

# Hilbert functions of chopped ideals

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Nonlinear Algebra Seminar

Leonie Kayser (joint with Fulvio Gesmundo & Simon Telen) kayser@mis.mpg.de

June 21, 2023



## Motivation: Eigenvalue methods for polynomial system solving

- Task: Given 0-dim'l system  $J \subseteq S = \mathbb{C}[x_0, \dots, x_n]$ , compute  $Z = \{z_1, \dots, z_r\} = \mathcal{V}(J) \subseteq \mathbb{P}^n$ 
  - $\,\triangleright\,$  For t large enough,  $h_{S/J}(t)\coloneqq \dim_{\mathbb{C}}(S/J)_t=r$  and  $J_t=I(Z)_t$
  - $\triangleright$  Multiplication map:  $g \in S_e$ ,  $M_g \colon (S/J)_d \stackrel{\cdot g}{\longrightarrow} (S/J)_{d+e}$
  - $\triangleright$  Under "suitable conditions"  $M_h^{-1}M_g \colon (S/J)_d \to (S/J)_d$  has left eigenpairs

$$\{(\operatorname{ev}_{z_i}, \frac{g}{h}(z_i)) \mid i = 1, \dots, r\}, \quad \operatorname{ev}_{z_i}(f) = f(z_i)/h(z_i)$$

~> Translate problem into large eigenvalue problem, solve numerically

 $\triangleright$  For this need  $h_{S/J}(d+e) = h_{S/J}(d) = r$ , want d, d+e as small as possible

#### **Example:** J saturated

If J = I(Z) and Z is a general set of points, then  $h_{S/I(Z)} = \min\{h_S(t), r\}$ . Hence  $d = \min\{t \mid h_S(t) \ge r\}$  and e = 1 work.

#### Motivation: Symmetric tensor decomposition

Task: Given  $F \in T = \mathbb{C}[X_0, \dots, X_n]$  of degree D, calculate decomposition

 $F = L_1^D + \dots + L_r^D, \qquad L_i \in T_1, \ r = \operatorname{rk}(F) \text{ minimal}$ 

▷ If  $r < h_S(\lfloor \frac{D}{2} \rfloor) - n$ , then generically unique summands

 $[F] \dashrightarrow Z = \{[L_1], \dots, [L_r]\} \subseteq \mathbb{P}(T_1)$ 

 $\triangleright$  Equations of Z are contained in the kernel of the Catalecticant map

$$C_F(d, D-d) \colon S_d \to T_{D-d}, \qquad g \mapsto g(\partial_0, \dots, \partial_n)F$$

▷  $I(Z)_d \subseteq \operatorname{Ker} C_F(d, D - d)$  with equality for  $d \leq \lfloor \frac{D}{2} \rfloor$  and F general  $\rightsquigarrow$  Obtain all equations on Z in a single *low* degree d

Key example:  $F \in \mathbb{C}[X_0, X_1, X_2]_{10}$  of rank 18, obtain equations of degree  $\leq 5$ 

## The funny word in the title

#### **Definition (Chopped ideal)**

The *chopped ideal* of a homogeneous ideal  $I \subseteq S$  in degree d is  $I_{\langle d \rangle} \coloneqq \langle I_d \rangle_S$ .

From now on  $Z \subseteq \mathbb{P}^n$  is a general set of r points,  $I = I(Z), d = \min \{ t \mid h_S(t) \ge r \}.$ 

- $\triangleright$  Can we recover Z from  $I(Z)_{\langle d \rangle}$ ?
- $\triangleright$  When does  $(I(Z)_{\langle d \rangle})_{d+e} = I(Z)_{d+e}$ ?
- $\triangleright$  What is the Hilbert function  $h_{I(Z)_{\langle d \rangle}}(t)$ ?



#### Example: Z = 18 points in the plane



| t                                | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  |
|----------------------------------|---|---|---|----|----|----|----|----|
| $h_S(t)$                         | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 |
| $h_{S/I}(t)$                     | 1 | 3 | 6 | 10 | 15 | 18 | 18 | 18 |
| $h_{S/I_{\langle 5 \rangle}}(t)$ | 1 | 3 | 6 | 10 | 15 | 18 | 19 | 18 |

**Figure 1:** Three quintics  $\langle q_1, q_2, q_3 \rangle_{\mathbb{C}} = I_5$  passing through 18 general points (left) and the missing split sextic  $cc' \in I_6$  (right).



#### Recovering the points from their chopped ideal

 $\triangleright$  Generally  $I_{\langle d \rangle} \subsetneq I$ , but maybe

$$I \stackrel{?}{=} (I_{\langle d \rangle})^{\text{sat}} \coloneqq \bigcup_{k \ge 0} (I_{\langle d \rangle} : \mathfrak{m}^k) \qquad \Longleftrightarrow \qquad \mathcal{V}(I) \stackrel{?}{=} \mathcal{V}(I_{\langle d \rangle}) \subseteq \mathbb{P}^n$$

#### Theorem

Let  $Z \subseteq \mathbb{P}^n$  be a general set of r points and  $d \in \mathbb{N}$ .

If r > (<sup>n+d</sup><sub>n</sub>) - n, then V(I<sub>⟨d⟩</sub>) is a positive-dimensional complete intersection.
If r = (<sup>n+d</sup><sub>n</sub>) - n, then V(I<sub>⟨d⟩</sub>) is a complete intersection of d<sup>n</sup> points.
If r < (<sup>n+d</sup><sub>n</sub>) - n, then I<sub>⟨d⟩</sub> cuts out Z scheme-theoretically.

 $\,\triangleright\,$  Graded components of  $I_{\langle d \rangle}$  are images of multiplication map

$$\mu_e \colon S_e \otimes_{\mathbb{C}} I_d \to I_{d+e}, \qquad g \otimes f \mapsto g \cdot f$$

 $\triangleright$  One may expect  $\mu_e$  to have *maximal rank*, i.e. to be injective or surjective:

$$h_{I_{\langle d \rangle}}(t) \stackrel{?}{=} \min\{h_I(t), h_S(t-d) \cdot h_I(d)\}$$

 $\rightarrow e = 1$ : Ideal generation conjecture (IGC) predicting number of minimal generators of I

 $\triangleright$  This turns out to be too optimistic;  $\mu_e$  has elements in its kernel, for example

$$f_1 \otimes f_2 - f_2 \otimes f_1 \in \operatorname{Ker} \mu_d, \qquad f_1, f_2 \in I_d$$

 $\triangleright$  This *does* happen, e.g. r = 52 points in  $\mathbb{P}^3$ , then  $\mu_5$  does not have maximal rank

# Thank you! Questions?

Better luck next time ;(

#### Towards the expected Hilbert function – for real

 $\triangleright$  The kernel of  $\mu_e$  contains the Koszul syzygies  $\mathrm{Ksz}_e$  generated by

 $gf_i \otimes f_j - gf_j \otimes f_i, \qquad g \in S_{e-d}, \ f_i, f_j \in I_d$ 

 $\triangleright \ \mathsf{Expecting} \ \mathrm{Ker} \ \mu_e = \mathrm{Ksz}_e, \ \mathsf{a} \ \mathsf{first} \ \mathsf{estimate} \ \mathsf{of} \ \dim_{\mathbb{C}} \mathrm{Ker} \ \mu_e \ \mathsf{is} \ h_S(e-d) \cdot {h_I(d) \choose 2}$ 

- ▷ Expect the syzygies to also only have Koszul syzygies, correct by  $h_S(e-2d) \cdot {\binom{h_I(d)}{3}}$ ▷ And these also only have Koszul syzygies and ...
- $\triangleright$  This leads to the following estimate for  $h_{S/I_{(A)}}(t)$ :

$$h_{S}(t) - \underbrace{h_{S}(t-d)h_{I}(d)}_{\text{gen's of }I_{d}} + \underbrace{h_{S}(t-2d)\binom{h_{I}(d)}{2}}_{\text{Koszul syzygies}} - \underbrace{h_{S}(t-3d)\binom{h_{I}(d)}{3}}_{\text{Koszul syzyg syzygies}} \pm \dots$$

 $\triangleright$  On the other hand, as soon as  $h_{I_{\langle d \rangle}}(t_0) \ge h_I(t_0)$ , then  $I_t = (I_{\langle d \rangle})_t$  for  $t \ge t_0$ 

#### The main conjecture

# Expected syzygy conjecture (ESC)

$$h_{S/I_{\langle d \rangle}}(t) = \begin{cases} \sum_{k \ge 0} (-1)^k \cdot h_S(t - kd) \cdot \binom{h_I(d)}{k} & t < t_0, \\ r & t \ge t_0, \end{cases}$$

where  $t_0$  is the least integer > d such that the sum is at most r.

- > This is always a lower bound due to Fröberg
- ▷ Alternative expression for the ideal:

$$h_{I_{\langle d \rangle}}(t) = \begin{cases} \sum_{k \ge 1} (-1)^{k-1} \cdot h_S(t-kd) \cdot \binom{h_I(d)}{k} & t < t_0, \\ h_I(t) & t \ge t_0, \end{cases}$$

#### Is the complicated alternating sum really needed?

▷ For  $\mathbb{P}^2$  the (ESC) "actually" says  $h_{I_{\langle d \rangle}}(t) = \min\{h_I(d) \cdot h_S(t-d), h_I(t)\}$ ▷ This is no longer true in higher dimension – in general n summands are required ▷ Smallest example: 52 points in  $\mathbb{P}^3$ 





**Figure 2:** The Hilbert function of the chopped ideal of 52 general points in  $\mathbb{P}^3$ .

#### Main results

#### Theorem

Conjecture (ESC) is true in the following cases:

 $\triangleright r_{\max} \coloneqq h_S(d) - (n+1)$  for all d in all dimensions n.

- $\triangleright$  In the plane for  $r_{\min} = \frac{1}{2}(d+1)^2$  when d is odd.
- $\triangleright r \leq \frac{1}{n} ((n+1)h_S(d) h_S(d+1))$  and  $[n \leq 4 \text{ or generally whenever (IGC) holds}].$
- ▷ In a large number of individual cases in low dimension (next slide).

The length of the saturation gap is bounded above by

$$\min\{e > 0 \mid (I_{\langle d \rangle})_{d+e} = I_{d+e}\} \le (n-1)d - (n+1).$$

Whenever  $I_{\langle d \rangle}$  is non-saturated, one has  $\operatorname{reg}_{CM} S/I_{\langle d \rangle} = \operatorname{reg}_{H} S/I_{\langle d \rangle} - 1 = d + e - 1$ .

### Verification using computer algebra

- $\triangleright$  Testing the conjecture for particular values of (n, r):
  - Sample r random points from  $\mathbb{P}^n(\mathbb{Q})$
  - Calculate  $h_{S/I(Z)_{\langle d \rangle}}$  using a computer algebra system
  - If the sample satisfies (ESC), then the conjecture is true for general such Z

#### Theorem

The map  $Z \mapsto h_{S/I(Z)_{\langle d \rangle}}(t)$  is upper semicontinuous on the set  $U \subseteq (\mathbb{P}^n)^r$  of points with generic Hilbert function.

- $\triangleright$  To speed up computation, perform calculations over a finite field  $\mathbb{F}_p$
- $\triangleright$  Using Macaulay2 we verified the conjecture in the following cases

| n | 2           | 3           | 4          | 5          | 6          | 7          | 8          | 9          | 10         |
|---|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| r | $\leq 1825$ | $\leq 1534$ | $\leq 991$ | $\leq 600$ | $\leq 447$ | $\leq 316$ | $\leq 333$ | $\leq 204$ | $\leq 259$ |
| d | $\leq 58$   | $\leq 18$   | $\leq 9$   | $\leq 6$   | $\leq 4$   | $\leq 3$   | $\leq 3$   | $\leq 2$   | $\leq 2$   |

#### Visualization of the saturation gaps in $\mathbb{P}^2$

 $\triangleright\,$  ESC predicts exactly how large the difference between I and  $I_{\langle d \rangle}$  is



**Figure 3:** The saturation gaps for all values of  $r \leq 102$  in  $\mathbb{P}^2$ .

#### Visualization of the saturation gaps in $\mathbb{P}^3$



**Figure 4:** The saturation gaps for all values of  $r \leq 116$  in  $\mathbb{P}^3$ .

- $\triangleright~{\rm Characteristic}~p>0?~\rightsquigarrow~{\rm Should}~{\rm carry}~{\rm over}.$
- $\triangleright$  Proving the conjecture in  $\mathbb{P}^2$ ?
- Improve code to verify more cases
- $\,\triangleright\,$  Generalizations multi-graded setting, e.g. points in  $\mathbb{P}^n\times\mathbb{P}^m$
- $\triangleright$  State a conjecture for the minimal free resolution of  $I(Z)_{\langle d \rangle}$

# Thank you! Questions?

Preprint soon<sup>TM</sup>

 A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto.
The hitchhiker guide to: Secant varieties and tensor decomposition. *Mathematics*, 6(12):314, 2018.

🔋 Ralf Fröberg.

An inequality for hilbert series of graded algebras. Mathematica Scandinavica, 56(2), 1985.

Fulvio Gesmundo, Leonie Kayser, and Simon Telen.
Hilbert functions of chopped ideals.
In preparation, 2023.

# References ii

# 🚺 Anna Lorenzini.

The minimal resolution conjecture.

Journal of Algebra, 156(1), 1993.

Simon Telen.

**Solving Systems of Polynomial Equations.** PhD thesis, KU Leuven, Leuven, Belgium, 2020.

Simon Telen and Nick Vannieuwenhoven.
A normal form algorithm for tensor rank decomposition.
ACM Trans. on Math. Soft., 48(4):1–35, 2022.

- > Slide 3: "Hacken Holz" by vitranc on iStock https://www.istockphoto.com/de/foto/hacken-holz-gm504268819-44840794
- Slide 4: Created using Asymptote https://asymptote.sourceforge.io/