Logarithmic Discriminants of Hyperplane Arrangements

Women in Algebra and Symbolic Computation III

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Duolingo Algebraic Geometry

 $\triangleright q_1, \ldots, q_s \in \mathbb{C}[x_0, \ldots, x_n]$ polynomials, then

$$
X = \mathbb{V}(g_1, \dots, g_s) := \{ x \in \mathbb{C}^{n+1} \mid g_1(x) = \dots = g_s(x) = 0 \}
$$

- \triangleright X is called an (affine) algebraic variety
- \triangleright X is irreducible if it is not a proper union of varieties
- \triangleright $\mathbb{P}^n = (\mathbb{C}^{n+1}\setminus 0)/\sim$, $x\sim y$ iff $x=\lambda y$ for some $\lambda\in\mathbb{C}^\times\coloneqq\mathbb{C}\setminus 0,$ home of homogeneous polynomials
- \triangleright Hypersurface = variety defined by a single equation h, degree of $X = \deg h$
- \triangleright X smooth if $J_q(x)$ has maximal rank for all $x \in X$
- $\triangleright x$ is a non-reduced/degenerate solution to g_1, \ldots, g_s if the Jacobi matrix $J_g(x) = \left[\frac{\partial g_i}{\partial x_i}\right]$ $\left[\frac{\partial g_i}{\partial x_j}\right]$ does not have maximal rank

Maximum Likelihood Estimation in Algebraic Statistics

- \triangleright Let $X\subseteq (\mathbb{C}^{\times})^{n+1}$ be a d -dimensional smooth variety
- \rhd Discrete statistical model $X \cap \Delta_n = \{ p \in X \cap \mathbb{R}^{n+1} \mid p_i > 0, p_0 + \cdots + p_n = 1 \}$
- \triangleright Given data points $u\in\mathbb{N}^{n+1}$, which parameter maximizes the log-likelihood function

$$
\mathcal{L}_u(x) = \log x_0^{u_0} \cdots x_n^{u_n}, \qquad x \in X \cap \Delta_n?
$$

- ▷ Critical equations: $x \in \text{Crit}_X(u) := \{ x \in X \mid \nabla \mathcal{L}_u(x) = 0 \}$
- \triangleright Crit_X(u) is a finite set of MLdeg(X) non-degenerate critical points for *general* data $u \in \mathbb{N}^{n+1}$ (or $\mathbb{C}^{n+1})$
- ▷ [\[Huh13\]](#page-14-0) MLdeg(X) = $(-1)^d \cdot \chi(X)$
- Extensively studied for toric models (exponential families), linear models, determinantal varieties, . . .

Linear models and scattering amplitudes

 \triangleright Let ${\mathcal A}$ be an essential arrangement of $n+1$ hyperplanes in ${\mathbb C}^d$

$$
\mathcal{A} = \mathbb{V}(\ell_0) \cup \cdots \cup \mathbb{V}(\ell_n) \subseteq \mathbb{C}^d, \qquad (\ell_0(x), \dots, \ell_n(x))^{\mathsf{T}} = Ax + b, \quad L^{\mathsf{T}} = [b \mid A]
$$

- \triangleright Parametrizes linear model $X\coloneqq \mathbb{C}^d\setminus\mathcal{A}\stackrel{\ell}{\hookrightarrow} (\mathbb{C}^\times)^{n+1}$, can assume $\sum_j \ell_j=1$
- ▷ Log-likelihood function or master function given by

 $\mathcal{L}_u(x) = u_0 \log \ell_0(x) + \cdots + u_n \log \ell_n(x), \qquad \nabla \mathcal{L}_u(x) = A^{\mathsf{T}} \operatorname{diag}(1/\ell_0, \ldots, 1/\ell_n)u$

- ⊳ If the ℓ_j are real, then $\mathrm{MLdeg}(X)$ is the number of bounded chambers of $\mathcal{A}\cap \mathbb{R}^d$
- \triangleright Critical equations appear as scattering equations in bi-adjoint scalar ϕ^3 -theories (Cachazo, He & Yuan [\[CHY14\]](#page-14-1))

What is "general" data?

- \triangleright Moving from general to special $u\in\mathbb{P}^n=\mathbb{P}(\mathbb{C}^{n+1})$, what can happen to $\mathrm{Crit}_X(u)$?
	- 1. Two critical points collide to form a non-reduced/degenerate point
	- 2. A positive-dimensional component appears
	- 3. A critical point disappears to infinity
- \triangleright The closure of 1.-3. was called the *data discriminant* by Rodriguez & Tang [\[RT15\]](#page-15-0)
- ▷ 3. was studied by Sattelberger & van der Veer [\[SvdV23\]](#page-15-1)

Definition (Ad-hoc definition of $\nabla_{\text{loc}}(X)$)

The logarithmic discriminant of a (smooth) variety $X \hookrightarrow (\mathbb{C}^\times)^{n+1}$ is

 $\nabla_{\text{log}}(X) := \{ u \in \mathbb{P}^n \mid \text{Crit}_X(u) \text{ is infinite or non-reduced } \}.$

 \rightarrow Goal: Understand logarithmic discriminants of hyperplane arrangements!

Three points enter a bar

- ▷ Three points on a line $A = \mathbb{V}(x(x+1)(x+b)) = \{0, -1, -b\} \subseteq \mathbb{C}^1$ $(b \notin \{0, 1\})$
- ▷ Model is a line $X \subseteq (\mathbb{C}^{\times})^3$ parametrized by $(x, x+1, x+b)$,

 $\mathcal{L}_u(x) = u_0 \log x + u_1 \log(x+1) + u_2 \log(x+b)$

 \triangleright A single critical equation in $x\in\mathbb{C}^{1}\setminus\mathcal{A}$

$$
\frac{u_0}{x} + \frac{u_1}{x+1} + \frac{u_2}{x+b} = 0 \iff u_0(x+1)(x+b) + u_1x(x+b) + u_2x(x+1) = 0
$$

 \triangleright When does this quadric in x have a double root? A: Highschool discriminant vanishes!

$$
\Delta_{\log}(X) = (b-1)^2 u_0^2 + 2b(b-1) u_0 u_1 + b^2 u_1^2 - 2(b-1) u_0 u_2 + 2b u_1 u_2 + u_2^2
$$

⊳ $\Delta_{\log}(X)$ itself is a smooth quadric in u with discriminant $-4b^2(b-1)^2$

Ramification and its consequences

 \triangleright Let $f: V \to W$ be a dominant map of smooth irreducible varieties of dimension n

▷ The ramification locus $\text{Ram}(f) \subseteq V$ is the hypersurface

 $\mathrm{Ram}(f)=\left\{x\in V\;\big|\;x\in f^{-1}(f(x))\;\text{is not isolated or reduced}\;\right\}=\mathbb{V}(\det J_f(x))$

- ▷ The branch locus is the image closure $\text{Branch}(f) = \overline{f(\text{Ram}(f))} \subset W$
- \triangleright Apply this to the likelihood correspondence

$$
f \colon \mathcal{L}_X^{\circ} = \{ (u, x) \in \mathbb{P}^n \times X \mid \nabla \mathcal{L}_u(x) = 0 \} \to \mathbb{P}^n
$$

Definition (True definition of $\nabla_{\text{loc}}(X)$)

The logarithmic discriminant is the branch locus of the projection f . The ramification locus is defined in $\mathbb{P}^n \times X$ by

$$
\nabla \mathcal{L}_u(x) = 0, \qquad \det \text{Hess}_x(\mathcal{L}_u(x)) = 0.
$$

Irreducibility of $\overline{\text{Ram}}(f)$

$$
\triangleright X = \mathbb{C}^d \setminus \mathbb{V}(\ell_0 \cdots \ell_n), \quad (\ell_0(x), \dots, \ell_n(x))^{\mathsf{T}} = Ax + b
$$

 \triangleright Here the equations of the ramification locus have a very concrete form

$$
\nabla \mathcal{L}_u(x) = A^{\mathsf{T}} \cdot \text{diag}(1/\ell_0, \dots, 1/\ell_n) \cdot u = 0
$$

$$
h = \det \left(A^{\mathsf{T}} \cdot \text{diag}\left(\frac{u_0}{\ell_0^2}, \dots, \frac{u_n}{\ell_n^2}\right) \cdot A \right) = \sum_{\substack{I \subseteq \{0, \dots, n\} \\ |I| = d}} |A_I|^2 \frac{u^I}{(\ell^I)^2}
$$

 \triangleright Critical equations are linear in the $u_i \rightsquigarrow$ substitute them in h to obtain $\tilde{h} \in \mathbb{C}[u_d, \ldots, u_n; x], \qquad \text{Ram}(f) \cong \mathbb{V}(\tilde{h}) \subseteq \mathbb{P}^{n-d} \times X$

Theorem

If the arrangement contains a subset of $d+2$ hyperplanes which is bi-uniform (to be defined in a moment), then $\text{Ram}(f)$ and hence $\nabla_{\text{log}}(X)$ are irreducible varieties.

A split discriminant!

 \triangleright Consider the arrangement $\mathcal A$ of six planes

$$
\ell = (1, x_1, x_2, x_3) \cdot \left[\begin{array}{rrrrr} 1 & 2 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 2 & 1 & 0 & 1 \\ 1 & \frac{3}{2} & \frac{3}{2} & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 \end{array} \right]
$$

- \triangleright The first and the last three planes intersect in a line each
- \triangleright The logarithmic discriminant decomposes as

$$
\nabla_{\log}(X) = \mathbb{V}(144u_0^2 + 120u_0u_1 + 168u_0u_2 + 25u_1^2 - 70u_1u_2 + 49u_2^2)
$$

$$
\cup \mathbb{V}(u_3^2 - 2u_3u_4 + 4u_3u_5 + u_4^2 + 4u_4u_5 + 4u_5^2)
$$

$$
\cup \mathbb{V}(u_0 + u_1 + u_2, u_3 + u_4 + u_5).
$$

A complete answer in \mathbb{C}^1

Theorem

Let $A \subseteq \mathbb{C}^1$ be an arrangement of $n + 1 \geq 3$ distinct points.

- 1. The ramification locus is a smooth irreducible hypersurface in $\mathbb{P}^n\times (\mathbb{C}^1\setminus\mathcal{A}).$
- 2. The class of $\overline{\mathrm{Ram}(f)}$ in the cohomology ring $\mathrm{H}^{2\bullet}_{\mathsf{sing}}(\mathbb{P}^n\times \mathbb{P}^1)=\mathbb{Z}[\alpha,\beta]/\langle \alpha^{n+1},\beta^2\rangle$ is $\alpha^2 + 2(n-1)\alpha\beta$.
- 3. The projection $f: \text{Ram}(f) \to \nabla_{\text{log}}(X)$ is generically bijective.
- 4. $\nabla_{\log}(X) \subseteq \mathbb{P}^n$ is an irreducible hypersurface of degree $2(n-1)$.
- \triangleright Explicit formula for defining polynomial

$$
\Delta_{\log}(X) = \text{Disc}_x \left(\sum_{i=0}^n u_i \prod_{k \neq i} (x + b_k) \right)
$$

 \triangleright For $n+1=4$ points $\nabla_{\log}(X)\subseteq\mathbb{P}^{3}$ is always a singular surface of degree 4 \blacksquare

General arrangements

 \triangleright A defined by $(\ell_0(x), \ldots, \ell_n(x))^{\mathsf{T}} = Ax + b$

 $\triangleright k \times n$ matrix is uniform if all sets of k columns are linearly independent

- \triangleright Little matroid $\mathrm{M}(A^{\mathsf{T}})$, big matroid $\mathrm{M}([b|A]^{\mathsf{T}})$, bi-uniform $=$ both are uniform
- ▷ Hurwitz discriminant $\nabla_{\mathbf{H}\mathbf{u}}(X) \supseteq \nabla_{\log}(X)$ is a second kind of discriminant

Theorem

Let $\mathcal A$ be a bi-uniform arrangement of $n+1\geq d+2$ hyperplanes in $\mathbb C^d$.

- $1. \ \nabla_{\mathrm{Hu}}(X)$ is a hypersurface of degree $2d\binom{n-1}{d}$ $\binom{-1}{d}$ with full Newton polytope
- 2. $\nabla_{\text{log}}(X)$ is an irreducible and reduced hypersurface.
- 3. $\nabla_{\log}(X) \subseteq \nabla_{\text{Hu}}(X)$ coincide as sets, so $\nabla_{\text{Hu}}(X) = \mathbb{V}(\Delta_{\log}(X)^e)$ for some $e \geq 1$.

4. If the arrangement is defined by real affine linear forms, then $\nabla_{\log}\cap {\mathbb R}^{n+1}_+=\emptyset.$

▷ We know that equality holds for $d = 1$, expect this to always hold true $\frac{9}{9}$

- Missing piece of the puzzle: Is $\nabla_{\text{H}_{11}}$ reduced for a bi-uniform arrangement?
- \triangleright (When) is the projection $\text{Ram}(f) \to \nabla_{\text{log}}$ generically one-to-one? ... bijective?
- Is there any arrangement such that $\nabla_{\text{log}}(\mathcal{A})$ is *not* reduced?
- ▷ Is there an arrangement of *lines* whose $\nabla_{\text{loc}}(\mathcal{A})$ is reducible?
- Is the degree of $\nabla_{\text{log}}(\mathcal{A})$ an invariant of the little and big matroid?
- \triangleright What is the meaning of the components $\nabla_{\rm Hu} \setminus \nabla_{\rm log}$?

Thank you! Questions? [arXiv:2410.11675](https://arxiv.org/abs/2410.11675)

The discriminant of $\mathcal{M}_{0,m}$

- $\triangleright\;\mathcal{M}_{0,m}$ parametrizes tuples of m points on the projective line \mathbb{P}^1
- ⊳ By fixing $(0, 1, x_1, …, x_{m-3}, \infty)$, it can be realized as the complement in \mathbb{C}^{m-3} of the $n = \binom{m-1}{2} - 1$ minors of

$$
\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 0 \\ 0 & 1 & x_1 & x_2 & \cdots & x_{m-3} & 1 \end{pmatrix}
$$

- \triangleright Variable corresponding to minor (i, j) are Mandelstam invariants s_{ij}
- \triangleright Discriminant for $m=5$ has degree $4 < 2 \cdot 2 \cdot (\frac{5-2}{2})$ $\binom{-2}{2} = 12$

 $\Delta_{\text{log}}(\mathcal{M}_{0,5}) = (s_{13}s_{24} + s_{13}s_{34} + s_{14}s_{34} + s_{14}s_{23} + s_{23}s_{34} + s_{24}s_{34} + s_{34}^2)^2 - 4s_{13}s_{14}s_{23}s_{24}$

 \triangleright The Hurwitz discriminant has the extra factors

$$
\Delta_{\text{Hu}}(\mathcal{M}_{0,5}) = (s_{13} + s_{23} + s_{34})^2 \cdot (s_{14} + s_{24} + s_{34})^2 \cdot \Delta_{\text{log}}(\mathcal{M}_{0,5})
$$

Conjecturally rich nested structure, degrees of $\nabla_{\log}(\mathcal{M}_{0,m})$ are 4, 30, 208, 1540, ...

June 11, 2025 www.mis.mpg.de/qimd

F Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering equations and Kawai-Lewellen-Tye orthogonality. Physical Review D, 90(6):065001, 2014.

F June Huh.

> The maximum likelihood degree of a very affine variety. Compositio Mathematica, 149(8):1245–1266, 2013.

F. Leonie Kayser, Andreas Kretschmer, and Simon Telen. Logarithmic discriminants of hyperplane arrangements, 2024.

手 Jose Israel Rodriguez and Xiaoxian Tang. Data-discriminants of likelihood equations. In Proceedings of the 2015 ACM on international symposium on symbolic and algebraic computation, pages 307–314, 2015.

量 Anna-Laura Sattelberger and Robin van der Veer. Maximum likelihood estimation from a tropical and a Bernstein–Sato perspective.

International Mathematics Research Notices, 2023(6):5263–5292, 2023.