

Hilbert functions of chopped ideals

Nonlinear Algebra Seminar

Leonie Kayser (joint with Fulvio Gesmundo \& Simon Telen)
kayser@mis.mpg.de June 21, 2023

\square

MAX PLANCK INSTITUTE
FOR MATHEMATICS IN THE SCIENCES

Motivation: Eigenvalue methods for polynomial system solving

Task: Given 0 -dim'I system $J \subseteq S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$, compute $Z=\left\{z_{1}, \ldots, z_{r}\right\}=\mathrm{V}(J) \subseteq \mathbb{P}^{n}$
\triangleright For t large enough, $h_{S / J}(t):=\operatorname{dim}_{\mathbb{C}}(S / J)_{t}=r$ and $J_{t}=I(Z)_{t}$
\triangleright Multiplication map: $g \in S_{e}, M_{g}:(S / J)_{d} \xrightarrow{\cdot g}(S / J)_{d+e}$
\triangleright Under "suitable conditions" $M_{h}^{-1} M_{g}:(S / J)_{d} \rightarrow(S / J)_{d}$ has left eigenpairs

$$
\left\{\left.\left(\mathrm{ev}_{z_{i}}, \frac{g}{h}\left(z_{i}\right)\right) \right\rvert\, i=1, \ldots, r\right\}, \quad \mathrm{ev}_{z_{i}}(f)=f\left(z_{i}\right) / h\left(z_{i}\right)
$$

\rightsquigarrow Translate problem into large eigenvalue problem, solve numerically
\triangleright For this need $h_{S / J}(d+e)=h_{S / J}(d)=r$, want $d, d+e$ as small as possible

Example: J saturated

If $J=I(Z)$ and Z is a general set of points, then $h_{S / I(Z)}=\min \left\{h_{S}(t), r\right\}$.
Hence $d=\min \left\{t \mid h_{S}(t) \geq r\right\}$ and $e=1$ work.

Motivation: Symmetric tensor decomposition

Task: Given $F \in T=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ of degree D, calculate decomposition

$$
F=L_{1}^{D}+\cdots+L_{r}^{D}, \quad L_{i} \in T_{1}, r=\operatorname{rk}(F) \text { minimal }
$$

\triangleright If $r<h_{S}\left(\left\lfloor\frac{D}{2}\right\rfloor\right)-n$, then generically unique summands

$$
[F] \cdots Z=\left\{\left[L_{1}\right], \ldots,\left[L_{r}\right]\right\} \subseteq \mathbb{P}\left(T_{1}\right)
$$

\triangleright Equations of Z are contained in the kernel of the Catalecticant map

$$
C_{F}(d, D-d): S_{d} \rightarrow T_{D-d}, \quad g \mapsto g\left(\partial_{0}, \ldots, \partial_{n}\right) F
$$

$\triangleright I(Z)_{d} \subseteq \operatorname{Ker} C_{F}(d, D-d)$ with equality for $d \leq\left\lfloor\frac{D}{2}\right\rfloor$ and F general
\rightsquigarrow Obtain all equations on Z in a single low degree d
Key example: $F \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{10}$ of rank 18, obtain equations of degree ≤ 5

The funny word in the title

Definition (Chopped ideal)

The chopped ideal of a homogeneous ideal $I \subseteq S$ in degree d is $I_{\langle d\rangle}:=\left\langle I_{d}\right\rangle_{S}$.

From now on $Z \subseteq \mathbb{P}^{n}$ is a general set of r points, $I=I(Z), d=\min \left\{t \mid h_{S}(t) \geq r\right\}$.
\triangleright Can we recover Z from $I(Z)_{\langle d\rangle}$?
\triangleright When does $\left(I(Z)_{\langle d\rangle}\right)_{d+e}=I(Z)_{d+e}$?
\triangleright What is the Hilbert function $h_{I(Z)_{\langle d\rangle}}(t)$?

Example: $Z=18$ points in the plane

t	\ldots	3	4	5	6	7
$h_{S}(t)$	\ldots	10	15	21	28	36
$h_{I}(t)$	\ldots	0	0	3	10	18
$h_{I_{\langle 5\rangle}}(t)$	\ldots	0	0	3	9	18

t	0	1	2	3	4	5	6	7
$h_{S}(t)$	1	3	6	10	15	21	28	36
$h_{S / I}(t)$	1	3	6	10	15	18	18	18
$h_{S / I_{(5)}}(t)$	1	3	6	10	15	18	19	18

Figure 1: Three quintics $\left\langle q_{1}, q_{2}, q_{3}\right\rangle_{\mathbb{C}}=I_{5}$ passing through 18 general points (left) and the missing split sextic $c c^{\prime} \in I_{6}$ (right).

Recovering the points from their chopped ideal

\triangleright Generally $I_{\langle d\rangle} \subsetneq I$, but maybe

$$
I \stackrel{?}{=}\left(I_{\langle d\rangle}\right)^{\text {sat }}:=\bigcup_{k>0}\left(I_{\langle d\rangle}: \mathfrak{m}^{k}\right) \quad \Longleftrightarrow \quad \mathrm{V}(I) \underset{\text { schemes }}{\stackrel{?}{\mathrm{~V}} \mathrm{~V}\left(I_{\langle d\rangle}\right) \subseteq \mathbb{P}^{n}, ~}
$$

Theorem

Let $Z \subseteq \mathbb{P}^{n}$ be a general set of r points and $d \in \mathbb{N}$.

1. If $r>\binom{n+d}{n}-n$, then $\mathrm{V}\left(I_{\langle d\rangle}\right)$ is a positive-dimensional complete intersection.
2. If $r=\binom{n+d}{n}-n$, then $\mathrm{V}\left(I_{\langle d\rangle}\right)$ is a complete intersection of d^{n} points.
3. If $r<\binom{n+d}{n}-n$, then $I_{\langle d\rangle}$ cuts out Z scheme-theoretically.

In particular, $I=\left(I_{\langle d\rangle}\right)^{\text {sat }}$ if and only if $r<\binom{n+d}{n}-n$ or $r=1$ or $(n, r)=(2,4)$.

Towards the expected Hilbert function

\triangleright Graded components of $I_{\langle d\rangle}$ are images of multiplication map

$$
\mu_{e}: S_{e} \otimes_{\mathbb{C}} I_{d} \rightarrow I_{d+e}, \quad g \otimes f \mapsto g \cdot f
$$

\triangleright One may expect μ_{e} to have maximal rank, i.e. to be injective or surjective:

$$
h_{I_{\langle d\rangle}}(t) \stackrel{?}{=} \min \left\{h_{I}(t), h_{S}(t-d) \cdot h_{I}(d)\right\}
$$

$\rightsquigarrow e=1$: Ideal generation conjecture (IGC) predicting number of minimal generators of I
\triangleright This turns out to be too optimistic; μ_{e} has elements in its kernel, for example

$$
f_{1} \otimes f_{2}-f_{2} \otimes f_{1} \in \operatorname{Ker} \mu_{d}, \quad f_{1}, f_{2} \in I_{d}
$$

\triangleright This does happen, e.g. $r=52$ points in \mathbb{P}^{3}, then μ_{5} does not have maximal rank

Thank you! Questions?

Better luck next time ;(

Towards the expected Hilbert function - for real

\triangleright The kernel of μ_{e} contains the Koszul syzygies Ksz_{e} generated by

$$
g f_{i} \otimes f_{j}-g f_{j} \otimes f_{i}, \quad g \in S_{e-d}, f_{i}, f_{j} \in I_{d}
$$

\triangleright Expecting Ker $\mu_{e}=\mathrm{Ksz}_{e}$, a first estimate of $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \mu_{e}$ is $h_{S}(e-d) \cdot\binom{h_{I}(d)}{2}$
\triangleright Expect the syzygies to also only have Koszul syzygies, correct by $h_{S}(e-2 d) \cdot\binom{h_{I}(d)}{3}$
\triangleright And these also only have Koszul syzygies and
\triangleright This leads to the following estimate for $h_{S / I_{\langle d\rangle}}(t)$:

$$
h_{S}(t)-\underbrace{h_{S}(t-d) h_{I}(d)}_{\text {gen's of } I_{d}}+\underbrace{h_{S}(t-2 d)\binom{h_{I}(d)}{2}}_{\text {Koszul syzygies }}-\underbrace{h_{S}(t-3 d)\binom{h_{I}(d)}{3}}_{\text {Koszul syzygy syzygies }} \pm \ldots
$$

\triangleright On the other hand, as soon as $h_{I_{\langle d\rangle}}\left(t_{0}\right) \geq h_{I}\left(t_{0}\right)$, then $I_{t}=\left(I_{\langle d\rangle}\right)_{t}$ for $t \geq t_{0}$

The main conjecture

Expected syzygy conjecture (ESC)

$$
h_{S / I_{d \lambda}}(t)= \begin{cases}\sum_{k \geq 0}(-1)^{k} \cdot h_{S}(t-k d) \cdot\binom{h_{I}(d)}{k} & t<t_{0}, \\ r & t \geq t_{0},\end{cases}
$$

where t_{0} is the least integer $>d$ such that the sum is at most r.
\triangleright This is always a lower bound due to Fröberg
\triangleright Alternative expression for the ideal:

$$
h_{I_{\langle d\rangle}}(t)= \begin{cases}\sum_{k \geq 1}(-1)^{k-1} \cdot h_{S}(t-k d) \cdot\binom{h_{I}(d)}{k} & t<t_{0}, \\ h_{I}(t) & t \geq t_{0},\end{cases}
$$

Is the complicated alternating sum really needed?

\triangleright For \mathbb{P}^{2} the (ESC) "actually" says $h_{I_{\langle d\rangle}}(t)=\min \left\{h_{I}(d) \cdot h_{S}(t-d), h_{I}(t)\right\}$
\triangleright This is no longer true in higher dimension - in general n summands are required
\triangleright Smallest example: 52 points in \mathbb{P}^{3}

Figure 2: The Hilbert function of the chopped ideal of 52 general points in \mathbb{P}^{3}.

Main results

Theorem

Conjecture (ESC) is true in the following cases:
$\triangleright r_{\text {max }}:=h_{S}(d)-(n+1)$ for all d in all dimensions n.
\triangleright In the plane for $r_{\text {min }}=\frac{1}{2}(d+1)^{2}$ when d is odd.
$\triangleright r \leq \frac{1}{n}\left((n+1) h_{S}(d)-h_{S}(d+1)\right)$ and [$n \leq 4$ or generally whenever (IGC) holds].
\triangleright In a large number of individual cases in low dimension (next slide).
The length of the saturation gap is bounded above by

$$
\min \left\{e>0 \mid\left(I_{\langle d\rangle}\right)_{d+e}=I_{d+e}\right\} \leq(n-1) d-(n+1)
$$

Whenever $I_{\langle d\rangle}$ is non-saturated, one has $\operatorname{reg}_{\mathrm{CM}} S / I_{\langle d\rangle}=\operatorname{reg}_{\mathrm{H}} S / I_{\langle d\rangle}-1=d+e-1$.

Verification using computer algebra

\triangleright Testing the conjecture for particular values of (n, r) :

- Sample r random points from $\mathbb{P}^{n}(\mathbb{Q})$
- Calculate $h_{S / I(Z)_{\langle d\rangle}}$ using a computer algebra system
- If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map $Z \mapsto h_{S / I(Z)_{\langle d\rangle}}(t)$ is upper semicontinuous on the set $U \subseteq\left(\mathbb{P}^{n}\right)^{r}$ of points with generic Hilbert function.
\triangleright To speed up computation, perform calculations over a finite field \mathbb{F}_{p}
\triangleright Using Macaulay2 we verified the conjecture in the following cases

n	2	3	4	5	6	7	8	9	10
r	≤ 1825	≤ 1534	≤ 991	≤ 600	≤ 447	≤ 316	≤ 333	≤ 204	≤ 259
d	≤ 58	≤ 18	≤ 9	≤ 6	≤ 4	≤ 3	≤ 3	≤ 2	≤ 2

Visualization of the saturation gaps in \mathbb{P}^{2}

\triangleright ESC predicts exactly how large the difference between I and $I_{\langle d\rangle}$ is

Figure 3: The saturation gaps for all values of $r \leq 102$ in \mathbb{P}^{2}.

Visualization of the saturation gaps in \mathbb{P}^{3}

Figure 4: The saturation gaps for all values of $r \leq 116$ in \mathbb{P}^{3}.

Outlook

\triangleright Characteristic $p>0$? \rightsquigarrow Should carry over.
\triangleright Proving the conjecture in \mathbb{P}^{2} ?
\triangleright Improve code to verify more cases
\triangleright Generalizations multi-graded setting, e.g. points in $\mathbb{P}^{n} \times \mathbb{P}^{m}$
\triangleright State a conjecture for the minimal free resolution of $I(Z)_{\langle d\rangle}$

Thank you! Questions?

Preprint soon ${ }^{\text {TM }}$

References i

立 A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto. The hitchhiker guide to: Secant varieties and tensor decomposition. Mathematics, 6(12):314, 2018.
固 Ralf Fröberg.
An inequality for hilbert series of graded algebras.
Mathematica Scandinavica, 56(2), 1985.
R Fulvio Gesmundo, Leonie Kayser, and Simon Telen.
Hilbert functions of chopped ideals.
In preparation, 2023.

References ii

- Anna Lorenzini.

The minimal resolution conjecture.
Journal of Algebra, 156(1), 1993.
R Simon Telen.
Solving Systems of Polynomial Equations.
PhD thesis, KU Leuven, Leuven, Belgium, 2020.
Simon Telen and Nick Vannieuwenhoven.
A normal form algorithm for tensor rank decomposition. ACM Trans. on Math. Soft., 48(4):1-35, 2022.

Image credit

\triangleright Slide 3: "Hacken Holz" by vitranc on iStock
https://www.istockphoto.com/de/foto/hacken-holz-gm504268819-44840794
\triangleright Slide 4: Created using Asymptote
https://asymptote.sourceforge.io/

