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Motivation: Symmetric tensor decomposition

Task: Given F ∈ T = C[X0, . . . , Xn] of degree D, calculate decomposition

F = LD
1 + · · ·+ LD

r , Li ∈ T1, r = rk(F ) minimal

▷ If r <
(⌊D/2⌋+n

n

)
− n, then generically unique

[F ] 99K Z = {[L1], . . . , [Lr]} ⊆ P(T1)

▷ S := C[x0, . . . , xn] acts on T via differentiation (Catalecticant map)

CF (d,D − d) : Sd → TD−d, g 7→ g(∂0, . . . , ∂n)F

▷ I(Z)d ⊆ KerCF (d,D − d) with equality for d ≤ ⌊D/2⌋ and F general

⇝ Obtain low degree equations – do these suffice to recover Z?

Key example: F ∈ C[X0, X1, X2]10 of rank 18, obtain equations of degree ≤ 5

dimC I5 = dimC S5 − 18 = 3
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Motivation: Eigenvalue methods for polynomial system solving

Task: Given 0-dim’l system J ⊆ S, compute Z = {z1, . . . , zr} = V (J) ⊆ Pn

▷ Our situation: J = ⟨I(Z)d⟩, a chopped ideal of r general points

▷ For d large enough, hS/J(d) := dimC(S/J)d = r and Jd = I(Z)d

▷ Multiplication map: g ∈ Se, Mg : (S/J)d
·g−→ (S/I)d+e

▷ Under “suitable conditions” M−1
h Mg : (S/J)d → (S/J)d has left eigenpairs

{ (evzi ,
g
h(zi)) | i = 1, . . . , r } , evzi(f) = f(zi)/h(zi)

⇝ Translate problem into large eigenvalue problem, solve numerically

▷ For this need hS/J(d+ e) = hS/J(d) = r, want d, d+ e as small as possible

Goal

Study Hilbert functions of chopped ideals of general sets of points!
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Key example: 18 points in the plane

Z = {z1, . . . , z18} ⊆ P2 general, I := I(Z) ⊆ S, ⟨I5⟩ ⊊ I

d . . . 3 4 5 6 7

hI(d) . . . 0 0 3 10 18

h⟨I5⟩(d) . . . 0 0 3 9 18

d 0 1 2 3 4 5 6 7

hS/I(d) 1 3 6 10 15 18 18 18

hS/⟨I5⟩(d) 1 3 6 10 15 18 19 18

Figure 1: Three quintics

⟨q1, q2, q3⟩C = I5 passing

through 18 general points

(left) and the missing split

sextic cc′ ∈ I6 (right).
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Chopped ideals and their saturation

▷ For a homogeneous ideal I ⊆ S let I⟨d⟩ := ⟨Id⟩ be its chopped ideal in degree d

▷ Usually consider chop degree d = min { d | Id ̸= 0 }
▷ Generally I⟨d⟩ ⊊ I, but maybe

I
?
= (I⟨d⟩)

sat :=
⋃
k≥0

(I⟨d⟩ : m
k) ⇐⇒ V(I)

?
=

schemes
V(I⟨d⟩) ⊆ Pn

Theorem

Let Z ⊆ Pn be a general set of r points and let d be the chop degree of I = I(Z).

1. If r >
(
n+d
n

)
− n, then V(I⟨d⟩) is a positive-dimensional complete intersection.

2. If r =
(
n+d
n

)
− n, then V(I⟨d⟩) is a complete intersection of dn points.

3. If r <
(
n+d
n

)
− n, then I⟨d⟩ cuts out Z scheme-theoretically.

In particular, I = (I⟨d⟩)
sat if and only if r <

(
n+d
n

)
− n or r = 1 or (n, r) = (2, 4). 4



The expected Hilbert function of chopped ideals

From now on: Z general set of
(
d−1+n

n

)
< r <

(
d+n
n

)
− n points, I = I(Z)

▷ For general points, hS/I(Z)(d) = min{hS(d), r}, where hS(d) =
(
d+n
n

)
for d ≥ 0

▷ Graded components of I⟨d⟩ are images of multiplication map

µe : Se ⊗C Id → Id+e, g ⊗ f 7→ g · f

▷ Kernel contains Koszul syzygies fi ⊗ fj − fj ⊗ fi

▷ Expectation: These are the only syzygies, and they have only Koszul syzygies, and . . .

Expected syzygy conjecture (ESC)

For j ≥ d one has

hS/I⟨d⟩(j) = max

{∑
k≥0

(−1)k · hS(j − kd) ·
(
hS(d)− r

k

)
, r

}
.

This is always a lower bound due to Fröberg. 5



Unraveling the conjecture

▷ j = d+ 1: Predict the number of minimal generators of I in degree Id+1

⇝ Ideal generation conjecture (IGC): µ1 is injective or surjective

▷ For P2 the (ESC) says hI⟨d⟩(j) = min{hI(d) · hS(j − d), hI(j)}, i.e.

“µe is injective until it is surjective – always maximal rank”

▷ This is no longer true in higher dimension – more terms are required.

▷ Example: 80 points in P3: hS/I⟨6⟩(j) = max{hS(j)− 4hS(j − 6) + 6hS(j − 12), 80}
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Figure 2: The Hilbert function of the chopped ideal of 80 general points in P3.

6



Main results

Theorem

Conjecture (ESC) is true in the following cases:

▷ rmax := hS(d)− (n+ 1) for all d in all dimensions n.

▷ In the plane for rmin = 1
2(d+ 1)2 when d is odd.

▷ r ≤ 1
n

(
(n+ 1)hS(d)− hS(d+ 1)

)
and [n ≤ 4 or generally whenever (IGC) holds].

▷ In a large number of individual cases in low dimension (next slide).

The length of the saturation gap is bounded above by

min { e > 0 | (I⟨d⟩)d+e = Id+e } ≤ (n− 1)d− (n+ 1).

Whenever I⟨d⟩ is non-saturated, one has regCM S/I⟨d⟩ = regH S/I⟨d⟩ − 1 = d+ e− 1.
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Verification using computer algebra

▷ Testing the conjecture for particular values of (n, r):
• Sample r random points from Pn(Q)

• Calculate hS/I(Z)⟨d⟩ using a computer algebra system

• If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map Z 7→ hS/I(Z)⟨d⟩(j) is upper semicontinuous on the set U ⊆ (Pn)r of points with

generic Hilbert function.

▷ To speed up computation, perform calculations over a finite field Fp

▷ Using Macaulay2 we verified the conjecture in the following cases

n r d

2 ≤ 1203 ≤ 47

3 ≤ 642 ≤ 13

4 ≤ 289 ≤ 6
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Visualization of the saturation gaps

▷ ESC predicts exactly how large the difference between I and I⟨d⟩ is
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Figure 3: The saturation gaps for all values of r ≤ 102 in P2. 9



Outlook

▷ Characteristic p > 0? ⇝ Yes (mostly).

▷ Proving the conjecture in P2?

▷ Improve code to verify more cases

▷ Generalizations multi-graded setting, e.g. points in Pn × Pm

▷ State a conjecture for the minimal free resolution of I(Z)⟨d⟩
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Thank you! Questions?
Preprint soonTM
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