

MAX PLANCK INSTITUTE
FOR MATHEMATICS
IN THE SCIENCES

Leonie Kayser (joint with Fulvio Gesmundo \& Simon Telen) kayser@mis.mpg.de

May 31, 2023

Motivation: Symmetric tensor decomposition

Task: Given $F \in T=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ of degree D, calculate decomposition

$$
F=L_{1}^{D}+\cdots+L_{r}^{D}, \quad L_{i} \in T_{1}, r=\operatorname{rk}(F) \text { minimal }
$$

\triangleright If $r<(\underset{n}{\lfloor D / 2\rfloor+n})-n$, then generically unique

$$
[F] \rightarrow Z=\left\{\left[L_{1}\right], \ldots,\left[L_{r}\right]\right\} \subseteq \mathbb{P}\left(T_{1}\right)
$$

$\triangleright S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ acts on T via differentiation (Catalecticant map)

$$
C_{F}(d, D-d): S_{d} \rightarrow T_{D-d}, \quad g \mapsto g\left(\partial_{0}, \ldots, \partial_{n}\right) F
$$

$\triangleright I(Z)_{d} \subseteq \operatorname{Ker} C_{F}(d, D-d)$ with equality for $d \leq\lfloor D / 2\rfloor$ and F general
\rightsquigarrow Obtain low degree equations - do these suffice to recover Z ?
Key example: $F \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{10}$ of rank 18 , obtain equations of degree ≤ 5

$$
\operatorname{dim}_{\mathbb{C}} I_{5}=\operatorname{dim}_{\mathbb{C}} S_{5}-18=3
$$

Motivation: Eigenvalue methods for polynomial system solving

Task: Given 0-dim'I system $J \subseteq S$, compute $Z=\left\{z_{1}, \ldots, z_{r}\right\}=V(J) \subseteq \mathbb{P}^{n}$
\triangleright Our situation: $J=\left\langle I(Z)_{d}\right\rangle$, a chopped ideal of r general points
\triangleright For d large enough, $h_{S / J}(d):=\operatorname{dim}_{\mathbb{C}}(S / J)_{d}=r$ and $J_{d}=I(Z)_{d}$
\triangleright Multiplication map: $g \in S_{e}, M_{g}:(S / J)_{d} \xrightarrow{. g}(S / I)_{d+e}$
\triangleright Under "suitable conditions" $M_{h}^{-1} M_{g}:(S / J)_{d} \rightarrow(S / J)_{d}$ has left eigenpairs

$$
\left\{\left.\left(\mathrm{ev}_{z_{i}}, \frac{g}{h}\left(z_{i}\right)\right) \right\rvert\, i=1, \ldots, r\right\}, \quad \operatorname{ev}_{z_{i}}(f)=f\left(z_{i}\right) / h\left(z_{i}\right)
$$

\rightsquigarrow Translate problem into large eigenvalue problem, solve numerically
\triangleright For this need $h_{S / J}(d+e)=h_{S / J}(d)=r$, want $d, d+e$ as small as possible

Goal

Study Hilbert functions of chopped ideals of general sets of points!

Key example: 18 points in the plane

$$
Z=\left\{z_{1}, \ldots, z_{18}\right\} \subseteq \mathbb{P}^{2} \text { general, } I:=I(Z) \subseteq S,\left\langle I_{5}\right\rangle \subsetneq I
$$

$$
\begin{array}{ccccccc}
d & \ldots & 3 & 4 & 5 & 6 & 7 \\
\hline h_{I}(d) & \ldots & 0 & 0 & 3 & 10 & 18 \\
h_{\left\langle I_{5}\right\rangle}(d) & \ldots & 0 & 0 & 3 & 9 & 18
\end{array}
$$

d	0	1	2	3	4	5	6	7
$h_{S / I}(d)$	1	3	6	10	15	18	18	18

Figure 1: Three quintics $\left\langle q_{1}, q_{2}, q_{3}\right\rangle_{\mathbb{C}}=I_{5}$ passing through 18 general points (left) and the missing split sextic $c c^{\prime} \in I_{6}$ (right).

Chopped ideals and their saturation

\triangleright For a homogeneous ideal $I \subseteq S$ let $I_{\langle d\rangle}:=\left\langle I_{d}\right\rangle$ be its chopped ideal in degree d
\triangleright Usually consider chop degree $d=\min \left\{d \mid I_{d} \neq 0\right\}$
\triangleright Generally $I_{\langle d\rangle} \subsetneq I$, but maybe

$$
I \stackrel{?}{=}\left(I_{\langle d\rangle}\right)^{\text {sat }}:=\bigcup_{k>0}\left(I_{\langle d\rangle}: \mathfrak{m}^{k}\right) \quad \Longleftrightarrow \quad \mathrm{V}(I) \stackrel{?}{\text { schemes }} \mathrm{V}\left(I_{\langle d\rangle}\right) \subseteq \mathbb{P}^{n}
$$

Theorem

Let $Z \subseteq \mathbb{P}^{n}$ be a general set of r points and let d be the chop degree of $I=I(Z)$.

1. If $r>\binom{n+d}{n}-n$, then $\mathrm{V}\left(I_{\langle d\rangle}\right)$ is a positive-dimensional complete intersection.
2. If $r=\binom{n+d}{n}-n$, then $\mathrm{V}\left(I_{\langle d\rangle}\right)$ is a complete intersection of d^{n} points.
3. If $r<\binom{n+d}{n}-n$, then $I_{\langle d\rangle}$ cuts out Z scheme-theoretically.

In particular, $I=\left(I_{\langle d\rangle}\right)^{\text {sat }}$ if and only if $r<\binom{n+d}{n}-n$ or $r=1$ or $(n, r)=(2,4)$.

The expected Hilbert function of chopped ideals

From now on: Z general set of $\binom{d-1+n}{n}<r<\binom{d+n}{n}-n$ points, $I=I(Z)$
\triangleright For general points, $h_{S / I(Z)}(d)=\min \left\{h_{S}(d), r\right\}$, where $h_{S}(d)=\binom{d+n}{n}$ for $d \geq 0$
\triangleright Graded components of $I_{\langle d\rangle}$ are images of multiplication map

$$
\mu_{e}: S_{e} \otimes_{\mathbb{C}} I_{d} \rightarrow I_{d+e}, \quad g \otimes f \mapsto g \cdot f
$$

\triangleright Kernel contains Koszul syzygies $f_{i} \otimes f_{j}-f_{j} \otimes f_{i}$
\triangleright Expectation: These are the only syzygies, and they have only Koszul syzygies, and

Expected syzygy conjecture (ESC)

For $j \geq d$ one has

$$
h_{S / I_{\langle d\rangle}}(j)=\max \left\{\sum_{k \geq 0}(-1)^{k} \cdot h_{S}(j-k d) \cdot\binom{h_{S}(d)-r}{k}, r\right\} .
$$

This is always a lower bound due to Fröberg.

Unraveling the conjecture

$\triangleright j=d+1$: Predict the number of minimal generators of I in degree I_{d+1}
\rightsquigarrow Ideal generation conjecture (IGC): μ_{1} is injective or surjective
\triangleright For \mathbb{P}^{2} the (ESC) says $h_{I_{\langle d\rangle}}(j)=\min \left\{h_{I}(d) \cdot h_{S}(j-d), h_{I}(j)\right\}$, i.e.
" μ_{e} is injective until it is surjective - always maximal rank"
\triangleright This is no longer true in higher dimension - more terms are required.
\triangleright Example: 80 points in $\mathbb{P}^{3}: h_{S / I_{\langle 6\rangle}}(j)=\max \left\{h_{S}(j)-4 h_{S}(j-6)+6 h_{S}(j-12), 80\right\}$

Main results

Theorem

Conjecture (ESC) is true in the following cases:
$\triangleright r_{\max }:=h_{S}(d)-(n+1)$ for all d in all dimensions n.
\triangleright In the plane for $r_{\text {min }}=\frac{1}{2}(d+1)^{2}$ when d is odd.
$\triangleright r \leq \frac{1}{n}\left((n+1) h_{S}(d)-h_{S}(d+1)\right)$ and [$n \leq 4$ or generally whenever (IGC) holds].
\triangleright In a large number of individual cases in low dimension (next slide).
The length of the saturation gap is bounded above by

$$
\min \left\{e>0 \mid\left(I_{\langle d\rangle}\right)_{d+e}=I_{d+e}\right\} \leq(n-1) d-(n+1) .
$$

Whenever $I_{\langle d\rangle}$ is non-saturated, one has $\operatorname{reg}_{\mathrm{CM}} S / I_{\langle d\rangle}=\operatorname{reg}_{\mathrm{H}} S / I_{\langle d\rangle}-1=d+e-1$.

Verification using computer algebra

\triangleright Testing the conjecture for particular values of (n, r) :

- Sample r random points from $\mathbb{P}^{n}(\mathbb{Q})$
- Calculate $h_{S / I(Z)_{\langle d\rangle}}$ using a computer algebra system
- If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map $Z \mapsto h_{S / I(Z)_{\langle d\rangle}}(j)$ is upper semicontinuous on the set $U \subseteq\left(\mathbb{P}^{n}\right)^{r}$ of points with generic Hilbert function.
\triangleright To speed up computation, perform calculations over a finite field \mathbb{F}_{p}
\triangleright Using Macaulay2 we verified the conjecture in the following cases

n	r	d
2	≤ 1203	≤ 47
3	≤ 642	≤ 13
4	≤ 289	≤ 6

Visualization of the saturation gaps

\triangleright ESC predicts exactly how large the difference between I and $I_{\langle d\rangle}$ is

Figure 3: The saturation gaps for all values of $r \leq 102$ in \mathbb{P}^{2}.

Outlook

\triangleright Characteristic $p>0$? \rightsquigarrow Yes (mostly).
\triangleright Proving the conjecture in \mathbb{P}^{2} ?
\triangleright Improve code to verify more cases
\triangleright Generalizations multi-graded setting, e.g. points in $\mathbb{P}^{n} \times \mathbb{P}^{m}$

- State a conjecture for the minimal free resolution of $I(Z)_{\langle d\rangle}$

Thank you! Questions?

Preprint soon ${ }^{\text {TM }}$

References i

(R) A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto. The hitchhiker guide to: Secant varieties and tensor decomposition. Mathematics, 6(12):314, 2018.

固 Ralf Fröberg.
An inequality for hilbert series of graded algebras.
Mathematica Scandinavica, 56(2), 1985.
Fulvio Gesmundo, Leonie Kayser, and Simon Telen.
Hilbert functions of chopped ideals.
In preparation, 2023.

References ii

(Anna Lorenzini.
The minimal resolution conjecture.

$$
\text { Journal of Algebra, 156(1), } 1993 .
$$

E Simon Telen.
Solving Systems of Polynomial Equations.
PhD thesis, KU Leuven, Leuven, Belgium, 2020.
國 Simon Telen and Nick Vannieuwenhoven.
A normal form algorithm for tensor rank decomposition. ACM Trans. on Math. Soft., 48(4):1-35, 2022.

