT(f)

(b) For all f € R there is a unique r € R with f — r € | such that no LT(g;)
divides any term in r.

(c) For all f € R we have f € [ if and only if rem(f; g1,...,8s) = 0.

e Any such sequence gi, ..., &s is called a Grobner basis of the ideal /

e Buchberger’s algorithm computes a Grobner basis of (fi, ..., fs) [Buc06]
~ For Grobner bases the normal form algorithm solves IMg!
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Uniqueness of Grobner bases

e Grobner bases are far from being unique, for example if G is a Grobner basis, then

sois GU{f} forany f €/
e A Grobner basis G = {g1,...,8s} is reduced if the leading terms of all g; have

coefficient 1 and no term in g; is divisible by any LT(g;) for i # j.

Lemma Every ideal | C R has a unique reduced Grobner basis.

Problem: (Reduced Grobner basis membership problem, GROEBMg)

Input: (g, f1,...,f) multivariate polynomials from Q[Xi, ..., Xy]
Output: Decide if g is contained in the reduced Grobner basis of (fi,. .., f).
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Summary of the main complexity results

Theorem 2: (Mayr & Meyer [MM82], Mayr [May89], Kiihnle & Mayr [KM96])

The problems IMg and GROEBMg are EXPSPACE-complete. A Grobner basis
of (f1,...,fs) can be enumerated using exponential working space.

Theorem 3: (Moller & Mora [MM84], Huynh [Huy86])

There exists a sequence Fy of sets of polynomials of size O(k) such that the
reduced Grobner basis of (Fy) consists of > 22" elements of degree > 22,

~> Any algorithm which on input F = (f1,...,fs) computes the reduced Grobner

basis of / = (F) with respect to a degree-dominating monomial order uses in the
worst case at least space 22sze(F)) and time p20ER).
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Deciding ideal membership in exponential space

e Given f,g1,...,8s € Q[X1,...,X;], d = max; deg(g;)
e Hermann [Her26]: If f = higy + - - - + hsgs, then one can choose the h; to satisfy

deg(h;) < D :=deg(f) + (sd)*, i=1,...,n.

e Consider the h; = ZIa\SD hi o X with unknown coefficients h; , € Q

(1) The equation f = hyg1 + - - - + hsgs describes a system of linear equations in the
hi o of size 2299 \vhere ¢ = size(f,g1,...,8s)

(2) One can solve systems of linear equations of size N x N on a PRAM in parallel
time O(log? N) using N°1) processors

(3) Parallel computation thesis [FW78]: If L is accepted by a PRAM in parallel
time t(n), then L € SPACE(t(n)?)

~ (1)4(2)+(3) yield an exponential space algorithm for IMg
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Enumerating a Grobner basis in exponential work space

e Consider f1,...,f; € Q[Xq,...,X,], d = max; deg(g;)
e Dubé [Dub90]: Any element g of the reduced Grobner basis of / satisfies

deg(g) < D=2 (1d?+ d)zn-l

(1) Idea: Enumerate monomials m of degree < D and check if m is leading term of
an element of the reduced Grobner basis G of | = (fi,...,fs)
e Define the normal form NF(f) = rem(f; G) for f € R
(2) Criterion: m = Lr(g) for an element g € G if and only if m # NF;(m) but
NF;(m') = m’ for all m" | m (strictly); in that case g = m — NF;(m)
(3) There is an exponential work space algorithm calculating NF,(f)
~> (1)4+(2)4(3) enumerate the reduced Grobner basis in exponential work space
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The path to EXPSPACE-hardness

EXPSPACE

Generic problem

EBC

Exp. bounded
counter machines

CSG

Commutative semi-
group word problem

IMg

Ideal membership
problem

GROEBMg

Red. Grobner basis
membership

Figure 2: The chain of <F -reductions proving EXPSPACE-hardness of IMg and GROEBMg,.
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The starting point: Exponentially bounded counter machines

e A k-counter machine (Q, d, qo, ga) consists of a finite set of states Q > qo, g and
§: Q — ({INCy, ..., INCy,DECy,...,DECk} x Q) U ({BZ1,...,BZ} x Q x Q)

> A configuration is a tuple (g, c1,...,ck) € Q x ZX
> Instructions INC;, DEC; increase/decrease the value of counter ¢; € Z by 1
> BZ; branches the program flow depending on the counter value ¢; 2o

e A counter machine C accepts 0 if (qo,0,...,0) ¢ (ga,0,...,0)

e lts computation is bounded by e if 0 < ¢; < e for all / in all steps

e The following language is EXPSPACE-complete:

Problem: (Exponentially bounded 3-counter machines, EBC)

Input: C =(Q, 6, qo,qa), a 3-counter-machine
Output: Decide whether C accepts 0 and has computation bounded by 2219
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From EBC to CSG

e A commutative semigroup presentation (X, P) consists of
> a finite set ¥ of “commuting” letters; X% is the set of commutative words
> a set of replacement rules P = {a1 <> f1,...,as <> Bs}, a;, Bi € 9

e (X,P) induces a congruence relation =p on X% by successive string replacement

Problem: (Word problem for commutative semigroups, CSG)

Input: (X, P, ,3), where (X, P) is a comm. semigroup presentation, «, 3 € %
Output: Decide whether o =p S.

e One way to encode counter machines using commutative strings (e = 22‘Q‘):
rep(q, c1, &2, ¢3) = gAT' By TAZBS ?ATB; ¢ € (QU{Ay,..., B3})®

e Example: ¢ — (BZ;, q’,q") becomes {¢Bf <+ ¢'Bf, qA; «+» q"A;}
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A commutative semigroup counting to 2

e Problem: The rules and configurations require strings of length e, = 22", n = |Q|

Theorem 4: (Mayr & Meyer [MM82])

There is a commutative semigroup presentation (X,, P,) of size O(n) containing
S,F,By,...,By, Gy, ..., C4 € X, such that

SC,' Epn FC,'B,-e"

and these are the only strings equivalent to SC; containing S or F.

e Solution: Expand or collapse B" when needed using (X,,P5)
e Example: {gB" <> ¢'B"} becomes {q + q,FC;, q,SC; <+ ¢15C;, ;FC; < q'}
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From CSG to IMg

o Let (X ={x1,...,xa},P={c1 ¢ P1,...,as <> s}) be a commutative
semigroup presentation
o Fory=x® .  x% c 5% let X7 be the monomial X ... X% ¢ R

Theorem 5: (Mayr & Meyer [MM82])
For a, B € X% we have
a=p B ifandonlyif  X*—X7e (XX . X% X5
~» Reduction (X, P,a, ) — (X — XP X1 — XA . X — XPs)
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From IMgp to GROEBMg

e Reduction from EBC shows that IMg is EXPSPACE-hard even in the case that
> all polynomials are binomials X® — X with a, 8 # 0;
> the polynomial to test membership of has the form g = X1 — X5

Let | = (f1,...,fs) and G its reduced Grobner basis

Criterion (special case): Let X = X?, then

X*— X% e G ifandonlyif X*—X’eland X*— X ¢ forall X* < x#

May assume X5 is the smallest variable with respect to <, then X; — X5 isin G if
and only if Xy — X5 €/
~> (Trivial) reduction (g, f,...,f) — (g,f,...,fs)

15/16



Further results and outlook

e Consider special classes of ideals with (potentially) better bounds

> For homogeneous ideals the complexity of ideal membership drops into
PSPACE [May97], but the size of Grobner bases doesn’t necessarily improve
e Which parameters of an ideal determine the complexity/size of its Grobner bases?
> The dimension r = dim [ of an ideal | C Q[Xj, ..., X,] has some influence on
the degree of a Grobner basis of /, loosely described as 27°"2°" [MR13]
> The notion of regularity of | provides an insight on why Grobner bases work
well in practice, despite the Mayr & Meyer ideals [BM93]
e Instead of computing the whole Grobner basis one might consider approximations

> If one may restrict to an arbitrary e-fraction of the input polynomials

fi,...,fs, then computing Grobner bases is still NP-hard [RS19]
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Thank youl!
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