

Symmetric Tensor Decomposition in small characteristics

Leonie Kayser

On this poster, let \mathbb{F} be an algebraically closed field of characteristic $p \ge 0$. Let V be a \mathbb{F} -vector space with basis X_1, \ldots, X_n and dual basis $x_1, \ldots, x_n \in V^{\vee}$.

Motivation

A symmetric tensor $F \in \operatorname{Sym}^d V \subseteq V^{\otimes d}$ is a tensor invariant under the action of \mathfrak{S}_d . The symmetric tensor algebra $\operatorname{Sym}^* V = \bigoplus_{d \ge 0} \operatorname{Sym}^d V$ is the (graded) Hopf algebra dual of the symmetric algebra $S^*V^{\vee} \cong \mathbb{F}[x_1, \ldots, x_n]$, and as such has the structure of an algebra. Moreover, it comes with a *divided power structure*, given by $v^{[d]} = v^{\otimes d}$ satisfying certain axioms. Every symmetric tensor $F \in \operatorname{Sym}^d V$ has a decomposition

$$F = \lambda_1 v_1^{[d]} + \dots + \lambda_r v_r^{[d]}, \qquad v_i \in V, \ \lambda_i \in \mathbb{F},$$

and the smallest possible r is the symmetric tensor rank R(F). The smallest r such that F is in the Zariski closure of tensors of rank $\leq r$ is the symmetric border rank $\underline{R}(F) \leq R(F)$. This corresponds to secants of the Veronese variety $\nu_d(\mathbb{P}V) \subseteq \mathbb{P}(\operatorname{Sym}^d V)$.

The apolar pairing

Let $S \coloneqq S^*V^{\vee}$ be the dual polynomial ring, S acts on symmetric tensors by contraction. Consider the basis of *divided monomials* given by sums of all tensor products of the basis with prescribed "multiplicity" (but without repetition!)

$$X^{[u]} = \sum_{T \in \mathfrak{S}_d \cdot (X_1^{\otimes \alpha_1} \otimes \dots \otimes X_n^{\otimes \alpha_n})} T, \qquad \alpha \in \mathbb{N}^n, \ |\alpha| = d.$$

The DP monomials form a convenient basis of $\operatorname{Sym}^d V$, and the action of S is given by

$$x^{\alpha} \bullet X^{[\beta]} = X^{[\beta - \alpha]}$$

if $\alpha \leq \beta$ component-wise, and 0 otherwise. In this way, $S = S^*V^{\vee}$ is the canonical homogeneous coordinate ring of $\mathbb{P}(V)$. The *apolar ideal* of F is

$$E^{\perp} - \Lambda_{RR} (E) - \left[f \subset S \mid f \circ E - 0 \right]$$

If the characteristic p of \mathbb{F} is 0, or at least p > d, then the symmetric tensor algebra is isomorphic to the symmetric algebra $\operatorname{Sym}^* V \cong S^*V$ as $\operatorname{GL}(V)$ -modules and divided power algebras, the isomorphism given by

$$S^d V \ni v_1 \cdots v_d \mapsto \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_d} v_{\sigma(1)} \cdots v_{\sigma(d)} \in \operatorname{Sym}^d V, \qquad \frac{1}{d!} v^d \mapsto v^{[d]}$$

The symmetric algebra, also known as a polynomial ring, is a familiar and well-behaved object, and so most authors restrict themselves to the case of characteristic 0 or "large enough so that all troubles go away". This allows for the use of tools such as generic smoothness (in the guise of Bertini, Terracini, ...) and classical representation theory. **But what** *really* **happens for small** *p***?**

Example: The symplectic block in characteristic 2

Let \mathbb{F} be of characteristic 2, for example \mathbb{F}_2^{alg} , and consider the antidiagonal symmetric matrix

$$U \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = X_1 \otimes X_2 + X_2 \otimes X_1 = X^{[1,1]} \in \operatorname{Sym}^2 \mathbb{F}^2$$

It turns out that $\underline{R}(J) = 2$ and R(J) = 3, a minimal decomposition given by

 $J = X_1^{\otimes 2} + X_2^{\otimes 2} + (X_1 + X_2)^{\otimes 2}.$

This funny example can be explained in at least two contexts:

- Symmetric matrices and $GL(\mathbb{F}^n)$ acting on them.
- Binary (DP) forms and apolarity theory.

 $F = \operatorname{Ann}_{S}(F) = \{ J \in S \mid J \bullet F = 0 \}$

and the *apolar algebra* is S/F^{\perp} . The relevance of this construction is illustrated by the following theorems valid over an arbitrary field (!).

Theorem. (Macaulay) The map $\mathbb{P}(\operatorname{Sym}^d V) \ni [F] \mapsto S/F^{\perp}$ is a bijection onto standard graded Artin Gorenstein quotient algebras of S of socle degree d.

Theorem. The apolarity method: Given $0 \neq F \in \text{Sym}^d V$ and $v_1, \ldots, v_r \in V \setminus 0$, then the following are equivalent:

1. $F = \lambda_1 v_1^{[d]} + \dots + \lambda_r v_r^{[d]}$ for suitable $\lambda_i \in \mathbb{F}$; 2. $I(\{[v_1], \dots, [v_r]\}) \subseteq F^{\perp} \subseteq S$; 3. $I(\{[v_1], \dots, [v_r]\})_d \subseteq F_d^{\perp} \subseteq S_d$.

This result brings in commutative algebra techniques, such as classifications of Gorenstein ideals of small codimension, to study symmetric tensor rank.

The case of binary DP forms

Let $F \in \operatorname{Sym}^d V$ with $\dim_{\mathbb{F}} V = 2$. By Serre's theorem, the apolar ideal is a complete intersection of two forms $F^{\perp} = \langle f, g \rangle$ of degrees $r := \deg f \leq \deg g$ with $\deg f + \deg g = d + 2$. **Theorem.** Over a field of characteristic $p \geq 0$ one has 1. $\underline{R}(F) = \deg f = \min \{ k \mid F_k^{\perp} \neq 0 \}$ 2. If $f, g \in (\mathbb{F}[x_1, x_2]_{r/p})^p$, then $R(F) = \underline{R}(F) + 1$

The case of symmetric matrices

Over a field of characteristic $p \neq 2$, any symmetric matrix A is congruent to a diagonal matrix, the number of non-zero entries being its (matrix) rank. Furthermore, the condition of having rank $\leq r$ is given by the vanishing of the (r + 1)-minors, a closed condition. This shows

 $R(A) = \underline{R}(A) = \operatorname{rank} A.$

Over fields of characteristic 2 the world is more interesting:

Theorem. If p = 2 one has $\underline{R}(A) = \operatorname{rank} A$. The following are equivalent:

1. $R(A) = \operatorname{rank} A$;

2. A is diagonalizeable;

3. $x \mapsto x^T A x$ is not the zero map, i.e. A has a nonzero diagonal entry

If these equivalent conditions are not satisfied, then $R(A) = \operatorname{rank} A + 1$.

This behavour can be explained by the group $GL(\mathbb{F}^n)$ acting on symmetric matrices by congruence. A complete list for representatives of orbits on $Sym^2 \mathbb{F}^n$ is given by

1. Diagonalizeable forms:
$$D_r = \operatorname{diag}(\underbrace{1, \dots, 1}_{r \text{ times}}, 0, \dots, 0), \quad 0 \le r \le n$$

2. Vanishing quadratic forms: $V_{2k} = \underbrace{J \bigoplus^{r \text{ times}}_{k \text{ times}} \oplus \mathbf{0}_{n-2k}, \quad 0 < 2k \le n$
 $R(D_r) = R(D_r) = r, \qquad R(V_{2k}) = R(V_{2k}) - 1 = 2k.$

3. Otherwise $R(F) = \deg g = d + 2 - \underline{R}(F)$

The tensor J has apolar ideal $\langle x_1^2, x_2^2 \rangle_S$, so it has rank d + 2 - r + 1 = 3.

A Frobenius map on symmetric tensors

Given a symmetric tensor $F \in \text{Sym}^d V$, its apolar ideal $F^{\perp} \subseteq S$ defines an Artin Gorenstein quotient of socle degree d. We can apply the Frobenius map frob: $S \rightarrow S$, $f \mapsto f^p$ to this ideal to obtain another Artin Gorenstein ideal. This operation is equivalent to replacing x_i by x_i^p in equations for F^{\perp} , or by considering

 $S/F^{\perp} \otimes_S S^p$

as a $S \cong S^p$ -algebra.

Theorem. By applying the Macaulay correspondence, we obtain a tensor $\operatorname{frob}([F]) \in \mathbb{P}(\operatorname{Sym}^{d'} V), \quad d' = p(d+n) - n.$

Example. $F = X^{[1,2,4]}$ has a monomial apolar ideal

 $F^{\perp} = \langle x_1^2, x_2^3, x_3^5 \rangle_S \quad \rightsquigarrow \quad (F^{\perp})^p = \langle x_1^{2p}, x_2^{3p}, x_3^{5p} \rangle.$

This is the apolar ideal of the DP monomial $X^{[2p-1,3p-1,5p-1]}$ of degree 10p-3.

Observation. The exceptional cases in the previous theorem about binary DP forms are in the image of frob in $\operatorname{Sym}^d V!$

Questions

$-\frac{1}{2}(1) - \frac{1}{2}(1) - \frac{$

Counterexamples to conjectures in characteristic 2

The previous result implies that many popular theorems and conjectures in characteristic 0 turn out to be false in characteristic 2 for stupid reasons:

- [Landsberg-Teitler]: Let X ⊆ P^N be a non-degenerate irreducible variety of dimension n. Then for all p ∈ P^N, R_X(p) ≤ N + 1 − n.
 X = ν₂(P¹) ⊆ P² = P(Sym² F²), p = [J], R(J) = 3 > 2 + 1 − 1.
- Comon Conjecture: Rank and symmetric rank of symmetric tensors agree.

 I R(J) = 3 > 2 = rank J.
- Symmetric Strassen Conjecture: Symmetric tensor rank is additive. $\not \in R(J \oplus \text{Id}_1) = 3 < 4 = R(J) + R(\text{Id}_1).$

- If $p \ge 5$, then there are normal forms of tensors $F \in \text{Sym}^3 \mathbb{F}^3$ up to $\text{GL}(\mathbb{F}^3)$ due to the identification with $\mathbb{F}[X_1, X_2, X_3]_3$ and the theory of plane cubics. If $p \in \{2, 3\}$, then ternary cubic DP forms are not equivalent to plane cubics. Is there still a nice classification, including their ranks and border ranks?
- What is the effect of frob on symmetric tensor rank? What about iterating?
- If p > d, then $\operatorname{Sym}^d V \cong S^d V$ is an irreducible representation of $\operatorname{GL}(V)$, this is no longer true for smaller d. Is there a neat classification of invariant subspaces?
- The Alexander-Hirschowitz theorem shows that a general set of r double points in $\mathbb{P}(V)$ imposes independent conditions on S^dV^* except in a small list of exceptions. Using apolarity one can relate this to the tangent spaces of the r-th secant variety of the Veronese varieties $\nu_d(\mathbb{P}(V)) \subseteq \mathbb{P}(\operatorname{Sym}^d V)$. This implies non-defectivity of $\sigma_r \nu_d(\mathbb{P}V)$ when $p \nmid d$. Is this result still true if $p \mid d$?
- Can we use rings of mixed characteristic like \mathbb{Q}_p to prove results in characteristic 0 by lifting from characteristic p > 0 and vice versa?

