Hilbert Functions of Chopped Ideals

Networks and Optimization seminar, CWI Amsterdam

Leonie Kayser (feat. Fulvio Gesmundo \& Simon Telen)
leokayser.github.io
March 25, 2024
$2^{\text {nd }}$ year PhD student at MPI Mis w/ Simon Telen
令 Studied both math and CS at LUH (Hannover)

- Algebra in all flavors, Algebraic Geometry, Tensor Decomposition, Algorithms, Complexity Theory, ...
Currently working on several projects in projective algebraic geometry, ask me about it!

Me, Fulvio \& Simon
\& Passionate about teaching and science outreach
(28) External PhD representative and a maintainer of MathRepo

少 Sing in Chorlektiv Leipzig, active in Queerseitig uni group, also board games!
Fun fact: I can beat the video game Celeste in $<40 \mathrm{~min}$

There's geometry hidden behind eigenvalue methods for symmetric tensor decomposition!

(symmetric) tensor decomposition

What is a tensor?

A tensor...
$\triangleright \ldots$ is an object that transforms like a tensor
$\triangleright \ldots$ is an element of a tensor product of vector spaces $U \otimes V \otimes W$
$\triangleright \ldots$ is a multidimensional array of numbers $A=\left(A_{i j k}\right)_{i, j, k}$
$\triangleright \ldots$ in $V^{\otimes d}$ is symmetric if its entries are invariant under permutations $\sigma \in \mathfrak{S}_{d}$
\triangleright Symmetric tensors can be identified with homogeneous polynomials (in char. 0)

$$
\mathbb{C}\left[v_{1}, \ldots, v_{n}\right]_{d} \ni v_{1} \cdots v_{d} \quad \mapsto \quad \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_{d}} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)} \in \operatorname{Sym}^{d} V \subseteq V^{\otimes d}
$$

Tensor decomposition and rank

\triangleright A tensor of the form $\left(u_{i} v_{j} w_{k}\right)_{i, j, k} \hat{=} u \otimes v \otimes w$ is simple
\triangleright Every tensor is a sum of simple tensors

$$
A=\sum_{i=1}^{r} \lambda_{i} u^{(i)} \otimes v^{(i)} \otimes w^{(i)}
$$

\triangleright The smallest such r is the tensor rank of A
\triangleright Generalizes matrix rank: $A=S \cdot \operatorname{diag}(\underbrace{1, \ldots, 1}_{\text {rank } A}, 0, \ldots, 0) \cdot T$
\triangleright If the simple tensors are unique up to scaling, then A is called identifiable
\triangleright Symmetric case: Simple tensor $v^{\otimes d} \hat{=} \ell^{d}, F=\sum_{i=1}^{r} \lambda_{i} \ell_{i}^{d}$, symmetric tensor rank, \ldots

Examples

We will identify symmetric tensors with homogeneous polynomials in $T=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$.
\triangleright Rank $1=$ powers of linear forms $\ell^{d}=$ cone over Veronese variety

$$
V_{d, n}:=\nu_{d}\left(\mathbb{P}\left(T_{1}\right)\right) \subseteq \mathbb{P}\left(T_{d}\right), \quad \nu_{d}([\ell])=\left[\ell^{d}\right]
$$

Projective space $\mathbb{P}(V):=(V \backslash 0) / \sim$, where $v \sim w$ iff $v=\lambda w$ for some $\lambda \in \mathbb{C}^{\times}$
\triangleright Quadratic forms $=$ sym. matrices: $F=x^{\top} A x$, then $\operatorname{rk} F=\operatorname{rank} A$
\triangleright Fun exercise: $\operatorname{rk}\left(X_{1}^{d}+\cdots+X_{n}^{d}\right)=n$
$\triangleright \operatorname{rk}\left(X_{0} X_{1}\right)=2$, as $X_{0} X_{1}=\frac{1}{4}\left(X_{0}+X_{1}\right)^{2}-\frac{1}{4}\left(X_{0}-X_{1}\right)^{2}$
$\triangleright \operatorname{rk}\left(X_{0} X_{1}^{d-1}\right)=d$, more generally for $\alpha_{0} \leq \alpha_{1} \leq \ldots$

$$
\operatorname{rk}\left(X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}\right)=\left(\alpha_{1}+1\right) \cdots\left(\alpha_{n}+1\right)
$$

\triangleright But $d X_{0} X_{1}^{d-1}=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\varepsilon X_{0}+X_{1}\right)^{d}-\frac{1}{\varepsilon} X_{1}^{d}$, so $\{$ rk $\leq r\}$ is not closed

A general form walks into the door

Theorem (Alexander-Hirschowitz)

For $r(n+1) \leq\binom{ n+d}{d}$ the affine cone
has the expected (complex) dimension $r(n+1)$ except for

$$
(d, n, r)=(2, \geq 2, \geq 2),(3,4,7),(4,2,5),(4,3,9),(4,4,14) .
$$

In particular, a general polynomial has rank $\left\lceil\frac{1}{n+1}\binom{n+d}{n}\right\rceil$.

Running example:

A general $F \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{10}$ has rk $F=\frac{1}{3}\binom{2+10}{2}=22$. The set of such forms of rank 18 has dimension 54 in \mathbb{C}^{66}

General forms of subgeneric rank are identifiable

Theorem (Ballico, Mella, Chiantini-Ottaviani-Vannieuwenhoven, ...)

For $r(n+1)<\binom{n+d}{d}$ a general form of rank r is identifiable except in the cases

$$
(d, n, r)=(2, \geq 2, \geq 2),(6,2,9),(4,3,8),(3,5,9)
$$

\triangleright For applications tensors are often of subgeneric rank \rightsquigarrow generic identifiability
\triangleright A general $F \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{10}$ of rank 18 has an essentially unique representation

$$
F=\sum_{i=1}^{18} \lambda_{i} \ell_{i}^{10}, \quad \ell_{i} \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{1}
$$

\triangleright Given F, how do we find the ℓ_{i} algorithmically?

Apolarity and eigenvalue methods

The fundamental theorem of tensor decomposition

\triangleright Let $S=\mathbb{C}\left[\partial_{0}, \ldots, \partial_{n}\right]$ then S acts on $T=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ by differentiation

$$
\partial^{\alpha} \bullet x^{\beta}=\frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} \text { if } \beta \geq \alpha \text {, else } 0
$$

$\triangleright S$ is a ring of functions on $\mathbb{P}\left(T_{1}\right)$ via $g([\ell])=g \bullet \ell \operatorname{deg} g$
\triangleright For $Z \subseteq \mathbb{P}\left(T_{1}\right)$ set $I(Z)=\bigoplus_{d \geq 0}\left\{g \in S_{d} \mid g([\ell])=0\right.$ for $\left.[\ell] \in Z\right\}$
\triangleright For $F \in T$ let $F^{\perp}=\operatorname{Ann}_{S}(F)=\{g \in S \mid g \bullet F=0\}$

Theorem (Apolarity lemma)

For $F \in T_{D}$ and $\ell_{1}, \ldots, \ell_{r} \in T_{1}$ the following are equivalent:

1. $F=\lambda_{1} \ell_{1}^{D}+\cdots+\lambda_{r} \ell_{r}^{D}$ for some $\lambda_{i} \in \mathbb{C}$;
2. $I\left(\left\{\left[\ell_{1}\right], \ldots,\left[\ell_{r}\right]\right\}\right) \subseteq F^{\perp}$ in S.

The Catalecticant method

\triangleright If $F=\sum_{i=1}^{r} \lambda_{r} \ell_{1}^{D}+\cdots+\lambda_{r} \ell_{r}^{D}$, then F^{\perp} contains polynomials vanishing on $\left[\ell_{i}\right]$
\triangleright For $d \leq \frac{D}{2}, r<\binom{d+n}{n}-n$ and $F \in T_{D}$ general of rank r, then actually

$$
\left(F^{\perp}\right)_{d}=I\left(\left[\ell_{1}\right], \ldots,\left[\ell_{r}\right]\right)_{d}
$$

\triangleright By definition $\left(F^{\perp}\right)_{d}=\operatorname{Ker~Cat}_{d, D-d}(F)$ where

$$
\operatorname{Cat}_{d, D-d}(F): S_{d} \rightarrow T_{D-d}, \quad g \mapsto g \bullet F
$$

\triangleright Algorithmic approach:

- Compute basis \mathcal{F} of kernel
- Solve polynomial system $\{\mathcal{F}=0\}$ to get $\operatorname{Zeros}(\mathcal{F}) \stackrel{?}{=}\left\{\left[\ell_{1}\right], \ldots,\left[\ell_{r}\right]\right\}=: Z$,
- Solve linear equations to get λ_{i}
\rightsquigarrow When is $\mathcal{Z} \operatorname{eros}\left(F_{d}^{\perp}\right)=Z$? Equivalently $\operatorname{Zeros}\left(I(Z)_{d}\right)=Z$?

Methods for polynomial system solving

Task: Given 0 -dim'I system $J \subseteq S$, compute $Z=\left\{z_{1}, \ldots, z_{r}\right\}=\mathcal{Z e r o s}(J) \subseteq \mathbb{P}^{n}$
\triangleright Our situation: $J=\left\langle I(Z)_{d}\right\rangle_{S}$, a chopped ideal of r general points
\triangleright (At least) three common approaches:

- Gröbner bases computation (symbolic)
- Homotopy continuation (numerical)
- Eigenvalue/normal form methods (numerical/mixed)
\triangleright Gröbner bases become quickly infeasible for higher number of variables or degree
\triangleright Homotopy continuation struggles with heavily over-determined systems
\rightsquigarrow Focus on the eigenvalue method approach here

Eigenvalue methods for polynomial system solving

Task: Given 0 -dim'I system $J \subseteq S$, compute $Z=\left\{z_{1}, \ldots, z_{r}\right\}=\mathcal{Z e r o s}(J) \subseteq \mathbb{P}^{n}$
\triangleright For t large enough, $h_{S / J}(t):=\operatorname{dim}_{\mathbb{C}}(S / J)_{t}=r$ and $J_{t}=I(Z)_{t}$
\triangleright Multiplication map for $g \in S_{e}$:

$$
M_{g}:(S / J)_{d} \xrightarrow{. g}(S / J)_{d+e}
$$

\triangleright Under "suitable conditions" $M_{h}^{-1} M_{g}:(S / J)_{d} \rightarrow(S / J)_{d}$ has left eigenpairs

$$
\left\{\left.\left(\mathrm{ev}_{z_{i}}, \frac{g}{h}\left(z_{i}\right)\right) \right\rvert\, i=1, \ldots, r\right\}, \quad \operatorname{ev}_{z_{i}}(f)=f\left(z_{i}\right) / h\left(z_{i}\right)
$$

\rightsquigarrow Translate problem into large eigenvalue problem, solve numerically
\triangleright For this need $h_{S / J}(d+e)=h_{S / J}(d)=r$, want $d, d+e$ as small as possible

Example: J saturated

If $J=I(Z)$ and Z is a general set of points, then $h_{S / I(Z)}=\min \left\{h_{S}(t), r\right\}$. Hence $d=\min \left\{t \mid h_{S}(t) \geq r\right\}$ and $e=1$ work.

Recap

We are lead to the following setup:
\triangleright Given a general form $F=\sum_{i=1}^{r} \lambda_{i} \ell_{i}^{D} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]_{D}$ of rank $r<\binom{n+\lfloor D / 2\rfloor}{ n}-n$
\triangleright Decomposition is unique, want to find $Z=\left\{\left[\ell_{1}\right], \ldots,\left[\ell_{r}\right]\right\} \in \mathbb{P}^{n}$
\triangleright Have access to $\mathcal{F}=I(Z)_{d}$ only for $d \leq \frac{D}{2}$
\triangleright Want to solve polynomial system \mathcal{F} using the eigenvalue method
\triangleright Is $\operatorname{Zeros}(\mathcal{F})=Z$? With(out) multiplicities?
\triangleright What is the Hilbert function of the subideal $\langle\mathcal{F}\rangle_{S} \subseteq I(Z)$? When $=r$?

Running example

$n=2, D=10, r=18 . F=\sum_{i=1}^{18} \lambda_{i} \ell_{i}^{10} \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{10}$.
Only interesting: $d=D / 2=5$, since for $d \leq 4$ we have $I(Z)_{d}=0$!

Some nice geometry behind this!

Mathematics > Commutative Algebra

[Submitted on 5 Jul 2023]

Hilbert Functions of Chopped Ideals

Fulvio Gesmundo, Leonie Kayser, Simon Telen
A chopped ideal is obtained from a homogeneous ideal by considering only the generators of a fixed degree. We investigate cases in which the chopped ideal defines the same finite set of points as the original one-dimensional ideal. The complexity of computing these points from the chopped ideal is governed by the Hilbert function and regularity. We conjecture values for these invariants and prove them in many cases. We show that our conjecture is of practical relevance for symmetric tensor

Rediscovering a notion introduced by [Ahmed-Fröberg-Rafiq]

Definition (Chopped ideal)

The chopped ideal of a homogeneous ideal $I \subseteq S$ in degree d is

$$
I_{\langle d\rangle}:=\left\langle I_{d}\right\rangle_{S}=\bigoplus_{t \geq d}\left\langle S_{t-d} \cdot I_{d}\right\rangle_{\mathbb{C}} \subseteq I \subseteq S
$$

From now on $Z \subseteq \mathbb{P}^{n}$ is a general set of r points, $I=I(Z), d=\min \left\{t \left\lvert\,\binom{ n+t}{n} \geq r\right.\right\}$.
\triangleright Min. generators of I live in degrees $\{d, d+1\}$
\triangleright Can we recover Z from $I(Z)_{\langle d\rangle}$?
\triangleright When does $\left(I(Z)_{\langle d\rangle}\right)_{d+e}=I(Z)_{d+e}$?
\triangleright What is the Hilbert function $h_{I(Z)_{\langle d\rangle}}(t)$?

Example: $Z=18$ points in the plane

t	\ldots	3	4	5	6	7
$h_{S}(t)$	\ldots	10	15	21	28	36
$h_{I}(t)$	\ldots	0	0	3	10	18
$h_{I_{\langle 5\rangle}}(t)$	\ldots	0	0	3	9	18

t	0	1	2	3	4	5	6	7
$h_{S}(t)$	1	3	6	10	15	21	28	36
$h_{S / I}(t)$	1	3	6	10	15	18	18	18
$h_{S / I_{(5)}}(t)$	1	3	6	10	15	18	19	18

Figure 1: Three quintics $\left\langle q_{1}, q_{2}, q_{3}\right\rangle_{\mathbb{C}}=I_{5}$ passing through 18 general points (left) and the missing split sextic $c c^{\prime} \in I_{6}$ (right).

Recovering the points from their chopped ideal

\triangleright Generally $I_{\langle d\rangle} \subsetneq I$, but maybe

$$
I \stackrel{?}{=}\left(I_{\langle d\rangle}\right)^{\text {sat }}:=\bigcup_{k \geq 0}\left(I_{\langle d\rangle}: \mathfrak{m}^{k}\right) \quad \Longleftrightarrow \quad \mathcal{Z e r o s}(I) \underset{\text { multiplicities }}{=} \underset{\sim}{\mathcal{Z}} \operatorname{eros}\left(I_{\langle d\rangle}\right) \subseteq \mathbb{P}^{n}
$$

Theorem

Let $Z \subseteq \mathbb{P}^{n}$ be a general set of r points and $d \in \mathbb{N}$.

1. If $r>\binom{n+d}{n}-n$, then $\mathcal{Z e r o s}\left(I_{\langle d\rangle}\right)$ is a positive-dimensional complete intersection.
2. If $r=\binom{n+d}{n}-n$, then $\mathcal{Z e r o s}\left(I_{\langle d\rangle}\right)$ is a complete intersection of d^{n} points.
3. If $r<\binom{n+d}{n}-n$, then $I_{\langle d\rangle}$ cuts out Z without multiplicity ("reduced")

In particular, $I=\left(I_{\langle d\rangle}\right)^{\text {sat }}$ if and only if $r<\binom{n+d}{n}-n$ or $r=1$ or $(n, r)=(2,4)$.

Towards the expected Hilbert function - naively

\triangleright Graded components of $I_{\langle d\rangle}$ are images of multiplication map

$$
\mu_{e}: S_{e} \otimes_{\mathbb{C}} I_{d} \rightarrow I_{d+e}, \quad g \otimes f \mapsto g \cdot f
$$

\triangleright One may expect μ_{e} to have maximal rank, i.e. to be injective or surjective:

$$
h_{I_{\langle d\rangle}}(t) \stackrel{?}{=} \min \left\{h_{I}(t), h_{S}(t-d) \cdot h_{I}(d)\right\}
$$

$\rightsquigarrow e=1$: Ideal generation conjecture (IGC) predicting number of minimal generators of I
\triangleright This turns out to be too optimistic; μ_{e} has elements in its kernel, for example

$$
f_{1} \otimes f_{2}-f_{2} \otimes f_{1} \in \operatorname{Ker} \mu_{d}, \quad f_{1}, f_{2} \in I_{d}
$$

\triangleright This does happen, e.g. $r=52$ points in \mathbb{P}^{3}, then μ_{5} does not have maximal rank

Towards the expected Hilbert function - more carefully

\triangleright The kernel of μ_{e} contains the Koszul syzygies Ksz_{e} generated by

$$
g f_{i} \otimes f_{j}-g f_{j} \otimes f_{i}, \quad g \in S_{e-d}, f_{i}, f_{j} \in I_{d}
$$

\triangleright Expecting Ker $\mu_{e}=\mathrm{Ksz}_{e}$, a first estimate of $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mu_{e}$ is $h_{S}(e-d) \cdot\binom{h_{I}(d)}{2}$
\triangleright Expect the syzygies to also only have Koszul syzygies, correct by $h_{S}(e-2 d) \cdot\binom{h_{I}(d)}{3}$
\triangleright And these also only have Koszul syzygies and
\triangleright This leads to the following estimate for $h_{S / I_{\langle d\rangle}}(t)$:

$$
h_{S}(t)-\underbrace{h_{S}(t-d) h_{I}(d)}_{\text {gen's of } I_{d}}+\underbrace{h_{S}(t-2 d)\binom{h_{I}(d)}{2}}_{\text {Koszul syzygies }}-\underbrace{h_{S}(t-3 d)\binom{h_{I}(d)}{3}}_{\text {Koszul syzygy syzygies }} \pm \ldots
$$

\triangleright On the other hand, as soon as $h_{I_{\langle d\rangle}}\left(t_{0}\right) \geq h_{I}\left(t_{0}\right)$, then $I_{t}=\left(I_{\langle d\rangle}\right)_{t}$ for $t \geq t_{0}$

The main conjecture

Expected syzygy conjecture (ESC)

$$
h_{S / I_{(d)}}(t)= \begin{cases}\sum_{k \geq 0}(-1)^{k} \cdot h_{S}(t-k d) \cdot\binom{h_{I}(d)}{k} & t<t_{0}, \\ r & t \geq t_{0},\end{cases}
$$

where t_{0} is the first integer $>d$ such that the sum is $\leq r$.
\triangleright This is always a (lexicographic) lower bound due to Fröberg
\triangleright If $W \subseteq S_{d}$ is a random vector subspace of $\operatorname{dim} . h_{I}(d)$, then the sum is the expected Hilbert function of $S /\langle W\rangle_{S}$ (until sum ≤ 0)
\triangleright Proven by Nenashev in many cases, approach generalized by Blomenhofer \& Casarotti
Slogan: Chopped ideals of general points are (Fröberg-)general as long as possible

Is the complicated alternating sum really needed?

\triangleright For \mathbb{P}^{2} the (ESC) "actually" says $h_{I_{\langle d\rangle}}(t)=\min \left\{h_{I}(d) \cdot h_{S}(t-d), h_{I}(t)\right\}$
\triangleright This is no longer true in higher dimension - in general n summands are required
\triangleright Smallest example: 52 points in \mathbb{P}^{3}

Figure 2: The Hilbert function of the chopped ideal of 52 general points in \mathbb{P}^{3}.

Main results

Theorem

Conjecture (ESC) is true in the following cases:
$\triangleright r_{\text {max }}:=h_{S}(d)-(n+1)$ for all d in all dimensions n.
\triangleright In the plane for $r_{\text {min }}=\frac{1}{2}(d+1)^{2}$ when d is odd.
$\triangleright r \leq \frac{1}{n}\left((n+1) h_{S}(d)-h_{S}(d+1)\right)$ and [$n \leq 4$ or generally whenever (IGC) holds].
\triangleright In a large number of individual cases in low dimension (next slide).
The length of the saturation gap is bounded above by

$$
\min \left\{e>0 \mid\left(I_{\langle d\rangle}\right)_{d+e}=I_{d+e}\right\} \leq(n-1) d-(n+1)
$$

Whenever $I_{\langle d\rangle}$ is non-saturated, one has $\operatorname{reg}_{\mathrm{CM}} S / I_{\langle d\rangle}=\operatorname{reg}_{\mathrm{H}} S / I_{\langle d\rangle}-1=d+e-1$.

Verification using computer algebra

\triangleright Testing the conjecture for particular values of (n, r) :

- Sample r random points from $\mathbb{P}^{n}(\mathbb{Q})$
- Calculate $h_{S / I(Z)_{\langle d\rangle}}$ using a computer algebra system
- If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map $Z \mapsto h_{S / I(Z)_{\langle d\rangle}}(t)$ is upper semicontinuous on the set $U \subseteq\left(\mathbb{P}^{n}\right)^{r}$ of points with generic Hilbert function.
\triangleright To speed up computation, perform calculations over a finite field \mathbb{F}_{p}
\triangleright Using Macaulay2 we verified the conjecture in the following cases

n	2	3	4	5	6	7	8	9	10
r	≤ 1825	≤ 1534	≤ 991	≤ 600	≤ 447	≤ 316	≤ 333	≤ 204	≤ 259
d	≤ 58	≤ 18	≤ 9	≤ 6	≤ 4	≤ 3	≤ 3	≤ 2	≤ 2

Visualization of the saturation gaps in \mathbb{P}^{2}

\triangleright ESC predicts exactly how large the difference between I and $I_{\langle d\rangle}$ is

Visualization of the saturation gaps in \mathbb{P}^{3}

Thank you! Questions?

 arXiv:2307.02560
References i

R Chwas Ahmed, Ralf Fröberg, and Mohammed Rafiq Namiq.
The graded betti numbers of truncation of ideals in polynomial rings, 2022.
A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto.

The hitchhiker guide to: Secant varieties and tensor decomposition. Mathematics, 6(12):314, 2018.

圊 Ralf Fröberg.
An inequality for hilbert series of graded algebras.
Mathematica Scandinavica, 56(2), 1985.
E Fulvio Gesmundo, Leonie Kayser, and Simon Telen.
Hilbert functions of chopped ideals, 2023.

References ii

E Anna Lorenzini.
The minimal resolution conjecture.
Journal of Algebra, 156(1), 1993.
目 Simon Telen.
Solving Systems of Polynomial Equations.
PhD thesis, KU Leuven, Leuven, Belgium, 2020.
Simon Telen and Nick Vannieuwenhoven.
A normal form algorithm for tensor rank decomposition.
ACM Trans. on Math. Soft., 48(4):1-35, 2022.

Image credit

- Slide 11: "Hacken Holz" by vitranc on iStock https://www.istockphoto.com/de/foto/hacken-holz-gm504268819-44840794
\triangleright Slide 12: Created using Asymptote https://asymptote.sourceforge.io/

