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Mukai Grassmannians

Theorem (Shigeru Mukai (1987))

For a genus g ≥ 6, a sufficiently general

▷ canonical curve (g ≤ 9),

▷ pseudo-polarized K3 surface (g ≤ 10), or

▷ prime Fano 3-fold (g ≤ 10, g = 12)

is a “linear section” of a homogeneous variety Xg ⊆ PV .

g V Xg ⊆ PV dimXg dimPV
6

∧2C5 Gr(2,C5) 6 9

7
∧evenC10 LG+(5,C10) 10 15

8
∧2C6 Gr(2,C6) 8 14

9
∧3C6/ω ∧ C6 Grω(3,C6) 6 13
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Self-dual points

Let Γ ⊆ Pn−1(C) be a set of 2n non-degenerate points identified with Γ ∈ Cn×2n. TFAE:

1. ∃Λ ∈ Diag(2n) invertible such that Γ · Λ · ΓT = 0 (fixed under Gale transform);

2. Subsets of 2n− 1 points impose the same number of conditions on quadrics as Γ:

I(Γ \ γ)2 = I(Γ)2 ∀γ ∈ Γ;

3. ∃Q ∈ Sym(n) non-deg. and Γ = Γ1 ∪̇ Γ2 s.t. Γ1,Γ2 are orthogonal bases w.r.t. Q:

ΓT
i ·Q · Γi ∈ Diag(n), i = 1, 2.

If Γ fails to impose indep. cond. on quadrics by 1:

4. [Eisenbud & Popescu] The homogeneous coordinate

ring SΓ = C[x]/I(Γ) is Gorenstein.

⇝ Slices of canonical curves are self-dual!
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A parametrization of the Moduli space

Let An−1 ⊆ (Pn−1)2n// SLn×S2n be the Moduli space of self-dual points

1. All sets of four points in P1 are self-dual

2. Six points in P2 are self-dual iff intersection of quadric and cubic

3. A general set in A3 is a complete intersection of three quadric surfaces in P3

4. . . . in A4 is a section of X6 = Gr(2,C5) ⊆ P9 with a quadric and a linear space

5. . . . in A5 is a linear section of X7 = LG+(5,C10) ⊆ P15

6. . . . in A6 is a linear section of the Grassmannian X8 = Gr(2,C6) ⊆ P14

1.–4. classical/[Eisenbud & Popescu 2000], 5.–6. [Petrakiev 2006], fails for A7
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The Mukai lifting (and slicing) problem

X8 = Gr(2,C6) ⊆ P14, codimX8 = 6, degX8 = 14

▷ Slicing: Given a linear space L ⊆ P14, compute the self-dual point configuration

Γ = L ∩Gr(2,C6) ⊆ L ∼= P6

▷ Lifting: Given a self-dual points Γ ⊆ P6, find a L ∈ Gr(6,P14) and L : P6 ∼→ L

Γ = L−1(L ∩Gr(2,C6))

▷ Numerical or symbolic? Complex or real?

▷ Also interesting for other Xg, or for canon. curves, K3 surfaces, Fano 3-folds, . . .

▷ Computational problem posed by [Geiger, Hashimoto, Sturmfels & Vlad 2022]
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That one slide about homotopy continuation

▷ Slicing: Move linear space

through Grassmannian

⇝ track intersection points

▷ Lifting: Move point

configuration through A6 (?)

⇝ track some linear space in

fiber of “slicing map”

Credit: silviana amethyst
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Warm-up: Slicing X8 = Gr(2,k6)

Given L = KerA ⊆ P14, find L ∩X8

▷ Toric degeneration of Gr(2,C6) via

SAGBI basis

1. Solve for random L0 on toric variety

(polyhedral start system)

2. Track via toric degeneration to X8

3. Track L0 → L (straight line homotopy)

Application: Slice Gr(2,R6) ⊆ P14(R) with
10,000,000 L ∈ Gr(6,P14(R)) sampled

uniformly, count real solutions 0 2 4 6 8 10 12 14
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Parametrization of An

▷ An known to be rational variety [Dolgachev & Ortland]

▷ Orthogonal normal form: Non-degenerate self-dual points has representation

Γ = [In | P ], P ∈ SO(n,C)

▷ Cayley transform: Let U = {A ∈ Cn×n | In +A invertible }

C : U ∩ Skew(n) ↔ U ∩ SO(n), C(A) = (In −A)(In +A)−1

▷ Skew normal form: General self-dual points have representation by S ∈ Skew(n)

Γ = [In + S | In − S] =


1 s1 · · · sn−1 1 −s1 · · · −sn−1

−s1 1
. . .

... s1 1
. . .

...
...

. . .
. . . s(n2)

...
. . .

. . . −s(n2)
−sn−1 · · · −s(n2)

1 sn−1 · · · s(n2)
1


▷ Highly non-unique (5,579,410,636,800 SNFs for P6), but linear in S = (s1, . . . , s21)
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A big polynomial system

▷ Gen. finite slicing map f

L 7→ L ∩Gr(2,C6)

▷ Lifts to f̂ on matrices:

L 7→ L−1(Im(L) ∩Gr(2,C6))

▷ General fiber of f̂ 36 dim’l

⇝ La should have 69 free vars

▷ Polynomial system in (a, t)

plücki(La(SNF(St)j)) = 0

i = 1, . . . , 15 rel’s

j = 1, . . . , 14 pts

Â6 (P6)14

C7×15 Â6/S14 (P6)14//S14 Skew(7)

Gr(7,C15) ⟲

Gr(7,C15)/SL6 A6 (P6)14// SL7×S14

⊆

f̂ ⊆

SNF

gen.fin

f

gen.fin
⊆
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A buffet of mathematical software

9

https://mathrepo.mis.mpg.de/MukaiLiftP6/index.html


What’s next?

▷ Methods apply to “smaller” Mukai Grassmannians too

▷ Improve runtime!

▷ Test Petrakiev’s birationality conjecture Gr(6,P14)/SL6
∼
99K A6 (ongoing)

▷ Lifting real/rational solutions to real/rational linear spaces?

▷ Attack Mukai lifting problem for canonical curves?

⇝ Lifting of 0-dim’l slices could be stepping stone!

Thank you!
arXiv:2406.02734
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https://arxiv.org/abs/2406.02734


Image credit

▷ Slide 1:

https://en.wikipedia.org/wiki/K3_surface#/media/File:K3_surface.png

▷ Slide 2: Made using GeoGebra https://www.geogebra.org/graphing

▷ Slide 5: silviana amethyst https://silviana.org/computer_programs/

https://en.wikipedia.org/wiki/K3_surface#/media/File:K3_surface.png
https://www.geogebra.org/graphing
https://silviana.org/computer_programs/
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