

Hilbert functions of chopped ideals

S MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Computeralgebra-Tagung 2023

Leonie Kayser (joint with Fulvio Gesmundo & Simon Telen) kayser@mis.mpg.de

May 31, 2023

Motivation: Symmetric tensor decomposition

Task: Given $F \in T = \mathbb{C}[X_0, \ldots, X_n]$ of degree D, calculate decomposition $F = L_1^D + \cdots + L_r^D$, $L_i \in T_1$, $r = \operatorname{rk}(F)$ minimal \triangleright If $r < {\lfloor D/2 \rfloor + n \choose n} - n$, then generically unique $[F] \dashrightarrow Z = \{[L_1], \dots, [L_r]\} \subset \mathbb{P}(T_1)$ $\triangleright S \coloneqq \mathbb{C}[x_0, \ldots, x_n]$ acts on T via differentiation (*Catalecticant map*) $C_F(d, D-d) \colon S_d \to T_{D-d}, \qquad q \mapsto q(\partial_0, \dots, \partial_n)F$ $\triangleright I(Z)_d \subseteq \operatorname{Ker} C_F(d, D-d)$ with equality for $d \leq |D/2|$ and F general \sim Obtain low degree equations – do these suffice to recover Z?

Key example: $F \in \mathbb{C}[X_0, X_1, X_2]_{10}$ of rank 18, obtain equations of degree ≤ 5

$$\dim_{\mathbb{C}} I_5 = \dim_{\mathbb{C}} S_5 - 18 = 3$$

Motivation: Eigenvalue methods for polynomial system solving

Task: Given 0-dim'l system $J \subseteq S$, compute $Z = \{z_1, \ldots, z_r\} = V(J) \subseteq \mathbb{P}^n$

- \triangleright Our situation: $J = \langle I(Z)_d \rangle$, a chopped ideal of r general points
- \triangleright For d large enough, $h_{S/J}(d) \coloneqq \dim_{\mathbb{C}}(S/J)_d = r$ and $J_d = I(Z)_d$
- $\triangleright \text{ Multiplication map: } g \in S_e, M_g \colon (S/J)_d \stackrel{\cdot g}{\longrightarrow} (S/I)_{d+e}$
- \triangleright Under "suitable conditions" $M_h^{-1}M_g \colon (S/J)_d \to (S/J)_d$ has left eigenpairs

$$\{(\operatorname{ev}_{z_i}, \frac{g}{h}(z_i)) \mid i = 1, \dots, r\}, \quad \operatorname{ev}_{z_i}(f) = f(z_i)/h(z_i)$$

- →→ Translate problem into large eigenvalue problem, solve numerically
- $\triangleright~$ For this need $h_{S/J}(d+e)=h_{S/J}(d)=r,$ want d,d+e as small as possible

Goal

Study Hilbert functions of chopped ideals of general sets of points!

Key example: 18 points in the plane

$$Z = \{z_1, \dots, z_{18}\} \subseteq \mathbb{P}^2 \text{ general, } I \coloneqq I(Z) \subseteq S, \langle I_5 \rangle \subsetneq I$$

$$\frac{d \dots 3 \ 4 \ 5 \ 6 \ 7}{h_I(d) \dots 0 \ 0 \ 3 \ 10 \ 18} \xrightarrow{d \ 0 \ 1 \ 2 \ 3 \ 4 \ 5}{h_{S/I}(d) \ 1 \ 3 \ 6 \ 10 \ 15 \ 18}$$

$$h_{\langle I_5 \rangle}(d) \dots 0 \ 0 \ 3 \ 9 \ 18 \qquad h_{S/\langle I_5 \rangle}(d) \ 1 \ 3 \ 6 \ 10 \ 15 \ 18$$

Figure 1: Three quintics $\langle q_1, q_2, q_3 \rangle_{\mathbb{C}} = I_5$ passing through 18 general points (left) and the missing split sextic $cc' \in I_6$ (right).

6

18 18

19

18

Chopped ideals and their saturation

- \triangleright For a homogeneous ideal $I \subseteq S$ let $I_{\langle d \rangle} \coloneqq \langle I_d \rangle$ be its chopped ideal in degree d
- \triangleright Usually consider chop degree $d = \min \{ d \mid I_d \neq 0 \}$
- \triangleright Generally $I_{\langle d \rangle} \subsetneq I$, but maybe

$$I \stackrel{?}{=} (I_{\langle d \rangle})^{\text{sat}} \coloneqq \bigcup_{k \ge 0} (I_{\langle d \rangle} : \mathfrak{m}^k) \qquad \Longleftrightarrow \qquad \mathcal{V}(I) \stackrel{?}{=} \mathcal{V}(I_{\langle d \rangle}) \subseteq \mathbb{P}^n$$

Theorem

Let $Z \subseteq \mathbb{P}^n$ be a general set of r points and let d be the chop degree of I = I(Z).

If r > ^(n+d)_n - n, then V(I_{⟨d⟩}) is a positive-dimensional complete intersection.
 If r = ^(n+d)_n - n, then V(I_{⟨d⟩}) is a complete intersection of dⁿ points.
 If r < ^(n+d)_n - n, then I_{⟨d⟩} cuts out Z scheme-theoretically.
 In particular, I = (I_{⟨d⟩})^{sat} if and only if r < ^(n+d)_n - n or r = 1 or (n, r) = (2, 4).

The expected Hilbert function of chopped ideals

From now on: Z general set of $\binom{d-1+n}{n} < r < \binom{d+n}{n} - n$ points, I = I(Z)

- \triangleright For general points, $h_{S/I(Z)}(d) = \min\{h_S(d), r\}$, where $h_S(d) = \binom{d+n}{n}$ for $d \ge 0$
- $\,\triangleright\,$ Graded components of $I_{\langle d \rangle}$ are images of multiplication map

$$\mu_e \colon S_e \otimes_{\mathbb{C}} I_d \to I_{d+e}, \qquad g \otimes f \mapsto g \cdot f$$

- \triangleright Kernel contains Koszul syzygies $f_i \otimes f_j f_j \otimes f_i$
- ▷ Expectation: These are the only syzygies, and they have only Koszul syzygies, and ...

Expected syzygy conjecture (ESC)

For $j \ge d$ one has

$$h_{S/I_{\langle d \rangle}}(j) = \max\left\{\sum_{k \ge 0} (-1)^k \cdot h_S(j-kd) \cdot \binom{h_S(d)-r}{k}, r\right\}.$$

This is always a lower bound due to Fröberg.

Unraveling the conjecture

▷ j = d + 1: Predict the number of minimal generators of I in degree I_{d+1} \rightarrow Ideal generation conjecture (IGC): μ_1 is injective or surjective

 \triangleright For \mathbb{P}^2 the (ESC) says $h_{I_{\langle d \rangle}}(j) = \min\{h_I(d) \cdot h_S(j-d), h_I(j)\}$, i.e.

" μ_e is injective until it is surjective – always maximal rank"

> This is no longer true in higher dimension - more terms are required.

▷ Example: 80 points in \mathbb{P}^3 : $h_{S/I_{(6)}}(j) = \max\{h_S(j) - 4h_S(j-6) + 6h_S(j-12), 80\}$

Main results

Theorem

Conjecture (ESC) is true in the following cases:

 $\triangleright r_{\max} \coloneqq h_S(d) - (n+1)$ for all d in all dimensions n.

 \triangleright In the plane for $r_{\min} = \frac{1}{2}(d+1)^2$ when d is odd.

 $\triangleright r \leq \frac{1}{n} ((n+1)h_S(d) - h_S(d+1))$ and $[n \leq 4 \text{ or generally whenever (IGC) holds}].$

▷ In a large number of individual cases in low dimension (next slide).

The length of the saturation gap is bounded above by

$$\min\{e > 0 \mid (I_{\langle d \rangle})_{d+e} = I_{d+e}\} \le (n-1)d - (n+1).$$

Whenever $I_{\langle d \rangle}$ is non-saturated, one has $\operatorname{reg}_{CM} S/I_{\langle d \rangle} = \operatorname{reg}_{H} S/I_{\langle d \rangle} - 1 = d + e - 1$.

Verification using computer algebra

- \triangleright Testing the conjecture for particular values of (n, r):
 - Sample r random points from $\mathbb{P}^n(\mathbb{Q})$
 - Calculate $h_{S/I(Z)_{\langle d \rangle}}$ using a computer algebra system
 - If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map $Z \mapsto h_{S/I(Z)_{\langle d \rangle}}(j)$ is upper semicontinuous on the set $U \subseteq (\mathbb{P}^n)^r$ of points with generic Hilbert function.

- $\triangleright\,$ To speed up computation, perform calculations over a finite field \mathbb{F}_p
- \triangleright Using Macaulay2 we verified the conjecture in the following cases

n	r	d
2	≤ 1203	≤ 47
3	≤ 642	≤ 13
4	< 289	< 6

Visualization of the saturation gaps

 $\triangleright\,$ ESC predicts exactly how large the difference between I and $I_{\langle d\rangle}$ is

Figure 3: The saturation gaps for all values of $r \leq 102$ in \mathbb{P}^2 .

- $\triangleright \ \ {\rm Characteristic} \ p>0? \ \rightsquigarrow \ {\rm Yes} \ ({\rm mostly}).$
- \triangleright Proving the conjecture in \mathbb{P}^2 ?
- Improve code to verify more cases
- $\triangleright\,$ Generalizations multi-graded setting, e.g. points in $\mathbb{P}^n\times\mathbb{P}^m$
- $\,\triangleright\,$ State a conjecture for the minimal free resolution of $I(Z)_{\langle d \rangle}$

Thank you! Questions?

Preprint soonTM

A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto.
 The hitchhiker guide to: Secant varieties and tensor decomposition.
 Mathematics, 6(12):314, 2018.

🔋 Ralf Fröberg.

An inequality for hilbert series of graded algebras. Mathematica Scandinavica, 56(2), 1985.

Fulvio Gesmundo, Leonie Kayser, and Simon Telen.
 Hilbert functions of chopped ideals.
 In preparation, 2023.

References ii

Ì Anna Lorenzini.

The minimal resolution conjecture.

Journal of Algebra, 156(1), 1993.

🔋 Simon Telen.

Solving Systems of Polynomial Equations. PhD thesis, KU Leuven, Leuven, Belgium, 2020.

Simon Telen and Nick Vannieuwenhoven.
 A normal form algorithm for tensor rank decomposition.
 ACM Trans. on Math. Soft., 48(4):1–35, 2022.