

FOR MATHEMATICS

MAX PLANCK INSTITUTE

Mukai Lifting of self-dual points in \mathbb{P}^6

MEGA 2024

Mathematics > Algebraic Geometry

arXiv:2406.02734 (math)

[Submitted on 4 Jun 2024]

Mukai lifting of self-dual points in \mathbb{P}^6

Barbara Betti, Leonie Kayser

A set of 2n points in \mathbb{P}^{n-1} is self-dual if it is invariant under the Gale tr on canonical curves, Petrakiev showed that a general self-dual set of 14 intersection of the Grassmannian Gr(2, 6) in its Plücker embedding in \mathbb{F} In this paper we focus on the inverse problem of recovering such a linea dual set of points. We use numerical homotopy continuation to approad algorithm in Julia to solve it. Along the way we also implement the forw

Mukai Grassmannians

Theorem (Shigeru Mukai (1987))

For a genus $g \ge 6$, a sufficiently general

- \triangleright canonical curve ($g \leq 9$),
- \triangleright pseudo-polarized K3 surface ($g \leq 10$), or
- \triangleright prime Fano 3-fold ($g \leq 10, g = 12$)

is a "linear section" of a homogeneous variety $X_g \subseteq \mathbb{P}V$.

g	V	$X_g \subseteq \mathbb{P}V$	$\dim X_g$	$\dim \mathbb{P} V$
6	$\bigwedge^2 \mathbb{C}^5$	$\operatorname{Gr}(2, \mathbb{C}^5)$	6	9
$\overline{7}$	$\bigwedge^{even} \mathbb{C}^{10}$	$LG_+(5, \mathbb{C}^{10})$	10	15
8	$\bigwedge^2 \mathbb{C}^6$	$\operatorname{Gr}(2,\mathbb{C}^6)$	8	14
9	$\bigwedge^3 \mathbb{C}^6 / \omega \wedge \mathbb{C}^6$	$\operatorname{Gr}_{\omega}(3,\mathbb{C}^6)$	6	13

Self-dual points

Let $\Gamma \subseteq \mathbb{P}^{n-1}(\mathbb{C})$ be a set of 2n non-degenerate points identified with $\Gamma \in \mathbb{C}^{n \times 2n}$. **TFAE:**

- 1. $\exists \Lambda \in \text{Diag}(2n)$ invertible such that $\Gamma \cdot \Lambda \cdot \Gamma^{\mathsf{T}} = \mathbf{0}$ (fixed under *Gale transform*);
- 2. Subsets of 2n-1 points impose the same number of conditions on quadrics as Γ :

$$I(\Gamma \setminus \gamma)_2 = I(\Gamma)_2 \qquad \forall \gamma \in \Gamma;$$

3. $\exists Q \in \text{Sym}(n) \text{ non-deg. and } \Gamma = \Gamma_1 \cup \Gamma_2 \text{ s.t. } \Gamma_1, \Gamma_2 \text{ are orthogonal bases w.r.t. } Q:$ $\Gamma_i^{\mathsf{T}} \cdot Q \cdot \Gamma_i \in \text{Diag}(n), \qquad i = 1, 2.$

If Γ fails to impose indep. cond. on quadrics by 1:

- 4. [Eisenbud & Popescu] The homogeneous coordinate ring $S_{\Gamma} = \mathbb{C}[\underline{x}]/I(\Gamma)$ is Gorenstein.
- → Slices of canonical curves are self-dual!

Let $\mathcal{A}_{n-1} \subseteq (\mathbb{P}^{n-1})^{2n} / / \operatorname{SL}_n imes \mathfrak{S}_{2n}$ be the Moduli space of self-dual points

- 1. All sets of four points in \mathbb{P}^1 are self-dual
- 2. Six points in \mathbb{P}^2 are self-dual iff intersection of quadric and cubic
- 3. A general set in \mathcal{A}_3 is a complete intersection of three quadric surfaces in \mathbb{P}^3
- 4. ... in \mathcal{A}_4 is a section of $X_6 = \operatorname{Gr}(2, \mathbb{C}^5) \subseteq \mathbb{P}^9$ with a quadric and a linear space
- 5. ... in \mathcal{A}_5 is a linear section of $X_7 = LG_+(5, \mathbb{C}^{10}) \subseteq \mathbb{P}^{15}$
- 6. . . . in \mathcal{A}_6 is a linear section of the Grassmannian $X_8 = \operatorname{Gr}(2,\mathbb{C}^6) \subseteq \mathbb{P}^{14}$

1.-4. classical/[Eisenbud & Popescu 2000], 5.-6. [Petrakiev 2006], fails for A_7

The Mukai lifting (and slicing) problem

 $X_8 = \operatorname{Gr}(2, \mathbb{C}^6) \subseteq \mathbb{P}^{14}$, codim $X_8 = 6$, deg $X_8 = 14$

 $\triangleright\,$ Slicing: Given a linear space $\mathbb{L}\subseteq\mathbb{P}^{14}$, compute the self-dual point configuration

 $\Gamma = \mathbb{L} \cap \operatorname{Gr}(2, \mathbb{C}^6) \subseteq \mathbb{L} \cong \mathbb{P}^6$

 \triangleright Lifting: Given a self-dual points $\Gamma \subseteq \mathbb{P}^6$, find a $\mathbb{L} \in \mathbb{G}r(6, \mathbb{P}^{14})$ and $L \colon \mathbb{P}^6 \xrightarrow{\sim} \mathbb{L}$

 $\Gamma = L^{-1}(\mathbb{L} \cap \operatorname{Gr}(2, \mathbb{C}^6))$

- Numerical or symbolic? Complex or real?
- \triangleright Also interesting for other X_q , or for canon. curves, K3 surfaces, Fano 3-folds, ...
- ▷ Computational problem posed by [Geiger, Hashimoto, Sturmfels & Vlad 2022]

That one slide about homotopy continuation

- Slicing: Move linear space through Grassmannian
- \rightsquigarrow track intersection points
- \triangleright Lifting: Move point configuration through \mathcal{A}_6 (?)
- → track some linear space in fiber of "slicing map"

Credit: silviana amethyst

Warm-up: Slicing $X_8 = Gr(2, k^6)$

- $\,\triangleright\,$ Toric degeneration of $Gr(2,\mathbb{C}^6)$ via SAGBI basis
- 1. Solve for random \mathbb{L}_0 on toric variety (polyhedral start system)
- 2. Track via toric degeneration to X_8
- 3. Track $\mathbb{L}_0 \to \mathbb{L}$ (straight line homotopy) Application: Slice $\operatorname{Gr}(2, \mathbb{R}^6) \subseteq \mathbb{P}^{14}(\mathbb{R})$ with 10,000,000 $\mathbb{L} \in \operatorname{Gr}(6, \mathbb{P}^{14}(\mathbb{R}))$ sampled uniformly, count real solutions

Parametrization of \mathcal{A}_n

 $\triangleright \ \mathcal{A}_n$ known to be rational variety [Dolgachev & Ortland]

> Orthogonal normal form: Non-degenerate self-dual points has representation

$$\Gamma = [I_n \mid P], \qquad P \in \mathrm{SO}(n, \mathbb{C})$$

 \triangleright Cayley transform: Let $U = \{ A \in \mathbb{C}^{n \times n} \mid I_n + A \text{ invertible} \}$

 $\mathcal{C}: U \cap \operatorname{Skew}(n) \leftrightarrow U \cap \operatorname{SO}(n), \qquad \mathcal{C}(A) = (I_n - A)(I_n + A)^{-1}$

 \triangleright Skew normal form: General self-dual points have representation by $S \in \text{Skew}(n)$

$$\Gamma = [I_n + S \mid I_n - S] = \begin{bmatrix} 1 & s_1 & \cdots & s_{n-1} & 1 & -s_1 & \cdots & -s_{n-1} \\ -s_1 & 1 & \ddots & \vdots & s_1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & s_{\binom{n}{2}} & \vdots & \ddots & \ddots & -s_{\binom{n}{2}} \\ -s_{n-1} & \cdots & -s_{\binom{n}{2}} & 1 & s_{n-1} & \cdots & s_{\binom{n}{2}} & 1 \end{bmatrix}$$

ho
ight. Highly non-unique (5,579,410,636,800 SNFs for \mathbb{P}^6), but *linear* in $S=(s_1,\ldots,s_{21})$

A big polynomial system

- $\triangleright \quad \text{Gen. finite slicing map } f$ $\mathbb{L} \mapsto \mathbb{L} \cap \operatorname{Gr}(2, \mathbb{C}^6)$
- $\label{eq:Lifts} \begin{array}{l} \mbox{ b Lifts to } \widehat{f} \mbox{ on matrices:} \\ L \mapsto L^{-1}(\mathrm{Im}(L) \cap \mathrm{Gr}(2,\mathbb{C}^6)) \end{array}$
- $\,\triangleright\,$ General fiber of \hat{f} 36 dim'l
- \rightsquigarrow L_a should have 69 free vars
- \triangleright Polynomial system in (a, t)

$$\mathsf{plück}_i(L_a(\mathrm{SNF}(S_t)_j)) = 0$$

 $i = 1, \dots, 15 \; \mathsf{rel's}$
 $j = 1, \dots, 14 \; \mathsf{pts}$

A catwalk of software

iulia Homotopy Continuation.jl

OSCAR SYMBOLIC TOOLS

MATHREPO MATHEMATICAL RESEARCH-DATA

REPOSITORY

What's next?

- Methods apply to lower Mukai Grassmannians too
- Improve runtime!
- \triangleright Test Petrakiev's birationality conjecture $Gr(6, \mathbb{P}^{14})/SL_6 \xrightarrow{\sim} \mathcal{A}_6$
- b Lifting real/rational solutions to real/rational linear spaces?
- Attack Mukai lifting problem for canonical curves?
- \rightsquigarrow Lifting of 0-dim'l slices could be stepping stone!

Thank you! arXiv:2406.02734

Barbara Betti and Leonie Kayser.
 Mukai lifting of self-dual points in P⁶.
 2024.

- Igor Dolgachev and David Ortland.
 Point sets in projective spaces and theta functions.
 Number 165 in Astérisque. Société mathématique de France, 1988.
- David Eisenbud and Sorin Popescu.
 The projective geometry of the Gale transform. Journal of Algebra, 230(1):127–173, 2000.

References ii

Alheydis Geiger, Sachi Hashimoto, Bernd Sturmfels, and Raluca Vlad.
 Self-dual matroids from canonical curves.
 Experimental Mathematics, 2022.

📔 Shigeru Mukai.

Curves, K3 surfaces and Fano 3-folds of genus ≤ 10 .

In *Algebraic Geometry and Commutative Algebra*, pages 357–377. Academic Press, 1988.

🔋 Ivan Petrakiev.

On self-associated sets of points in small projective spaces.

Communications in Algebra, 37(2):397–405, 2009.

- > silviana amethyst https://silviana.org/computer_programs/
- David J. Phillip/Associated Press https://www.bostonglobe.com/2024/07/26/ multimedia/photos-paris-olympics-opening-ceremony/