Logarithmic Discriminants of Hyperplane Arrangements

SIAM AG25 - MS59 Discriminants in the Sciences

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Maximum Likelihood Estimation in Algebraic Statistics

- $\,\triangleright\,$ Let $X\subseteq (\mathbb{C}^{\times})^{n+1}$ be a d-dimensional smooth variety
- $\triangleright \text{ Discrete statistical model } X \cap \Delta_n = \left\{ p \in X \cap \mathbb{R}^{n+1} \mid p_i > 0, \ p_0 + \dots + p_n = 1 \right\}$
- \triangleright Given data points $u \in \mathbb{N}^{n+1}$, which parameter maximizes the log-likelihood function

$$\mathcal{L}_u(x) = \log x_0^{u_0} \cdots x_n^{u_n}, \qquad x \in X \cap \Delta_n?$$

- $\triangleright \text{ Critical equations: } x \in \operatorname{Crit}_X(u) \coloneqq \{ x \in X \mid \nabla \mathcal{L}_u(x) = 0 \}$
- \triangleright Crit_X(u) is a *finite* set of MLdeg(X) non-degenerate critical points for *general* data $u \in \mathbb{N}^{n+1}$ (or \mathbb{C}^{n+1})
- $\triangleright \text{ [Huh13] } \operatorname{MLdeg}(X) = |\chi(X)|$
- Extensively studied for toric models (exponential families), <u>linear models</u>, determinantal varieties, ...

Linear models and scattering amplitudes

 \triangleright Let $\mathcal A$ be an essential arrangement of n+1 hyperplanes in $\mathbb C^d$

$$\mathcal{A} = \mathbb{V}(\ell_0) \cup \dots \cup \mathbb{V}(\ell_n) \subseteq \mathbb{C}^d, \qquad (\ell_0(x), \dots, \ell_n(x))^\mathsf{T} = Ax + b, \quad L^\mathsf{T} = [b \mid A]$$

- \triangleright Parametrizes linear model $X \coloneqq \mathbb{C}^d \setminus \mathcal{A} \stackrel{\ell}{\hookrightarrow} (\mathbb{C}^{\times})^{n+1}$, can assume $\sum_j \ell_j = 1$
- > Log-likelihood function or master function given by

 $\mathcal{L}_{\boldsymbol{u}}(x) = u_0 \log \ell_0(x) + \dots + u_n \log \ell_n(x), \qquad \nabla \mathcal{L}_{\boldsymbol{u}}(x) = A^{\mathsf{T}} \operatorname{diag}(1/\ell_0, \dots, 1/\ell_n) \boldsymbol{u}$

- \triangleright Varchenko: For real arrangements, MLdeg(X) = #bounded chambers of $\mathcal{A} \cap \mathbb{R}^d$
- \triangleright Critical equations appear as scattering equations in bi-adjoint scalar ϕ^3 -theories (Cachazo, He & Yuan [CHY14])

What is "general" data?

- \triangleright Moving from general to special $u \in \mathbb{P}^n = \mathbb{P}(\mathbb{C}^{n+1})$, what can happen to $\operatorname{Crit}_X(u)$?
 - 1. Two critical points collide to form a non-reduced/degenerate point
 - 2. A positive-dimensional component appears
 - 3. A critical point disappears to infinity
- $\triangleright\,$ Outside of 1.-3. the finite set of critical points has constant size $\mathrm{MLdeg}(X)$
- ▷ The closure of 1.-3. was called the *data discriminant* by Rodriguez & Tang [RT15]
- ▷ 3. was studied by Sattelberger & van der Veer [SvdV23]

Definition (Ad-hoc definition of $\nabla_{\log}(X)$)

The *logarithmic discriminant* of a (smooth) variety $X \hookrightarrow (\mathbb{C}^{\times})^{n+1}$ is

 $\nabla_{\log}(X) \coloneqq \overline{\{ u \in \mathbb{P}^n \mid \operatorname{Crit}_X(u) \text{ is infinite or non-reduced } \}}.$

→→ Goal: Understand logarithmic discriminants of hyperplane arrangements!

Three points enter a bar

 \triangleright Three points on a line $\mathcal{A} = \{0, 1, b\} \subseteq \mathbb{C}^1$

 \triangleright Model is a line $X = \mathbb{C}^1 \setminus \mathcal{A} \hookrightarrow (\mathbb{C}^{\times})^3$ parametrized by (x, x - 1, x - b),

$$\mathcal{L}_{u}(x) = u_{0} \log x + u_{1} \log(x - 1) + u_{2} \log(x - b)$$

0

1

h

 \triangleright Single critical equation in $x \in \mathbb{C}^1 \setminus \mathcal{A}$

$$\frac{u_0}{x} + \frac{u_1}{x-1} + \frac{u_2}{x-b} = 0 \quad \iff \quad u_0(x-1)(x-b) + u_1x(x-b) + u_2x(x-1) = 0$$

 \triangleright When does this quadric in x have a double root? Highschool discriminant vanishes!

 $\Delta_{\log}(X) = (b-1)^2 u_0^2 + 2b(b-1) u_0 u_1 + b^2 u_1^2 - 2(b-1) u_0 u_2 + 2b u_1 u_2 + u_2^2$

 $\triangleright \ \Delta_{\log}(X)$ itself is a smooth quadric in u with discriminant $-4b^2(b-1)^2$

Ramification and its consequences

 \triangleright Let $f: V \to W$ be a dominant map of smooth irreducible varieties of dimension n

 \triangleright The ramification locus $\operatorname{Ram}(f) \subseteq V$ is the hypersurface

 $\operatorname{Ram}(f) = \left\{ x \in V \mid x \in f^{-1}(f(x)) \text{ is not isolated or reduced} \right\} = \mathbb{V}(\det J_f(x))$

- \triangleright The branch locus is the image closure $\operatorname{Branch}(f) = \overline{f(\operatorname{Ram}(f))} \subseteq W$
- Apply this to the likelihood correspondence

$$f \colon \mathcal{L}_X^{\circ} \coloneqq \{ (u, x) \in \mathbb{P}^n \times X \mid \nabla \mathcal{L}_u(x) = 0 \} \to \mathbb{P}^n$$

Definition (True definition of $\nabla_{\log}(X)$)

The logarithmic discriminant is the branch locus of the projection f. The ramification locus is defined in $\mathbb{P}^n \times X$ by

$$\nabla \mathcal{L}_{\boldsymbol{u}}(x) = 0, \quad \det \operatorname{Hess}_{\boldsymbol{x}}(\mathcal{L}_{\boldsymbol{u}}(x)) = 0.$$

The ramification locus of a linear model

$$\triangleright \ X = \mathbb{C}^d \setminus \mathbb{V}(\ell_0 \cdots \ell_n), \quad (\ell_0(x), \dots, \ell_n(x))^{\mathsf{T}} = Ax + b$$

 $\triangleright\,$ Here the equations of the ramification locus have a very concrete form

$$\nabla \mathcal{L}_u(x) = A^{\mathsf{T}} \cdot \operatorname{diag}(1/\ell_0, \dots, 1/\ell_n) \cdot u = 0$$
$$h = \det\left(A^{\mathsf{T}} \cdot \operatorname{diag}\left(\frac{u_0}{\ell_0^2}, \dots, \frac{u_n}{\ell_n^2}\right) \cdot A\right) = \sum_{\substack{I \subseteq \{0, \dots, n\} \\ |I| = d}} |A_I|^2 \frac{u^I}{(\ell^I)^2}$$

 $\triangleright \mathcal{A}$ is bi-uniform if both $M(A^{\mathsf{T}})$ and $M([b|A]^{\mathsf{T}})$ are uniform matroids

Theorem (Irreducibility of Ram(f))

If the arrangement contains a subset of d + 2 hyperplanes which is bi-uniform, then $\operatorname{Ram}(f)$ and hence $\nabla_{\log}(X)$ are irreducible varieties.

A split discriminant!

 $\,\triangleright\,$ Consider the arrangement ${\cal A}$ of six planes

- $\,\triangleright\,$ The first and the last three planes intersect in a line each
- > The logarithmic discriminant decomposes as

$$\nabla_{\log}(X) = \mathbb{V}(144u_0^2 + 120u_0u_1 + 168u_0u_2 + 25u_1^2 - 70u_1u_2 + 49u_2^2)$$
$$\cup \mathbb{V}(u_3^2 - 2u_3u_4 + 4u_3u_5 + u_4^2 + 4u_4u_5 + 4u_5^2)$$
$$\cup \mathbb{V}(u_0 + u_1 + u_2, u_3 + u_4 + u_5).$$

A complete answer in \mathbb{C}^1

Theorem

Let $\mathcal{A} \subseteq \mathbb{C}^1$ be an arrangement of $n+1 \geq 3$ distinct points.

- 1. The ramification locus is a smooth irreducible hypersurface in $\mathcal{L}_X^{\circ} \subset \mathbb{P}^n \times (\mathbb{C}^1 \setminus \mathcal{A})$.
- 2. Its class in the Chow ring $A^{\bullet}(\mathbb{P}^n \times \mathbb{P}^1) = \mathbb{Z}[\alpha, \beta]/\langle \alpha^{n+1}, \beta^2 \rangle$ is $\alpha^2 + 2(n-1)\alpha\beta$.
- 3. The projection $f: \operatorname{Ram}(f) \to \nabla_{\log}(X)$ is generically bijective.
- 4. $\nabla_{\log}(X) \subseteq \mathbb{P}^n$ is an irreducible hypersurface of degree 2(n-1).
- \triangleright Explicit formula for defining polynomial ($\mathcal{A} = \{b_0, \dots, b_n\}$)

$$\Delta_{\log}(X) = \operatorname{Disc}_{x}\left(\sum_{i=0}^{n} u_{i} \prod_{k \neq i} (x - b_{k})\right)$$

 $\,\triangleright\,$ For n+1=4 points $\nabla_{\log}(X)\subseteq \mathbb{P}^3$ is always a singular surface of degree 4

The Hurwitz Discriminant and general arrangements

Theorem

Let \mathcal{A} be a bi-uniform arrangement of $n+1 \ge d+2$ hyperplanes in \mathbb{C}^d .

- 1. $\nabla_{\log}(X)$ is an irreducible and reduced hypersurface.
- 2. $\nabla_{\mathrm{Hu}}(X)$ is a hypersurface of degree $2d\binom{n-1}{d}$ with full Newton polytope
- 3. $\nabla_{\log}(X) \subseteq \nabla_{\operatorname{Hu}}(X)$ coincide as sets, so $\Delta_{\operatorname{Hu}}(X) = \Delta_{\log}(X)^e$ for some $e \ge 1$.
- 4. If the arrangement is defined by real affine linear forms, then $\nabla_{\log} \cap \mathbb{R}^{n+1}_+ = \emptyset$.
- \triangleright Main tool: Hurwitz discriminant $\nabla_{\operatorname{Hu}}(X) \supseteq \nabla_{\log}(X)$
 - 1. Reciprocal linear space $\mathcal{R} \coloneqq \overline{\mathrm{Im}(\ell_0^{-1} : \cdots : \ell_n^{-1})} \subseteq \mathbb{P}^n$
 - 2. Hurwitz form $\mathcal{Z}_1(\mathcal{R}) \subseteq \operatorname{Gr}(n-d,\mathbb{P}^n)$, $\operatorname{deg} \mathcal{Z}_1(\mathcal{R}) = 2(n-d) \binom{n}{d-1}$
 - 3. $\nabla_{\mathrm{Hu}} \coloneqq \varphi^{-1}(\mathcal{Z}_1(\mathcal{R}))$, pullback along $\varphi \colon \mathbb{P}^n \dashrightarrow \mathrm{Gr}(n-d,\mathbb{P}^n), u \mapsto \mathrm{Ker}(A^{\mathsf{T}}\operatorname{diag}(u))$

 \triangleright Key idea: $x \in \operatorname{Crit}_X(u)$ if and only if $(\ell_0^{-1}(x) : \cdots : \ell_n^{-1}(x)) \in \varphi(u) \cap \mathcal{R}$

The discriminant of $\mathcal{M}_{0,m}$

- $\triangleright \mathcal{M}_{0,m}$ parametrizes tuples of m distinct points on \mathbb{P}^1
- \triangleright Fixing $(0, 1, x_1, \ldots, x_{m-3}, \infty)$, it can be realized in \mathbb{C}^{m-3} as the complement of the minors of

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 0 \\ 0 & 1 & x_1 & x_2 & \cdots & x_{m-3} & 1 \end{bmatrix}$$

- \triangleright Mandelstam variables s_{ij} corresponding to minor (i, j)
- \triangleright Discriminant for m = 5 has degree $4 < 2 \cdot 2 \cdot {5-2 \choose 2} = 12$

 $\Delta_{\log}(\mathcal{M}_{0,5}) = (s_{13}s_{24} + s_{13}s_{34} + s_{14}s_{34} + s_{14}s_{23} + s_{23}s_{34} + s_{24}s_{34} + s_{34}^2)^2 - 4s_{13}s_{14}s_{23}s_{24}$

> The Hurwitz discriminant has the extra factors

$$\Delta_{\mathrm{Hu}}(\mathcal{M}_{0,5}) = (s_{13} + s_{23} + s_{34})^2 \cdot (s_{14} + s_{24} + s_{34})^2 \cdot \Delta_{\mathrm{log}}(\mathcal{M}_{0,5})$$

 \triangleright Conjecturally rich nested structure, degrees of $\nabla_{\log}(\mathcal{M}_{0,m})$ are $4, 30, 208, 1540, \ldots$ 10

Beyond hyperplane arrangements

 $\,\triangleright\,$ Let $f_0,\ldots,f_n\in\mathbb{C}[x]$ be polynomials parametrizing a model

$$X \cong \mathbb{C}^d \setminus \mathbb{V}(f_0 \cdots f_n) \hookrightarrow (\mathbb{C}^{\times})^{n+1}, \qquad x \mapsto (f_0(x), \dots, f_n(x))$$

 \triangleright Case (f, x_1, \ldots, x_d) closely related to toric models

 $\triangleright \ d = 1$: $\nabla_{\log}(X)$ is an irreducible hypersurface of degree $2(\# \mathbb{V}(f_0 \cdots f_n) - 2)$

 $\,\triangleright\,$ Consider a family of conics $X_z\subset \mathbb{A}^2_{\mathbb{C}[z]}$ degenerating to two lines as $z\to 0$

$$f_0 = (x_1 + x_2 + 1)(-x_1 + x_2 - 2) + z, \quad f_1 = x_1, \quad f_2 = x_2$$

 $\triangleright X_0$ is a bi-uniform arrangement of 4 lines, hence $\deg \nabla_{\log}(X_0) = 2 \cdot 2 \cdot {4-2 \choose 2} = 4$

- $arphi \
 abla_{\log}(X_z)$ has degree 6, $\Delta_{\log}(X_z)|_{z=0} = u_0^2 \cdot \Delta_{\log}(X_0)$
- \triangleright The discriminant is factor of the tact invariant $\Delta_{\log}(X_z) = \frac{1}{u_0^6} \cdot \operatorname{tact}_x(\mathcal{L}_X^\circ)$

- $\triangleright\,$ Missing piece of the puzzle: Is ∇_{Hu} reduced for a bi-uniform arrangement?
- \triangleright (When) is the projection $\operatorname{Ram}(f) \to \nabla_{\log}$ generically one-to-one? ... bijective?
- \triangleright Is there any arrangement such that $abla_{\log}(\mathcal{A})$ is *not* reduced?
- $\,\triangleright\,$ Is there an arrangement of lines whose $\nabla_{\log}(\mathcal{A})$ is reducible?
- $\,\triangleright\,$ Is the degree of $abla_{\log}(\mathcal{A})$ an invariant of the matroids?
- $\triangleright~$ What is the meaning of the components $\nabla_{Hu} \setminus \nabla_{\log}?$

Thank you! Questions? arXiv:2410.11675

 Freddy Cachazo, Song He, and Ellis Ye Yuan.
 Scattering equations and Kawai-Lewellen-Tye orthogonality. Physical Review D, 90(6):065001, 2014.

🔋 June Huh.

The maximum likelihood degree of a very affine variety. *Compositio Mathematica*, 149(8):1245–1266, 2013.

Leonie Kayser, Andreas Kretschmer, and Simon Telen.
Logarithmic discriminants of hyperplane arrangements, 2024.

Jose Israel Rodriguez and Xiaoxian Tang. Data-discriminants of likelihood equations. In Proceedings of the 2015 ACM on international symposium on symbolic and algebraic computation, pages 307–314, 2015.

Anna-Laura Sattelberger and Robin van der Veer.
 Maximum likelihood estimation from a tropical and a Bernstein–Sato perspective.

International Mathematics Research Notices, 2023(6):5263–5292, 2023.