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There’s geometry hidden behind eigenvalue methods
for symmetric tensor decomposition!



(symmetric) tensor decomposition



What is a tensor?

A tensor. . .

▷ . . . is an object that transforms like a tensor

▷ . . . is an element of a tensor product of vector spaces U ⊗ V ⊗W

▷ . . . is a multidimensional array of numbers A = (Aijk)i,j,k

▷ . . . in V ⊗d is symmetric if its entries are invariant under permutations σ ∈ Sd

▷ Symmetric tensors can be identified with homogeneous polynomials (in char. 0)

C[v1, . . . , vn]d ∋ v1 · · · vd 7→ 1

d!

∑
σ∈Sd

vσ(1) ⊗ · · · ⊗ vσ(d) ∈ SymdV ⊆ V ⊗d
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Tensor decomposition and rank

▷ A tensor of the form (uivjwk)i,j,k =̂ u⊗ v ⊗ w is simple

▷ Every tensor is a sum of simple tensors

A =

r∑
i=1

λiu
(i) ⊗ v(i) ⊗ w(i)

▷ The smallest such r is the tensor rank of A

▷ Generalizes matrix rank: A = S · diag(1, . . . , 1︸ ︷︷ ︸
rankA

, 0, . . . , 0) · T

▷ If the simple tensors are unique up to scaling, then A is called identifiable

▷ Symmetric case: Simple tensor v⊗d =̂ ℓd, F =
∑r

i=1 λiℓ
d
i , symmetric tensor rank, . . .
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Examples

We will identify symmetric tensors with homogeneous polynomials in T = C[X0, . . . , Xn].

▷ Rank 1 = powers of linear forms ℓd = cone over Veronese variety

Vd,n := νd(P(T1)) ⊆ P(Td), νd([ℓ]) = [ℓd]

Projective space P(V ) := (V \ 0)/∼, where v ∼ w iff v = λw for some λ ∈ C×

▷ Quadratic forms = sym. matrices: F = xTAx, then rkF = rankA

▷ Fun exercise: rk(Xd
1 + · · ·+Xd

n) = n

▷ rk(X0X1) = 2, as X0X1 =
1
4(X0 +X1)

2 − 1
4(X0 −X1)

2

▷ rk(X0X
d−1
1 ) = d, more generally for α0 ≤ α1 ≤ . . .

rk(Xα0
0 · · ·Xαn

n ) = (α1 + 1) · · · (αn + 1)

▷ But dX0X
d−1
1 = limε→0

1
ε (εX0 +X1)

d − 1
εX

d
1 , so {rk ≤ r} is not closed
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A general form walks into the door

Theorem (Alexander–Hirschowitz)

For r(n+ 1) ≤
(
n+d
d

)
the affine cone

σ̂rVd,n = {F ∈ Td | rk(F ) ≤ r } ⊆ C[X0, . . . , Xn]d ∼= C(
n+d
n )

has the expected (complex) dimension r(n+ 1) except for

(d, n, r) = (2,≥2,≥2), (3, 4, 7), (4, 2, 5), (4, 3, 9), (4, 4, 14).

In particular, a general polynomial has rank
⌈

1
n+1

(
n+d
n

)⌉
.

Running example:

A general F ∈ C[X0, X1, X2]10 has rkF = 1
3

(
2+10
2

)
= 22. The set of such forms of rank

18 has dimension 54 in C66
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General forms of subgeneric rank are identifiable

Theorem (Ballico, Mella, Chiantini–Ottaviani–Vannieuwenhoven, . . . )

For r(n+ 1) <
(
n+d
d

)
a general form of rank r is identifiable except in the cases

(d, n, r) = (2,≥2,≥2), (6, 2, 9), (4, 3, 8), (3, 5, 9).

▷ For applications tensors are often of subgeneric rank ⇝ generic identifiability

▷ A general F ∈ C[X0, X1, X2]10 of rank 18 has an essentially unique representation

F =

18∑
i=1

λiℓ
10
i , ℓi ∈ C[X0, X1, X2]1

▷ Given F , how do we find the ℓi algorithmically?
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Apolarity and eigenvalue methods



The fundamental theorem of tensor decomposition

▷ Let S = C[∂0, . . . , ∂n] then S acts on T = C[X0, . . . , Xn] by differentiation

∂α • xβ =
β!

(β − α)!
xβ−α if β ≥ α, else 0

▷ S is a ring of functions on P(T1) via g([ℓ]) = g • ℓdeg g

▷ For Z ⊆ P(T1) set I(Z) =
⊕
d≥0

{ g ∈ Sd | g([ℓ]) = 0 for [ℓ] ∈ Z }

▷ For F ∈ T let F⊥ = AnnS(F ) = { g ∈ S | g • F = 0 }

Theorem (Apolarity lemma)

For F ∈ TD and ℓ1, . . . , ℓr ∈ T1 the following are equivalent:

1. F = λ1ℓ
D
1 + · · ·+ λrℓ

D
r for some λi ∈ C;

2. I({[ℓ1], . . . , [ℓr]}) ⊆ F⊥ in S.
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The Catalecticant method

▷ If F =
∑r

i=1 λrℓ
D
1 + · · ·+ λrℓ

D
r , then F⊥ contains polynomials vanishing on [ℓi]

▷ For d ≤ D
2 , r <

(
d+n
n

)
− n and F ∈ TD general of rank r, then actually

(F⊥)d = I([ℓ1], . . . , [ℓr])d

▷ By definition (F⊥)d = KerCatd,D−d(F ) where

Catd,D−d(F ) : Sd → TD−d, g 7→ g • F

▷ Algorithmic approach:

• Compute basis F of kernel

• Solve polynomial system {F = 0} to get Zeros(F)
?
= {[ℓ1], . . . , [ℓr]} =: Z,

• Solve linear equations to get λi

⇝ When is Zeros(F⊥
d ) = Z? Equivalently Zeros(I(Z)d) = Z?
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Methods for polynomial system solving

Task: Given 0-dim’l system J ⊆ S, compute Z = {z1, . . . , zr} = Zeros(J) ⊆ Pn

▷ Our situation: J = ⟨I(Z)d⟩S , a chopped ideal of r general points

▷ (At least) three common approaches:

• Gröbner bases computation (symbolic)

• Homotopy continuation (numerical)

• Eigenvalue/normal form methods (numerical/mixed)

▷ Gröbner bases become quickly infeasible for higher number of variables or degree

▷ Homotopy continuation struggles with heavily over-determined systems

⇝ Focus on the eigenvalue method approach here
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Eigenvalue methods for polynomial system solving

Task: Given 0-dim’l system J ⊆ S, compute Z = {z1, . . . , zr} = Zeros(J) ⊆ Pn

▷ For t large enough, hS/J(t) := dimC(S/J)t = r and Jt = I(Z)t

▷ Multiplication map for g ∈ Se:

Mg : (S/J)d
·g−→ (S/J)d+e

▷ Under “suitable conditions” M−1
h Mg : (S/J)d → (S/J)d has left eigenpairs

{ (evzi ,
g
h(zi)) | i = 1, . . . , r } , evzi(f) = f(zi)/h(zi)

⇝ Translate problem into large eigenvalue problem, solve numerically

▷ For this need hS/J(d+ e) = hS/J(d) = r, want d, d+ e as small as possible

Example: J saturated

If J = I(Z) and Z is a general set of points, then hS/I(Z) = min{hS(t), r}.
Hence d = min { t | hS(t) ≥ r } and e = 1 work.
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Recap

We are lead to the following setup:

▷ Given a general form F =
∑r

i=1 λiℓ
D
i ∈ C[X1, . . . , Xn]D of rank r <

(
n+⌊D/2⌋

n

)
− n

▷ Decomposition is unique, want to find Z = {[ℓ1], . . . , [ℓr]} ∈ Pn

▷ Have access to F = I(Z)d only for d ≤ D
2

▷ Want to solve polynomial system F using the eigenvalue method

▷ Is Zeros(F) = Z? With(out) multiplicities?

▷ What is the Hilbert function of the subideal ⟨F⟩S ⊆ I(Z)? When = r?

Running example

n = 2, D = 10, r = 18. F =
∑18

i=1 λiℓ
10
i ∈ C[X0, X1, X2]10.

Only interesting: d = D/2 = 5, since for d ≤ 4 we have I(Z)d = 0!
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Some nice geometry behind this!



Rediscovering a notion introduced by [Ahmed–Fröberg–Rafiq]

Definition (Chopped ideal)

The chopped ideal of a homogeneous ideal I ⊆ S in degree d is

I⟨d⟩ := ⟨Id⟩S =
⊕

t≥d
⟨St−d · Id⟩C ⊆ I ⊆ S.

From now on Z ⊆ Pn is a general set of r points,

I = I(Z), d = min { t |
(
n+t
n

)
≥ r }.

▷ Min. generators of I live in degrees {d, d+1}
▷ Can we recover Z from I(Z)⟨d⟩?

▷ When does (I(Z)⟨d⟩)d+e = I(Z)d+e?

▷ What is the Hilbert function hI(Z)⟨d⟩(t)?
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Example: Z = 18 points in the plane

t . . . 3 4 5 6 7

hS(t) . . . 10 15 21 28 36

hI(t) . . . 0 0 3 10 18

hI⟨5⟩(t) . . . 0 0 3 9 18

t 0 1 2 3 4 5 6 7

hS(t) 1 3 6 10 15 21 28 36

hS/I(t) 1 3 6 10 15 18 18 18

hS/I⟨5⟩(t) 1 3 6 10 15 18 19 18

Figure 1: Three quintics

⟨q1, q2, q3⟩C = I5 passing

through 18 general points

(left) and the missing split

sextic cc′ ∈ I6 (right).

1 2 3 4 5 6 7 8 9

5

10

15

20

0

t

hS/I⟨5⟩(t)

hS/I(t)
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Recovering the points from their chopped ideal

▷ Generally I⟨d⟩ ⊊ I, but maybe

I
?
= (I⟨d⟩)

sat :=
⋃
k≥0

(I⟨d⟩ : m
k) ⇐⇒ Zeros(I) ?

=
multiplicities

Zeros(I⟨d⟩) ⊆ Pn

Theorem

Let Z ⊆ Pn be a general set of r points and d ∈ N.

1. If r >
(
n+d
n

)
− n, then Zeros(I⟨d⟩) is a positive-dimensional complete intersection.

2. If r =
(
n+d
n

)
− n, then Zeros(I⟨d⟩) is a complete intersection of dn points.

3. If r <
(
n+d
n

)
− n, then I⟨d⟩ cuts out Z without multiplicity (“reduced”)

In particular, I = (I⟨d⟩)
sat if and only if r <

(
n+d
n

)
− n or r = 1 or (n, r) = (2, 4).
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Towards the expected Hilbert function – naively

▷ Graded components of I⟨d⟩ are images of multiplication map

µe : Se ⊗C Id → Id+e, g ⊗ f 7→ g · f

▷ One may expect µe to have maximal rank, i.e. to be injective or surjective:

hI⟨d⟩(t)
?
= min{hI(t), hS(t− d) · hI(d)}

⇝ e = 1: Ideal generation conjecture (IGC) predicting number of minimal generators of I

▷ This turns out to be too optimistic; µe has elements in its kernel, for example

f1 ⊗ f2 − f2 ⊗ f1 ∈ Kerµd, f1, f2 ∈ Id

▷ This does happen, e.g. r = 52 points in P3, then µ5 does not have maximal rank
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Towards the expected Hilbert function – more carefully

▷ The kernel of µe contains the Koszul syzygies Ksze generated by

gfi ⊗ fj − gfj ⊗ fi, g ∈ Se−d, fi, fj ∈ Id

▷ Expecting Kerµe = Ksze, a first estimate of dimCKerµe is hS(e− d) ·
(
hI(d)
2

)
▷ Expect the syzygies to also only have Koszul syzygies, correct by hS(e− 2d) ·

(
hI(d)
3

)
▷ And these also only have Koszul syzygies and . . .

▷ This leads to the following estimate for hS/I⟨d⟩(t):

hS(t)− hS(t− d)hI(d)︸ ︷︷ ︸
gen’s of Id

+hS(t− 2d)

(
hI(d)

2

)
︸ ︷︷ ︸

Koszul syzygies

−hS(t− 3d)

(
hI(d)

3

)
︸ ︷︷ ︸
Koszul syzygy syzygies

± . . .

▷ On the other hand, as soon as hI⟨d⟩(t0) ≥ hI(t0), then It = (I⟨d⟩)t for t ≥ t0
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The main conjecture

Expected syzygy conjecture (ESC)

hS/I⟨d⟩(t) =


∑
k≥0

(−1)k · hS(t− kd) ·
(
hI(d)

k

)
t < t0,

r t ≥ t0,

where t0 is the first integer > d such that the sum is ≤ r.

▷ This is always a (lexicographic) lower bound due to Fröberg

▷ If W ⊆ Sd is a random vector subspace of dim. hI(d), then the sum is the expected

Hilbert function of S/⟨W ⟩S (until sum ≤ 0)

▷ Proven by Nenashev in many cases, approach generalized by Blomenhofer & Casarotti

Slogan: Chopped ideals of general points are (Fröberg-)general as long as possible
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Is the complicated alternating sum really needed?

▷ For P2 the (ESC) “actually” says hI⟨d⟩(t) = min{hI(d) · hS(t− d), hI(t)}
▷ This is no longer true in higher dimension – in general n summands are required

▷ Smallest example: 52 points in P3

hS/I⟨5⟩(t) =hS(t)− 4hS(t− 5) + 6hS(t− 10) t < 11,

52 t ≥ 11
1 2 3 4 5 6 7 8 9 10 11 12 13

20

40

60

80

100

0

d

hS/I⟨5⟩(d)

hS/I(d)

Figure 2: The Hilbert function of the chopped

ideal of 52 general points in P3.
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Main results

Theorem

Conjecture (ESC) is true in the following cases:

▷ rmax := hS(d)− (n+ 1) for all d in all dimensions n.

▷ In the plane for rmin = 1
2(d+ 1)2 when d is odd.

▷ r ≤ 1
n

(
(n+ 1)hS(d)− hS(d+ 1)

)
and [n ≤ 4 or generally whenever (IGC) holds].

▷ In a large number of individual cases in low dimension (next slide).

The length of the saturation gap is bounded above by

min { e > 0 | (I⟨d⟩)d+e = Id+e } ≤ (n− 1)d− (n+ 1).

Whenever I⟨d⟩ is non-saturated, one has regCM S/I⟨d⟩ = regH S/I⟨d⟩ − 1 = d+ e− 1.
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Verification using computer algebra

▷ Testing the conjecture for particular values of (n, r):
• Sample r random points from Pn(Q)

• Calculate hS/I(Z)⟨d⟩ using a computer algebra system

• If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map Z 7→ hS/I(Z)⟨d⟩(t) is upper semicontinuous on the set U ⊆ (Pn)r of points with

generic Hilbert function.

▷ To speed up computation, perform calculations over a finite field Fp

▷ Using Macaulay2 we verified the conjecture in the following cases

n 2 3 4 5 6 7 8 9 10

r ≤ 1825 ≤ 1534 ≤ 991 ≤ 600 ≤ 447 ≤ 316 ≤ 333 ≤ 204 ≤ 259

d ≤ 58 ≤ 18 ≤ 9 ≤ 6 ≤ 4 ≤ 3 ≤ 3 ≤ 2 ≤ 2
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Visualization of the saturation gaps in P2

▷ ESC predicts exactly how large the difference between I and I⟨d⟩ is

no gap (IGC)

rmin (d odd)

rmax

computer verified
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+
e]
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Visualization of the saturation gaps in P3

no gap (IGC)

rmax

computer verified
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Thank you! Questions?
arXiv:2307.02560
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