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Maximum Likelihood Estimation in Algebraic Statistics

▷ Let X ⊆ (C×)n+1 be a d-dimensional smooth variety

▷ Discrete statistical model X ∩∆n =
{
p ∈ X ∩ Rn+1

∣∣ pi > 0, p0 + · · ·+ pn = 1
}

▷ Given data points u ∈ Nn+1, which parameter maximizes the log-likelihood function

Lu(x) = log xu0
0 · · ·xun

n , x ∈ X ∩∆n?

▷ Critical equations: x ∈ CritX(u) := { x ∈ X | ∇Lu(x) = 0 }
▷ CritX(u) is a finite set of MLdeg(X) non-degenerate critical

points for general data u ∈ Nn+1 (or Cn+1)

▷ [Huh13] MLdeg(X) = |χ(X)|
▷ Extensively studied for toric models (exponential families),

linear models, determinantal varieties, . . .
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Linear models and scattering amplitudes

▷ Let A be an essential arrangement of n+ 1 hyperplanes in Cd

A = V(ℓ0) ∪ · · · ∪ V(ℓn) ⊆ Cd, (ℓ0(x), . . . , ℓn(x))
T = Ax+ b, LT = [b | A]

▷ Parametrizes linear model X := Cd \ A ℓ
↪→ (C×)n+1, can assume

∑
j ℓj = 1

▷ Log-likelihood function or master function given by

Lu(x) = u0 log ℓ0(x) + · · ·+ un log ℓn(x), ∇Lu(x) = AT diag(1/ℓ0, . . . , 1/ℓn)u

▷ Varchenko: For real arrangements, MLdeg(X) = #bounded chambers of A ∩ Rd

▷ Critical equations appear as scattering equations in bi-adjoint scalar ϕ3-theories

(Cachazo, He & Yuan [CHY14])
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What is “general” data?

▷ Moving from general to special u ∈ Pn = P(Cn+1), what can happen to CritX(u)?
1. Two critical points collide to form a non-reduced/degenerate point

2. A positive-dimensional component appears

3. A critical point disappears to infinity

▷ Outside of 1.-3. the finite set of critical points has constant size MLdeg(X)

▷ The closure of 1.-3. was called the data discriminant by Rodriguez & Tang [RT15]

▷ 3. was studied by Sattelberger & van der Veer [SvdV23]

Definition (Ad-hoc definition of ∇log(X))

The logarithmic discriminant of a (smooth) variety X ↪→ (C×)n+1 is

∇log(X) := { u ∈ Pn | CritX(u) is infinite or non-reduced }.

⇝ Goal: Understand logarithmic discriminants of hyperplane arrangements!
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Three points enter a bar

▷ Three points on a line A = {0, 1, b} ⊆ C1

▷ Model is a line X = C1 \ A ↪→ (C×)3 parametrized by (x, x− 1, x− b),

Lu(x) = u0 log x+ u1 log(x− 1) + u2 log(x− b)

▷ Single critical equation in x ∈ C1 \ A
u0
x

+
u1

x− 1
+

u2
x− b

= 0 ⇐⇒ u0(x− 1)(x− b) + u1x(x− b) + u2x(x− 1) = 0

▷ When does this quadric in x have a double root? Highschool discriminant vanishes!

∆log(X) = (b− 1)2 u20 + 2b(b− 1)u0u1 + b2 u21 − 2(b− 1)u0u2 + 2b u1u2 + u22

▷ ∆log(X) itself is a smooth quadric in u with discriminant −4b2(b− 1)2
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Ramification and its consequences

▷ Let f : V → W be a dominant map of smooth irreducible varieties of dimension n

▷ The ramification locus Ram(f) ⊆ V is the hypersurface

Ram(f) =
{
x ∈ V

∣∣ x ∈ f−1(f(x)) is not isolated or reduced
}
= V(det Jf (x))

▷ The branch locus is the image closure Branch(f) = f(Ram(f)) ⊆ W

▷ Apply this to the likelihood correspondence

f : L◦
X := { (u, x) ∈ Pn ×X | ∇Lu(x) = 0 } → Pn

Definition (True definition of ∇log(X))

The logarithmic discriminant is the branch locus of the

projection f . The ramification locus is defined in Pn ×X by

∇Lu(x) = 0, detHessx(Lu(x)) = 0.

5



The ramification locus of a linear model

▷ X = Cd \ V(ℓ0 · · · ℓn), (ℓ0(x), . . . , ℓn(x))
T = Ax+ b

▷ Here the equations of the ramification locus have a very concrete form

∇Lu(x) = AT · diag(1/ℓ0, . . . , 1/ℓn) · u = 0

h = det
(
AT · diag

(u0
ℓ20

, . . . ,
un
ℓ2n

)
·A

)
=

∑
I⊆{0,...,n}

|I|=d

|AI |2
uI

(ℓI)2

▷ Critical equations are linear in the uj ⇝ substitute them in h to obtain

h̃ ∈ C[ud, . . . , un;x], Ram(f) ∼= V(h̃) ⊆ Pn−d ×X

▷ A is bi-uniform if both M(AT) and M([b|A]T) are uniform matroids

Theorem (Irreducibility of Ram(f))

If the arrangement contains a subset of d+ 2 hyperplanes which is bi-uniform, then

Ram(f) and hence ∇log(X) are irreducible varieties. 6



A split discriminant!

▷ Consider the arrangement A of six planes

ℓ = (1, x1, x2, x3) ·


1 2 1 0 0 0

1 1 2 1 0 1

1 3
2

3
2 0 1 1

0 0 0 1 1 2


▷ The first and the last three planes intersect in a line each

▷ The logarithmic discriminant decomposes as

∇log(X) = V(144u20 + 120u0u1 + 168u0u2 + 25u21 − 70u1u2 + 49u22)

∪ V(u23 − 2u3u4 + 4u3u5 + u24 + 4u4u5 + 4u25)

∪ V(u0 + u1 + u2, u3 + u4 + u5).
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A complete answer in C1

Theorem

Let A ⊆ C1 be an arrangement of n+ 1 ≥ 3 distinct points.

1. The ramification locus is a smooth irreducible hypersurface in L◦
X ⊂ Pn × (C1 \ A).

2. Its class in the Chow ring A•(Pn × P1) = Z[α, β]/⟨αn+1, β2⟩ is α2 + 2(n− 1)αβ.

3. The projection f : Ram(f) → ∇log(X) is generically bijective.

4. ∇log(X) ⊆ Pn is an irreducible hypersurface of degree 2(n− 1).

▷ Explicit formula for defining polynomial (A = {b0, . . . , bn})

∆log(X) = Discx

( n∑
i=0

ui
∏
k ̸=i

(x− bk)

)
▷ For n+ 1 = 4 points ∇log(X) ⊆ P3 is always a singular surface of degree 4
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The Hurwitz Discriminant and general arrangements

Theorem

Let A be a bi-uniform arrangement of n+ 1 ≥ d+ 2 hyperplanes in Cd.

1. ∇log(X) is an irreducible and reduced hypersurface.

2. ∇Hu(X) is a hypersurface of degree 2d
(
n−1
d

)
with full Newton polytope

3. ∇log(X) ⊆ ∇Hu(X) coincide as sets, so ∆Hu(X) = ∆log(X)e for some e ≥ 1.

4. If the arrangement is defined by real affine linear forms, then ∇log ∩ Rn+1
+ = ∅.

▷ Main tool: Hurwitz discriminant ∇Hu(X) ⊇ ∇log(X)

1. Reciprocal linear space R := Im(ℓ−1
0 : · · · : ℓ−1

n ) ⊆ Pn

2. Hurwitz form Z1(R) ⊆ Gr(n− d,Pn), degZ1(R) = 2(n− d)
(

n
d−1

)
3. ∇Hu := φ−1(Z1(R)), pullback along φ : Pn 99K Gr(n− d,Pn), u 7→ Ker(AT diag(u))

▷ Key idea: x ∈ CritX(u) if and only if (ℓ−1
0 (x) : · · · : ℓ−1

n (x)) ∈ φ(u) ∩R
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The discriminant of M0,m

▷ M0,m parametrizes tuples of m distinct points on P1

▷ Fixing (0, 1, x1, . . . , xm−3,∞), it can be realized in Cm−3

as the complement of the minors of[
1 1 1 1 · · · 1 0

0 1 x1 x2 · · · xm−3 1

]
▷ Mandelstam variables sij corresponding to minor (i, j)

▷ Discriminant for m = 5 has degree 4 < 2 · 2 ·
(
5−2
2

)
= 12

∆log(M0,5) = (s13s24 + s13s34 + s14s34 + s14s23 + s23s34 + s24s34 + s234)
2 − 4s13s14s23s24

▷ The Hurwitz discriminant has the extra factors

∆Hu(M0,5) = (s13 + s23 + s34)
2 · (s14 + s24 + s34)

2 ·∆log(M0,5)

▷ Conjecturally rich nested structure, degrees of ∇log(M0,m) are 4, 30, 208, 1540, . . . 10



Beyond hyperplane arrangements

▷ Let f0, . . . , fn ∈ C[x] be polynomials parametrizing a model

X ∼= Cd \ V(f0 · · · fn) ↪→ (C×)n+1, x 7→ (f0(x), . . . , fn(x))

▷ Case (f, x1, . . . , xd) closely related to toric models

▷ d = 1: ∇log(X) is an irreducible hypersurface of degree 2(#V(f0 · · · fn)− 2)

▷ Consider a family of conics Xz ⊂ A2
C[z] degenerating to two lines as z → 0

f0 = (x1 + x2 + 1)(−x1 + x2 − 2) + z, f1 = x1, f2 = x2

▷ X0 is a bi-uniform arrangement of 4 lines, hence deg∇log(X0) = 2 · 2 ·
(
4−2
2

)
= 4

▷ ∇log(Xz) has degree 6, ∆log(Xz)|z=0 = u20 ·∆log(X0)

▷ The discriminant is factor of the tact invariant ∆log(Xz) =
1
u6
0
· tactx(L◦

X)
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Many open questions - even for linear models

▷ Missing piece of the puzzle: Is ∇Hu reduced for a bi-uniform arrangement?

▷ (When) is the projection Ram(f) → ∇log generically one-to-one? . . . bijective?

▷ Is there any arrangement such that ∇log(A) is not reduced?

▷ Is there an arrangement of lines whose ∇log(A) is reducible?

▷ Is the degree of ∇log(A) an invariant of the matroids?

▷ What is the meaning of the components ∇Hu \ ∇log?

Thank you! Questions?
arXiv:2410.11675
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