

Hilbert Functions of Chopped Ideals

Fulvio Gesmundo¹ Leonie Kayser² Simon Telen²

¹University of Saarland ²MPI MiS Leipzig

In symmetric tensor decomposition the goal is to decompose a degree D form

 $F \in T = \mathbb{C}[X_0, \dots, X_n]$ as $F = L_1^D + \dots + L_r^D$

with the minimal number of powers of linear forms. Considering the low rank case $r < \binom{n+\lfloor D/2 \rfloor}{n} - n$, this decomposition is generically unique.

The points $Z = \{[L_1], \ldots, [L_r]\} \subseteq \mathbb{P}(T_1)$ are solutions to an over-determined system of polynomial equations arising from the *Catalecticant matrix* of F. These equations generate a sub-ideal of the vanishing ideal I(Z), generated in a single degree.

In order to numerically solve these systems, one can employ *numerical normal form methods* [3]. These transform zero-dimensional systems of polynomial equations into eigenvalue problems. The complexity of this algorithms is governed by the Hilbert regularity of the equations at hand.

We propose the values of the **Hilbert functions of** these **chopped ideals**.

Hilbert functions

The Hilbert function of a finite graded S-module M is $h_M(t) \coloneqq \dim_{\mathbb{C}} M_t$. The Hilbert function of a set of r points $h_Z \coloneqq h_{S/I(Z)}$ is non-decreasing towards r. If Z is in general position, then

 $h_Z(t) = \min \{ h_S(t), r \}, \qquad h_S(t) = \max \{ \binom{n+t}{n}, 0 \}.$

By the previous theorem, for general Z (with $r < h_S(d) - n$) one has

 $(I_{\langle d \rangle})_d = I_d, \qquad (I_{\langle d \rangle})_t = I_t, \quad t \gg 0,$

since saturation alters only finitely many components.

Question. What are the values of $h_{S/I_{\langle d \rangle}}$ in between? How large is the saturation gap?

The components of $I_{\langle d \rangle}$ are the images under the multiplication maps

 $\mu_e\colon S_e\otimes I_d\to I_{d+e}.$

Assuming this linear map has the largest rank possible, one expects:

FOR MATHEMATICS

MAX PLANCK INSTITUTE

This procedure has been implemented in Julia. It computes the decomposition of a general rank r = 400 form of degree D = 12 in n + 1 = 6 variables with 10 digits of accuracy within 25 seconds on a MacBook Pro with an Intel Core i7 processor.

Chopped ideals

Let $S \coloneqq \mathbb{C}[x_0, \ldots, x_n]$ be a polynomial ring and $0 \neq I \subseteq S$ a homogeneous ideal.

Definition. The chopped ideal of I in degree d is the ideal $I_{\langle d \rangle} \coloneqq \langle I_d \rangle_S$ generated by the elements in degree d. We usually consider d to be the lowest degree with $I_d \neq 0$.

Now let I = I(Z) be the ideal of a finite set of points $Z = \{z_1, \ldots, z_r\} \subseteq \mathbb{P}^n(\mathbb{C})$. In chopping the ideal, we consider only the equations on Z of a fixed degree. The goal is to recover Z from $I_{\langle d \rangle}$. Generally $I_{\langle d \rangle} \subsetneq I$, but one may hope that

 $I(Z) \stackrel{?}{=} (I_{\langle d \rangle})^{\text{sat}} \coloneqq (I_{\langle d \rangle} : \mathfrak{m}^{\infty}), \qquad \mathfrak{m} = \langle x_0, \dots, x_n \rangle_S.$

This is the case if and only if Z is scheme-theoretically cut out by $I(Z)_d$.

Theorem. Let $Z \subseteq \mathbb{P}^n$ be a general collection of r points with ideal I = I(Z) and d > 0.

• If $r > \binom{n+d}{n} - n$, then $V(I_{\langle d \rangle})$ is a positive-dimensional complete intersection.

• If $r = \binom{n+d}{n} - n$, then $V(I_{\langle d \rangle})$ is a complete intersection of d^n points.

• If $r < \binom{n+d}{n} - n$, then $I_{\langle d
angle}$ cuts out Z scheme-theoretically.

In particular, $(I_{\langle d \rangle})^{\text{sat}} = I$ if and only if $r < \binom{n+d}{n} - n$ or r = 1 or (n, r) = (2, 4).

Example: 18 points in the plane

Conjecture (Expected syzygy conjecture). For Z general the Hilbert function is

$$h_{S/I_{\langle d \rangle}}(t) = \sum_{k \ge 0} (-1)^k \cdot h_S(t - kd) \cdot \binom{h_S(d) - r}{k}$$
(1)

until this sum is less than or equal to r for $t_0 > d$, from which point on it stabilizes at r.

This expression is always a (lexicographic) lower bound due to a famous theorem of Fröberg [1]. The case t = d + 1 is equivalent to the *Ideal Generation Conjecture* (IGC) [2]; our conjecture is a natural generalization thereof.

Main results

Theorem. Conjecture (1) is true in the following cases:

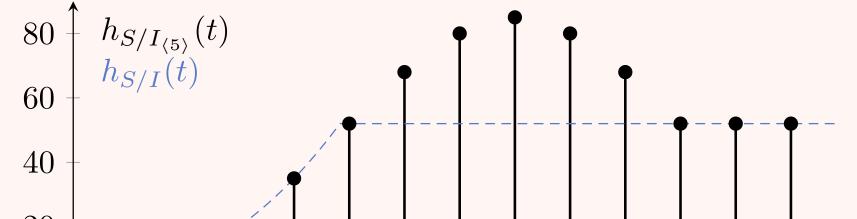
r_{max} := $\binom{n+d}{n} - (n+1)$ for all d in all dimensions n.
In the plane for $r_{\min} = \frac{1}{2}(d+1)^2$ when d is odd.
 $r \leq \frac{1}{n}((n+1)h_S(d) - h_S(d+1))$ and $n \leq 4$, or generally whenever (IGC) holds.

In a large number of individual cases in low dimension, see next section.

Furthermore, the length of the saturation gap is bounded above by

 $e_0 = \min \{ e > 0 \mid (I_{\langle d \rangle})_{d+e} = I_{d+e} \} \le (n-1)d - (n+1).$

The alternating sum in (1) is really necessary, as witnessed by fig. 3 ($e_0 > d$).



The smallest interesting example occurs for r = 18 general points Z in the plane (see also fig. 4). In the tensor setting, this corresponds to a general rank 18 form of degree 10 in 3 variables. The components of I = I(Z) have dimension

 $\dim_{\mathbb{C}} I_t = \max\left\{ \begin{pmatrix} t+2\\2 \end{pmatrix} - 18, 0 \right\}.$

The lowest nonzero component I_5 is generated by $\binom{5+2}{2} - 18 = 3$ quintics q_1, q_2, q_3 . These polynomials do *not* generate I; indeed

 $\dim_{\mathbb{C}} I_6 = 10 > 3 \cdot \dim_{\mathbb{C}} S_1 \ge \dim_{\mathbb{C}} (I_{\langle 5 \rangle})_6.$

It turns out that $(I_{\langle 5 \rangle})_7 = I_7$; this is possible since

 $\dim_{\mathbb{C}} I_7 = 18 = 3 \cdot \dim_{\mathbb{C}} S_2.$

The Hilbert functions of the two ideals are displayed in fig. 1.

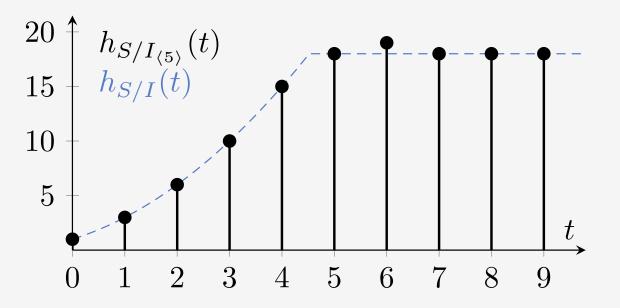


Figure 1. The Hilbert function of the chopped ideal of 18 points in \mathbb{P}^2 .

Which generator of I_6 is missing? Splitting the points in groups of 9 + 9, there is a unique cubic through each group. Their product spans a complement of $(I_{\langle 5 \rangle})_6$ in I_6 .

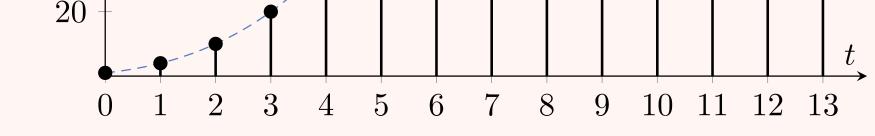


Figure 3. The Hilbert function of the chopped ideal of 52 points in \mathbb{P}^3 .

Theorem. Whenever $I_{\langle d \rangle}$ is non-saturated, one has $\operatorname{reg}_{CM} S/I_{\langle d \rangle} = \operatorname{reg}_{H} S/I_{\langle d \rangle} - 1$.

Here reg_{CM} is the Castelnuovo-Mumford regularity and reg_{H} is the degree from which on the Hilbert function becomes constant.

The methods used in the proofs include syzygies, liaison (in higher codimension), the mapping cone construction, Hilbert-Burch theory and local cohomology.

Verification using computer algebra

To test the conjecture, one can randomly sample r points from $\mathbb{P}^n(\mathbb{Q})$ and calculate the Hilbert function using computer algebra. If the sample satisfies (1), then by the following theorem the conjecture holds true for this r.

Theorem. For fixed t the map $Z \mapsto h_{S/I(Z)_{\langle d \rangle}}(t)$ is upper semicontinuous on the set $U \subseteq (\mathbb{P}^n)^r$ of points with generic Hilbert function.

To speed up the computation, it suffices to verify the conjecture over a finite field \mathbb{F}_p . Using Macaulay2 we verified the conjecture in the following ranges

	n	2	3	4	5	6	7	8	9	10	
-	r	≤ 2343	≤ 2296	≤ 1815	≤ 1260	≤ 904	≤ 760	≤ 479	≤ 207	≤ 267	

The following figure shows the distributions of the gap lengths for various r in the plane.

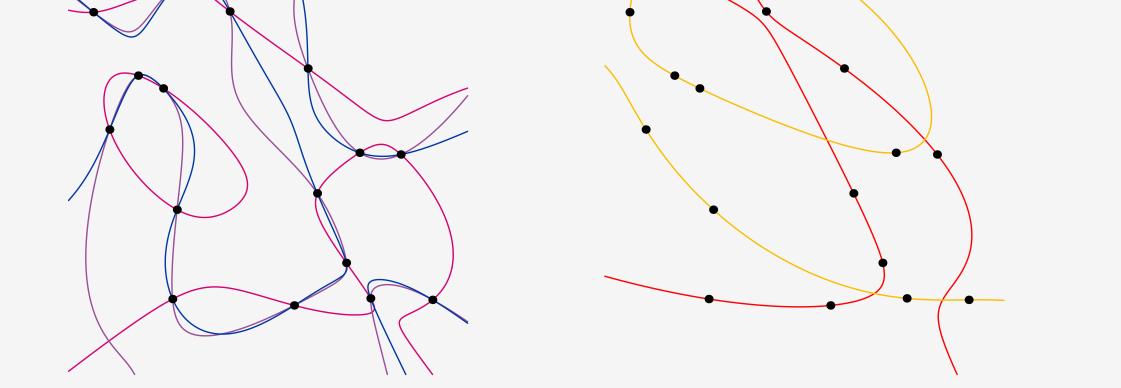


Figure 2. Three quintics (left) and a split sextic (right) through 18 points.

References

R. Fröberg, "An inequality for hilbert series of graded algebras," *Mathematica Scandinavica*, vol. 56, no. 2, 1985.
 A. Lorenzini, "The minimal resolution conjecture," *Journal of Algebra*, vol. 156, no. 1, 1993.
 S. Telen, "Solving systems of polynomial equations," Ph.D. dissertation, KU Leuven, Leuven, Belgium, 2020.

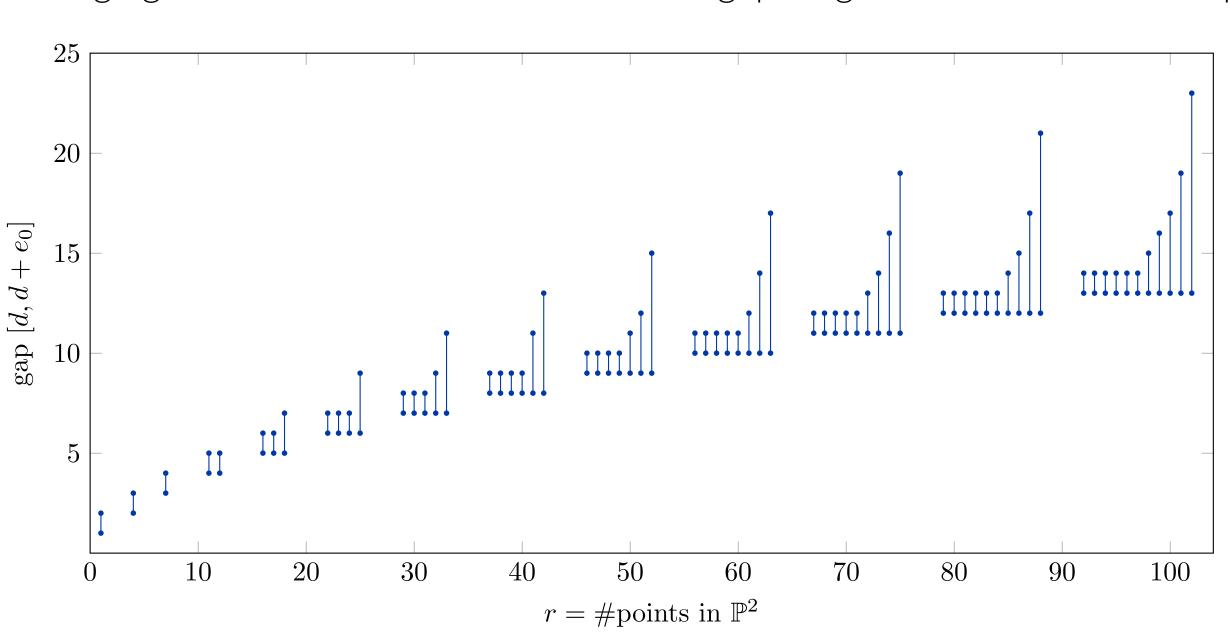


Figure 4. The saturation gaps for all values of $r \leq 102$ in the plane.

arXiv:2307.02560

SIAM Conference on Applied Algebraic Geometry (AG23), Eindhoven

kayser@mis.mpg.de