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On this poster, let F be an algebraically closed field of characteristic p ≥ 0. Let V be

a F-vector space with basis X1, . . . , Xn and dual basis x1, . . . , xn ∈ V ∨.

Motivation

A symmetric tensor F ∈ Symd V ⊆ V ⊗d is a tensor invariant under the action of Sd.

The symmetric tensor algebra Sym∗ V =
⊕

d≥0 Symd V is the (graded) Hopf algebra

dual of the symmetric algebra S∗V ∨ ∼= F[x1, . . . , xn], and as such has the structure

of an algebra. Moreover, it comes with a divided power structure, given by v[d] = v⊗d

satisfying certain axioms. Every symmetric tensor F ∈ Symd V has a decomposition

F = λ1v
[d]
1 + · · · + λrv

[d]
r , vi ∈ V, λi ∈ F,

and the smallest possible r is the symmetric tensor rank R(F ). The smallest r such that

F is in the Zariski closure of tensors of rank ≤ r is the symmetric border rank R(F ) ≤
R(F ). This corresponds to secants of the Veronese variety νd(PV ) ⊆ P(Symd V ).
If the characteristic p of F is 0, or at least p > d, then the symmetric tensor algebra is

isomorphic to the symmetric algebra Sym∗ V ∼= S∗V as GL(V )-modules and divided

power algebras, the isomorphism given by

SdV 3 v1 · · · vd 7→ 1
d!

∑
σ∈Sd

vσ(1) · · · vσ(d) ∈ Symd V,
1
d!

vd 7→ v[d].

The symmetric algebra, also known as a polynomial ring, is a familiar andwell-behaved

object, and so most authors restrict themselves to the case of characteristic 0 or “large
enough so that all troubles go away”. This allows for the use of tools such as generic

smoothness (in the guise of Bertini, Terracini, …) and classical representation theory.

But what really happens for small p?

Example: The symplectic block in characteristic 2

Let F be of characteristic 2, for example Falg
2 , and consider the antidiagonal sym-

metric matrix

J :=
[
0 1
1 0

]
= X1 ⊗ X2 + X2 ⊗ X1 = X [1,1] ∈ Sym2 F2

It turns out that R(J) = 2 and R(J) = 3, a minimal decomposition given by

J = X⊗2
1 + X⊗2

2 + (X1 + X2)⊗2.

This funny example can be explained in at least two contexts:

Symmetric matrices and GL(Fn) acting on them.

Binary (DP) forms and apolarity theory.

The case of symmetric matrices

Over a field of characteristic p 6= 2, any symmetric matrix A is congruent to a diag-

onal matrix, the number of non-zero entries being its (matrix) rank. Furthermore,

the condition of having rank ≤ r is given by the vanishing of the (r + 1)-minors, a

closed condition. This shows

R(A) = R(A) = rank A.

Over fields of characteristic 2 the world is more interesting:

Theorem. If p = 2 one has R(A) = rank A. The following are equivalent:

1. R(A) = rank A;

2. A is diagonalizeable;

3. x 7→ xTAx is not the zero map, i.e. A has a nonzero diagonal entry

If these equivalent conditions are not satisfied, then R(A) = rank A + 1.
This behavour can be explained by the group GL(Fn) acting on symmetric matrices

by congruence. A complete list for representatives of orbits on Sym2 Fn is given by

1. Diagonalizeable forms: Dr = diag(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0), 0 ≤ r ≤ n

2. Vanishing quadratic forms: V2k = J ⊕ · · · ⊕ J︸ ︷︷ ︸
k times

⊕ 0n−2k, 0 < 2k ≤ n

R(Dr) = R(Dr) = r, R(V2k) = R(V2k) − 1 = 2k.

Counterexamples to conjectures in characteristic 2

The previous result implies that many popular theorems and conjectures in charac-

teristic 0 turn out to be false in characteristic 2 for stupid reasons:

[Landsberg–Teitler]: Let X ⊆ PN be a non-degenerate irreducible variety of

dimension n. Then for all p ∈ PN , RX(p) ≤ N + 1 − n.
E X = ν2(P1) ⊆ P2 = P(Sym2 F2), p = [J ], R(J) = 3 > 2 + 1 − 1.
Comon Conjecture: Rank and symmetric rank of symmetric tensors agree.

E R(J) = 3 > 2 = rank J .

Symmetric Strassen Conjecture: Symmetric tensor rank is additive.

E R(J ⊕ Id1) = 3 < 4 = R(J) + R(Id1).

The apolar pairing

Let S := S∗V ∨ be the dual polynomial ring, S acts on symmetric tensors by contrac-

tion. Consider the basis of divided monomials given by sums of all tensor products of

the basis with prescribed “multiplicity” (but without repetition!)

X [u] =
∑

T∈Sd·(X
⊗α1
1 ⊗···⊗X⊗αn

n )

T, α ∈ Nn, |α| = d.

The DPmonomials form a convenient basis of Symd V , and the action of S is given by

xα • X [β] = X [β−α]

if α ≤ β component-wise, and 0 otherwise. In this way, S = S∗V ∨ is the canonical

homogeneous coordinate ring of P(V ). The apolar ideal of F is

F ⊥ = AnnS(F ) = { f ∈ S | f • F = 0 }
and the apolar algebra is S/F ⊥. The relevance of this construction is illustrated by the

following theorems valid over an arbitrary field (!).

Theorem. (Macaulay) The map P(Symd V ) 3 [F ] 7→ S/F ⊥ is a bijection onto standard

graded Artin Gorenstein quotient algebras of S of socle degree d.

Theorem. The apolarity method: Given 0 6= F ∈ Symd V and v1, . . . , vr ∈ V \ 0, then the

following are equivalent:

1. F = λ1v
[d]
1 + · · · + λrv

[d]
r for suitable λi ∈ F;

2. I({[v1], . . . , [vr]}) ⊆ F ⊥ ⊆ S;

3. I({[v1], . . . , [vr]})d ⊆ F ⊥
d ⊆ Sd.

This result brings in commutative algebra techniques, such as classifications of Goren-

stein ideals of small codimension, to study symmetric tensor rank.

The case of binary DP forms

Let F ∈ Symd V with dimF V = 2. By Serre’s theorem, the apolar ideal is a complete

intersection of two forms F ⊥ = 〈f, g〉 of degrees r := deg f ≤ deg g with

deg f + deg g = d + 2.

Theorem. Over a field of characteristic p ≥ 0 one has

1. R(F ) = deg f = min { k | F ⊥
k 6= 0 }

2. If f, g ∈ (F[x1, x2]r/p)p, then R(F ) = R(F ) + 1
3. Otherwise R(F ) = deg g = d + 2 − R(F )

The tensor J has apolar ideal 〈x2
1, x2

2〉S, so it has rank d + 2 − r + 1 = 3.

A Frobenius map on symmetric tensors

Given a symmetric tensor F ∈ Symd V , its apolar ideal F ⊥ ⊆ S defines an Artin

Gorenstein quotient of socle degree d. We can apply the Frobenius map frob : S →
S, f 7→ f p to this ideal to obtain another Artin Gorenstein ideal. This operation is

equivalent to replacing xi by xp
i in equations for F ⊥, or by considering

S/F ⊥ ⊗S Sp

as a S ∼= Sp-algebra.

Theorem. By applying the Macaulay corresponence, we obtain a tensor

frob([F ]) ∈ P(Symd′
V ), d′ = p(d + n) − n.

Example. F = X [1,2,4] has a monomial apolar ideal

F ⊥ = 〈x2
1, x3

2, x5
3〉S  (F ⊥)p = 〈x2p

1 , x3p
2 , x5p

3 〉.
This is the apolar ideal of the DP monomial X [2p−1,3p−1,5p−1] of degree 10p − 3.
Observation. The exceptional cases in the previous theorem about binary DP forms

are in the image of frob in Symd V !

Questions

If p ≥ 5, then there are normal forms of tensors F ∈ Sym3 F3 up to GL(F3) due to

the identification with F[X1, X2, X3]3 and the theory of plane cubics. If p ∈ {2, 3},
then ternary cubic DP forms are not equivalent to plane cubics. Is there still a nice

classification, including their ranks and border ranks?

What is the effect of frob on symmetric tensor rank? What about iterating?

If p > d, then Symd V ∼= SdV is an irreducible representation of GL(V ), this is no
longer true for smaller d. Is there a neat classification of invariant subspaces?

The Alexander–Hirschowitz theorem shows that a general set of r double points

in P(V ) imposes independent conditions on SdV ∗ except in a small list of

exceptions. Using apolarity one can relate this to the tangent spaces of the r-th
secant variety of the Veronese varieties νd(P(V )) ⊆ P(Symd V ). This implies

non-defectivity of σrνd(PV ) when p - d. Is this result still true if p | d?

Can we use rings of mixed characteristic like Qp to prove results in characteristic 0
by lifting from characteristic p > 0 and vice versa?
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