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Euler’s formula andwishful thinking

Given the partial derivatives of a homogeneous polynomial F ∈ C[x0, . . . , xn]D, one
can use integration to recover the potential F . In fact, one of the many Euler formulas

gives a way to express F as a combination of its partials:

F = 1
D

n∑
i=0

xi · ∂

∂xi
F.

How does a higher order partials version of Euler’s formula look like?

However, if only the vector space of all directional derivatives

〈∇1F 〉 :=
{

∂vF
∣∣ v ∈ Cn+1 } = 〈 ∂

∂x0
F, . . . , ∂

∂xn
F 〉C

is known, then recovering F is generally no longer possible, not even up to scaling!

Example. For any a, b, c ∈ C× we have

F = ax3 + by3 + cz3  〈∇1F 〉 = 〈x2, y2, z2〉C.

On the other hand, G = xyz is the only form with 〈∇1G〉 = 〈xy, xz, yz〉C. Why?

This leads to some interesting questions:

1. Can a general form F be recovered from its spaces of higher order partials 〈∇dF 〉?
2. If not, how does the set of polynomials with the same partials look like?

3. And which subspaces Γ ⊆ C[x0, . . . , xn]D−d are spaces of partials?

Apolarity: The differentiation action

Consider a finite C-vector space V , let

T := S(V ) =
⊕

D SD(V ) be the symmetric tensor algebra and

S := Sym(V ∗) =
⊕

d Symd(V ∗) the symmetric algebra.

After choosing a basis V = 〈x0, . . . , xn〉C, we can identify T = C[x0, . . . , xn] and
S = C[∂0, . . . , ∂n], where ∂i = x∗

i . Tensor contraction defines the apolar pairing

Sd × TD → TD−d, which under this identification corresponds to differentiation

∂α • xβ = β!
(β − α)!

xβ−α if α ≤ β, else 0.

For d = D this is a perfect pairing, identifying (Sd V )∗ = Symd(V ∗), and in general

defines a S-module structure on T (!). In this sense S is the commutative ring of

partial differential operators with constant coefficients on T .

Is T finitely generated over S? Dare to think about positive characteristics?

The annihilator of F ∈ TD, i. e. all operators which kill F , is the apolar ideal of F

F ⊥ := AnnS(F ) = { g ∈ S | g • F = 0 } .

The graded ideal F ⊥ equals S in degrees > D, and the quotient S/F ⊥ is a graded

Artinian Gorenstein C-algebra of socle degree D (see for example [1]).

Theorem. (Macaulay) The map F 7→ S/F ⊥ induces a bijection

P(TD) → {Graded Gorenstein Artinian quotients of S of socle deg. D}.

Can you show it’s injective? Hint: Look at the degree D component.

Formswith spaces of partials of given dimension

For fixed F ∈ TD and any 0 < d < D, the apolar paring defines the linear Catalecticant

map sending a form g(∂) to the derivative of F with respect to g

Fd,D−d : Sd → TD−d, g 7→ g • F.

The image of Fd,D−d is exactly its space of d-th order partials, while the kernel is the

d-th graded component of F ⊥ (by definition). In particular, we have a short exact

sequence

0 (F ⊥)d Sd 〈∇dF 〉 0.
Fd,D−d

Thus image, kernel and rank of Fd,D−d are of great interest for our question. Varying

F , we would like to consider a morphism mapping F 7→ [Im Fd,D−d] into some Grass-

mannian. To make this idea rigorous, we need to introduce the appropriate domains

of definition

Sub◦
d,k := { [F ] ∈ P(TD) | rk Fd,D−d = k } ,

Subd,k := Sub◦
d,k = { [F ] ∈ P(TD) | rk Fd,D−d ≤ k }

for 1 ≤ k ≤ kmax := min{
(

n+d
n

)
,
(

n+D−d
n

)
}.

Why this kmax? Can Sub◦
d,k be empty?

Example. For a form F ∈ TD let Supp F be the smallest subspace U ⊆ V = Cn+1 such

that F ∈ SD U , so F is a polynomial on the (smaller) subspace U . Then

Sub1,k = { [F ] | dimC Supp F ≤ k }
is the set of polynomials which (after a coordinate change) depend only on k variables.

Warning: For arbitrary (n, D, d, k) the varieties Subd,k may not be irreducible!

Spaces of partials as a morphism

For fixed 0 < d < D and 1 ≤ k ≤ kmax consider the rational morphisms

αd,k : Subd,k 99K Gr(k, TD−d), F 7→ [Im(Fd,D−d)]
βd,k : Subd,k 99K Gr

((
n+d

n

)
− k, Sd

)
, F 7→ [Ker(Fd,D−d)]

with domain of definition Sub◦
d,k. The first question on the left is exactly, whether

αd,kmax is generically injective, while the second and third question ask about fibers

and images of the rational maps αd,k.

The maps αd,k and βd,k are closely related: The dualityGr(k, W ) ∼= Gr(dimC W −k, W ∗)
for W = Td induces the following commuting quadrangle

Sub◦D−d,k Gr(k, Td)

Sub◦d,k Gr
((

n+d
n

)
− k, Sd

)
αD−d,k

∼=(−)⊥

βd,k

Convince yourself that the two Sub◦
d,k’s on the left indeed coincide.

Thus any property of αd,k immediately translates into a property of βD−d,k and vice

versa, making it possible to use either of these two whenever convenient. The fibers

of these morphism are very well-behaved:

Theorem. For every F ∈ Sub◦
d,k the scheme-theoretic fiber α−1

d,k(αd,k(F )) is reduced and

the intersection of a linear space L ⊆ P(TD) with Sub◦
d,k. In other words, the closures of

the fibers are linear spaces.

Corollary. The following are equivalent:

αd,k is birational onto its image;

Each irreducible component of Sub◦
d,k has a F with α−1

d,k(αd,k(F )) = {F} as sets.

First main result: Fibers of α1,k for d = 1

Theorem. The morphisms α1,k are birational onto their image except in the following

cases:

1. D = 2 and 2 ≤ k ≤ n + 1, then the fibers are α−1
1,k([U ]) = P(S2 U) ⊆ P(S2 V ).

2. D = 3 and k = 2, then fibers are one-dimensional. Considered as points in

F1(Sub1,2), they are the secant lines Sec2 V n,3.

Here F1(X) ⊆ Gr(1,P(T3)) is the Fano scheme of lines and Sec2 V n,3 ⊆ Gr(1,P(T3))
is the (abstract) secant variety of the Veronese variety V n,3 = ν3(Pn).

For D = 3 this was worked out previously in [2], this project is a continuation of

these ideas. The key player in the proof is the form

F =
k−1∑
i=0

xD−1
i x(i+1) mod k ∈ TD,

we show that (in most cases) it is the unique form with

〈∇1F 〉 = 〈(D − 1)xD−2
i xi+1 + xD−1

i−1 | 0 ≤ i < k〉C
(indices again mod k). The variety Sub1,k is irreducible, so the existence of F implies

birationality.

Explain 1. using diagonalization of quadratic forms over C!

The next steps

Once the fibers and birationality are understood, the next question is studying the

image of αd,k, i. e. the variety of subspaces of partials of polynomials

Z◦
d,k := αd,k(Sub◦

d,k), Zd,k := Z◦
d,k, ∂Zd,k := Zd,k \ Z◦

d,k

The main result for d = 1 allows us in that case to compute the dimension (in the

non-exceptional cases) as

dim Zd,k = dim Subd,k = k(n + 1 − k) +
(

d + k − 1
d

)
− 1.

It would be interesting to determine the class of Zd,k in the Chow ring of the Grass-

mannian. To study the boundary we introduce the Catalecticant enveloping varieties

Φd,k := { [Γ] ∈ Gr(k, TD−d) | Im(Fd,D−d) ⊆ Γ for some [F ] ∈ Subd,k } ⊇ Zd,k.

The irreducible componentsΦd,k provide insight into the boundary ∂Zd,k. In a different

direction, we can also study the case n+1 = 2 (but d arbitrary), which is closely related

to Hankel matrices and Waring decomposition of binary forms.
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