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(Symmetric) tensor decomposition
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What is a tensor?

A tensor. . .

▷ . . . is an object that transforms like a tensor

▷ . . . is an element of a tensor product of vector spaces U ⊗ V ⊗W

▷ . . . is a multidimensional array of numbers A = (Ai1...id)i1,...,id ∈ Cn1×···×nd

▷ . . . in (Cn)⊗d is symmetric if its entries are invariant under permutations σ ∈ Sd

▷ Symmetric tensors can be identified with homogeneous polynomials

C[x1, . . . , xn]d ∋ xi1 · · ·xid ←→ 1

d!

∑
σ∈Sd

xiσ(1)
⊗ · · · ⊗ xiσ(d)

∈ SymdCn ⊆ (Cn)⊗d
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Tensor decomposition and rank

▷ A tensor of the form (uivjwk)i,j,k =̂ u⊗ v ⊗ w is simple

▷ Every tensor is a linear combination of simple tensors

A =

r∑
i=1

λiu
(i) ⊗ v(i) ⊗ w(i)

▷ The smallest such r is the tensor rank of A

▷ Generalizes matrix rank: Cm×n ∋ A = S · diag(1, . . . , 1︸ ︷︷ ︸
rankA

, 0, . . . ) · T =
∑r

i=1 S∗,i · Ti,∗

▷ If the simple tensors are unique up to scaling, then A is called identifiable

▷ Symmetric case: Simple tensor v⊗d =̂ Ld powers of linear forms, F =
∑r

i=1 λiL
d
i

▷ Symmetric tensor rank, identifiability, . . .
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Forms of small rank often have unique decompositions

Let Td = C[X0, . . . , Xn]d ∼= C(
n+d
n ) be the vector space of degree d forms

▷ (Alexander–Hirschowitz)

A general form F ∈ Td has rank
⌈

1
n+1

(
n+d
n

)⌉
except in a few cases

▷ (Ballico, Mella, Chiantini–Ottaviani–Vannieuwenhoven, . . . )

For r < 1
n+1

(
n+d
d

)
a general form of rank r is identifiable except in a few cases

Running example

A general F ∈ C[X0, X1, X2]10 has rkF = 1
3

(
2+10
2

)
= 22. The set of such forms of rank

18 has dimension 54 in C66. A random such F has a unique decomposition

F = L10
1 + · · ·+ L10

18, Li ∈ C[X0, X1, X2]1.
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Apolarity and eigenvalue methods



The catalecticant method

▷ Assume general F =
∑r

i=1 L
d
i ∈ Td of rank r

▷ Linear forms as points in projective space [Li] ∈ P(T1) = Pn
C P(V ) = (V \ 0)/C×

▷ Catalecticant method yields polynomials vanishing on Z = {[L1], . . . , [Lr]} ⊆ Pn

⇝ ⇝

▷ In fact: Obtain all homog. equations of degree ≤ d/2 vanishing on Z

⇝ Hope: Solutions to equations are exactly the [Li]!
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The algorithm

▷ Equations via kernel of catalecticant maps Catj(F )

▷ Algorithmic approach:

1. Compute kernel basis F of the linear catalecticant map Cat⌊d/2⌋(F )

2. Solve polynomial system {F = 0} to get Zeros(F) ?
= {[L1], . . . , [Lr]},

3. Solve linear equations to get λi in F =
∑r

i=1 λiL
d
i

▷ (At least) three common approaches:

• Gröbner bases computation (symbolic)

• Homotopy continuation (numerical)

• Eigenvalue/normal form methods (numerical/mixed)

⇝ Focus on the eigenvalue method approach here
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Eigenvalue methods for polynomial system solving

Task: Given 0-dim’l system {F = 0}, compute finite set Z = {z1, . . . , zr} = Zeros(F) ⊆ Pn

▷ Consider ideal J := ⟨F⟩S =
⊕

t≥0 Jt, this is a graded subspace of S with

Jt = St−deg f1f1 + · · ·+ St−deg fsfs ⊆ St

▷ For t large enough the Hilbert function hfS/J(t) := dimC(S/J)t is constant r

▷ Multiplication map for g ∈ Se:

Mg : (S/J)d
·g−→ (S/J)d+e

▷ Under “suitable conditions” M−1
h Mg : (S/J)d → (S/J)d has left eigenpairs

{ (evzi ,
g
h(zi)) | i = 1, . . . , r } , evzi(f) = f(zi)/h(zi)

⇝ Translate problem into large eigenvalue problem, solve numerically

▷ For this need hfS/J(d+ e) = hfS/J(d) = r, want d, d+ e as small as possible
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Non-saturated systems are harder to solve

▷ Z set of points, I = { f ∈ S | f(Z) = 0 }, then hS/I(t) is increasing

▷ If Z general, then hfS/I(t) = min{
(
n+t
n

)
, r} ⇝ d = min { t |

(
n+t
n

)
≥ r } and e = 1

▷ For “incomplete” J ⊊ I(Z) larger saturation gap e can be encountered

▷ Saturation gap governs algorithmic complexity of solving J with eigenvalue methods

Bigger example

For a general set Z ⊆ P3 of 52 points and J = I(Z)⟨5⟩ := ⟨{ f ∈ S5 | f(Z) = 0 }⟩S , we
have the Hilbert function pictured below. Smallest choice: d = 5, d+ e = 11.
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A tale of 18 points in the plane



How many forms vanish on general points?

Running example

n = 2, d = 10, r = 18, equations F have degree d/2 = 5.

F =

18∑
i=1

L10
i ∈ C[X0, X1, X2]10, [Li] ∈ P(C[X0, X1, X2]1) = P2

Decomposition is unique, want to find Z = {[L1], . . . , [L18]} ∈ P2

▷ For r general points Z ⊆ Pn, dim I(Z)t = max{0,
(
n+t
n

)
− r}

▷ Here: 21− 18 = 3 Equations F = {q1, q2, q3}, of lowest degree 5

▷ 28− 18 = 10 equations of degree 6, 26− 18 = 18 equations of degree 7,. . .

▷ dimC⟨S1 · F⟩C ≤ 3 · 3 = 9, dimC⟨S2 · F⟩C ≤ 3 · 6 = 18
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Example: Z = 18 points in the plane

t . . . 3 4 5 6 7

hfS(t) . . . 10 15 21 28 36

hfI(t) . . . 0 0 3 10 18

hfI⟨5⟩(t) . . . 0 0 3 9 18

t 0 1 2 3 4 5 6 7

hfS(t) 1 3 6 10 15 21 28 36

hfS/I(t) 1 3 6 10 15 18 18 18

hfS/I⟨5⟩(t) 1 3 6 10 15 18 19 18

1 2 3 4 5 6 7 8 9

5

10

15

20

0

t

hS/I⟨5⟩(t)

hS/I(t)

Figure 1: Three quintics ⟨q1, q2, q3⟩C = I5 passing through 18 general points.
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Macaulay2 meets
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Hilbert functions of chopped ideals!



Recap

We are lead to the following setup:

▷ Given a general form F =
∑r

i=1 L
d
i ∈ C[X1, . . . , Xn]d of “small” rank r

▷ Decomposition is unique, want to find Z = {[L1], . . . , [Lr]} ∈ Pn

▷ Want to solve Catalecticant polynomial system F using the eigenvalue method

▷ Is Zeros(F) = Z? With(out) multiplicities?

▷ What is the Hilbert function of the ideal ⟨F⟩S ⊆ S? When = r?
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For which forms is our algorithmic approach even possible?

▷ For a set of points Z consider the vanishing ideal and chopped ideal

I = { f ∈ S | f(Z) = 0 } , I⟨d⟩ = ⟨{ f ∈ Sd | f(Z) = 0 }⟩S

▷ Generally I⟨d⟩ ⊊ I, we need Zeros(I) ?
=

multiplicities
Zeros(I⟨d⟩) ⊆ Pn

Theorem

Let Z ⊆ Pn be a general set of r points and d ∈ N. Then

Zeros(I) = Zeros(I⟨d⟩) ⇐⇒ r <

(
n+ d

n

)
− n or r = 1 or (n, r, d) = (2, 4, 2).
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When planets align

▷ Let f = (f1, . . . , fs) be homogeneous polynomials of degree d

▷ A relation or syzygy of f is a vector of polynomials (g1, . . . , gs) ∈ S with

g1f1 + · · ·+ gsfs = 0

▷ For 1 ≤ i < j < s have Koszul syzygy fj · fi + (−fi) · fj = 0

▷ A syzygy syzygy is a relation (h1, . . . , hm) among syzygies, . . .

▷ There are
(
s
k

)
higher Koszul syzygies of “order” k

⇝ Leads to Fröberg’s estimate

hfS(t)− hfS(t− d)s︸ ︷︷ ︸
gen’s of Id

+hfS(t− 2d)

(
s

2

)
︸ ︷︷ ︸

Koszul syzygies

− hfS(t− 3d)

(
s

3

)
︸ ︷︷ ︸
Koszul syzygy syzygies

± . . .
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The conjectural Hilbert function

Expected syzygy conjecture (ESC)

For a general set of r <
(
n+d
n

)
− n points in Pn the ideal I⟨d⟩ has Hilbert function

hfS/I⟨d⟩(t) =


∑
k≥0

(−1)k · hfS(t− kd) ·
((n+d

n

)
− r

k

)
t < t0,

r t ≥ t0,

where t0 is the first integer > d such that the sum is ≤ r.

▷ One can extract the saturation gap length from this formula

▷ If W ⊆ Sd is a random vector subspace of dim.
(
n+d
n

)
− r, then this sum is the

expected Hilbert function of S/⟨W ⟩S (until sum ≤ 0)
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Visualization of the saturation gaps in P2

▷ ESC predicts exactly how large the difference between I and I⟨d⟩ is

no gap (IGC)

rmin (d odd)

rmax

computer verified
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Visualization of the saturation gaps in P3

no gap (IGC)
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Main results

Theorem (Gesmundo, Kayser & Telen)

Conjecture (ESC) is true in the following cases:

▷ rmax :=
(
n+d
n

)
− (n+ 1) for all d in all dimensions n.

▷ In the plane for rmin = 1
2(d+ 1)2 when d is odd.

▷ r ≤ 1
n

(
(n+ 1)

(
n+d
n

)
−
(
n+d+1

n

))
and [n ≤ 4 or d≫ 0]

▷ In a large number of individual cases in low dimension (table below).

The length of the saturation gap is bounded above by

min { e > 0 | (I⟨d⟩)d+e = Id+e } ≤ (n− 1)d− (n+ 1).

n 2 3 4 5 6 7 8 9 10

r ≤ 1825 ≤ 1534 ≤ 991 ≤ 600 ≤ 447 ≤ 316 ≤ 333 ≤ 204 ≤ 259

d ≤ 58 ≤ 18 ≤ 9 ≤ 6 ≤ 4 ≤ 3 ≤ 3 ≤ 2 ≤ 2 17



Thank you! Questions?
arXiv:2307.02560
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https://arxiv.org/abs/2307.02560
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