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Motivation: Eigenvalue methods for polynomial system solving

Task: Given 0-dim’l system J ⊆ S = C[x0, . . . , xn], compute Z = {z1, . . . , zr} = V(J) ⊆ Pn

▷ For t large enough, hS/J(t) := dimC(S/J)t = r and Jt = I(Z)t

▷ Multiplication map: g ∈ Se, Mg : (S/J)d
·g−→ (S/J)d+e

▷ Under “suitable conditions” M−1
h Mg : (S/J)d → (S/J)d has left eigenpairs

{ (evzi ,
g
h(zi)) | i = 1, . . . , r } , evzi(f) = f(zi)/h(zi)

⇝ Translate problem into large eigenvalue problem, solve numerically

▷ For this need hS/J(d+ e) = hS/J(d) = r, want d, d+ e as small as possible

Example: J saturated

If J = I(Z) and Z is a general set of points, then hS/I(Z) = min{hS(t), r}.
Hence d = min { t | hS(t) ≥ r } and e = 1 work.
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Motivation: Symmetric tensor decomposition

Task: Given F ∈ T = C[X0, . . . , Xn] of degree D, calculate decomposition

F = LD
1 + · · ·+ LD

r , Li ∈ T1, r = rk(F ) minimal

▷ If r < hS(⌊D2 ⌋)− n, then generically unique summands

[F ] 99K Z = {[L1], . . . , [Lr]} ⊆ P(T1)

▷ Equations of Z are contained in the kernel of the Catalecticant map

CF (d,D − d) : Sd → TD−d, g 7→ g(∂0, . . . , ∂n)F

▷ I(Z)d ⊆ KerCF (d,D − d) with equality for d ≤ ⌊D2 ⌋ and F general

⇝ Obtain all equations on Z in a single low degree d

Key example: F ∈ C[X0, X1, X2]10 of rank 18, obtain equations of degree ≤ 5
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The funny word in the title

Definition (Chopped ideal)

The chopped ideal of a homogeneous ideal I ⊆ S in degree d is I⟨d⟩ := ⟨Id⟩S .

From now on Z ⊆ Pn is a general set of r points,

I = I(Z), d = min { t | hS(t) ≥ r }.
▷ Can we recover Z from I(Z)⟨d⟩?

▷ When does (I(Z)⟨d⟩)d+e = I(Z)d+e?

▷ What is the Hilbert function hI(Z)⟨d⟩(t)?
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Example: Z = 18 points in the plane

t . . . 3 4 5 6 7

hS(t) . . . 10 15 21 28 36

hI(t) . . . 0 0 3 10 18

hI⟨5⟩(t) . . . 0 0 3 9 18

t 0 1 2 3 4 5 6 7

hS(t) 1 3 6 10 15 21 28 36

hS/I(t) 1 3 6 10 15 18 18 18

hS/I⟨5⟩(t) 1 3 6 10 15 18 19 18

Figure 1: Three quintics

⟨q1, q2, q3⟩C = I5 passing

through 18 general points

(left) and the missing split

sextic cc′ ∈ I6 (right).
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Recovering the points from their chopped ideal

▷ Generally I⟨d⟩ ⊊ I, but maybe

I
?
= (I⟨d⟩)

sat :=
⋃
k≥0

(I⟨d⟩ : m
k) ⇐⇒ V(I)

?
=

schemes
V(I⟨d⟩) ⊆ Pn

Theorem

Let Z ⊆ Pn be a general set of r points and d ∈ N.

1. If r >
(
n+d
n

)
− n, then V(I⟨d⟩) is a positive-dimensional complete intersection.

2. If r =
(
n+d
n

)
− n, then V(I⟨d⟩) is a complete intersection of dn points.

3. If r <
(
n+d
n

)
− n, then I⟨d⟩ cuts out Z scheme-theoretically.

In particular, I = (I⟨d⟩)
sat if and only if r <

(
n+d
n

)
− n or r = 1 or (n, r) = (2, 4).

5



Towards the expected Hilbert function

▷ Graded components of I⟨d⟩ are images of multiplication map

µe : Se ⊗C Id → Id+e, g ⊗ f 7→ g · f

▷ One may expect µe to have maximal rank, i.e. to be injective or surjective:

hI⟨d⟩(t)
?
= min{hI(t), hS(t− d) · hI(d)}

⇝ e = 1: Ideal generation conjecture (IGC) predicting number of minimal generators of I

▷ This turns out to be too optimistic; µe has elements in its kernel, for example

f1 ⊗ f2 − f2 ⊗ f1 ∈ Kerµd, f1, f2 ∈ Id

▷ This does happen, e.g. r = 52 points in P3, then µ5 does not have maximal rank
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Thank you! Questions?
Better luck next time ;(
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Towards the expected Hilbert function – for real

▷ The kernel of µe contains the Koszul syzygies Ksze generated by

gfi ⊗ fj − gfj ⊗ fi, g ∈ Se−d, fi, fj ∈ Id

▷ Expecting Kerµe = Ksze, a first estimate of dimCKerµe is hS(e− d) ·
(
hI(d)
2

)
▷ Expect the syzygies to also only have Koszul syzygies, correct by hS(e− 2d) ·

(
hI(d)
3

)
▷ And these also only have Koszul syzygies and . . .

▷ This leads to the following estimate for hS/I⟨d⟩(t):

hS(t)− hS(t− d)hI(d)︸ ︷︷ ︸
gen’s of Id

+hS(t− 2d)

(
hI(d)

2

)
︸ ︷︷ ︸

Koszul syzygies

−hS(t− 3d)

(
hI(d)

3

)
︸ ︷︷ ︸
Koszul syzygy syzygies

± . . .

▷ On the other hand, as soon as hI⟨d⟩(t0) ≥ hI(t0), then It = (I⟨d⟩)t for t ≥ t0
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The main conjecture

Expected syzygy conjecture (ESC)

hS/I⟨d⟩(t) =


∑
k≥0

(−1)k · hS(t− kd) ·
(
hI(d)

k

)
t < t0,

r t ≥ t0,

where t0 is the least integer > d such that the sum is at most r.

▷ This is always a lower bound due to Fröberg

▷ Alternative expression for the ideal:

hI⟨d⟩(t) =


∑
k≥1

(−1)k−1 · hS(t− kd) ·
(
hI(d)

k

)
t < t0,

hI(t) t ≥ t0,
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Is the complicated alternating sum really needed?

▷ For P2 the (ESC) “actually” says hI⟨d⟩(t) = min{hI(d) · hS(t− d), hI(t)}
▷ This is no longer true in higher dimension – in general n summands are required

▷ Smallest example: 52 points in P3

hS/I⟨5⟩(t) =hS(t)− 4hS(t− 5) + 6hS(t− 10) t < 11,

52 t ≥ 11
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Figure 2: The Hilbert function of the chopped

ideal of 52 general points in P3.
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Main results

Theorem

Conjecture (ESC) is true in the following cases:

▷ rmax := hS(d)− (n+ 1) for all d in all dimensions n.

▷ In the plane for rmin = 1
2(d+ 1)2 when d is odd.

▷ r ≤ 1
n

(
(n+ 1)hS(d)− hS(d+ 1)

)
and [n ≤ 4 or generally whenever (IGC) holds].

▷ In a large number of individual cases in low dimension (next slide).

The length of the saturation gap is bounded above by

min { e > 0 | (I⟨d⟩)d+e = Id+e } ≤ (n− 1)d− (n+ 1).

Whenever I⟨d⟩ is non-saturated, one has regCM S/I⟨d⟩ = regH S/I⟨d⟩ − 1 = d+ e− 1.
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Verification using computer algebra

▷ Testing the conjecture for particular values of (n, r):
• Sample r random points from Pn(Q)

• Calculate hS/I(Z)⟨d⟩ using a computer algebra system

• If the sample satisfies (ESC), then the conjecture is true for general such Z

Theorem

The map Z 7→ hS/I(Z)⟨d⟩(t) is upper semicontinuous on the set U ⊆ (Pn)r of points with

generic Hilbert function.

▷ To speed up computation, perform calculations over a finite field Fp

▷ Using Macaulay2 we verified the conjecture in the following cases

n 2 3 4 5 6 7 8 9 10

r ≤ 1825 ≤ 1534 ≤ 991 ≤ 600 ≤ 447 ≤ 316 ≤ 333 ≤ 204 ≤ 259

d ≤ 58 ≤ 18 ≤ 9 ≤ 6 ≤ 4 ≤ 3 ≤ 3 ≤ 2 ≤ 2
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Visualization of the saturation gaps in P2

▷ ESC predicts exactly how large the difference between I and I⟨d⟩ is

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

r = #points

g
ap

[d
,d

+
e]

Figure 3: The saturation gaps for all values of r ≤ 102 in P2. 12



Visualization of the saturation gaps in P3
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Figure 4: The saturation gaps for all values of r ≤ 116 in P3.
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Outlook

▷ Characteristic p > 0? ⇝ Should carry over.

▷ Proving the conjecture in P2?

▷ Improve code to verify more cases

▷ Generalizations multi-graded setting, e.g. points in Pn × Pm

▷ State a conjecture for the minimal free resolution of I(Z)⟨d⟩
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Thank you! Questions?
Preprint soonTM
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