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Hilbert Functions of Chopped Ideals
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A chopped ideal is obtained from a homogeneous ideal by considering
cases in which the chopped ideal defines the same finite set of points :
computing these points from the chopped ideal is governed by the Hilk
these invariants and prove them in many cases. We show that our conje
decomposition.


https://leokayser.github.io

What is a tensor?

it
A tensor. .. #5ls
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> ...is an object that transforms like a tensor M
> ...is an element of a tensor product of vector spaces U @ V @ W
> ...is a multidimensional array of numbers A = (A4;, ;,)i, .., € C" X Xnd
> ...in (C")®4 is symmetric if its entries are invariant under permutations o € & 4

> Symmetric tensors can be identified with homogeneous polynomials
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Tensor decomposition and rank

A tensor of the form (u;vjwy)i ik = u ® v ® w is simple
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Every tensor is a linear combination of simple tensors

A = Z )\lu(l) ® U(i) Q w(L)
i=1
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The smallest such 7 is the tensor rank of A
Generalizes matrix rank: C"*" 5 A = S -diag(1,...,1,0,...)- T =>""_; Svi-Tix

rank A
If the simple tensors are unique up to scaling, then A is called identifiable

\4

v

\

\4

Symmetric case: Simple tensor v®¢ = ¢4 powers of linear forms, F = i )\iff
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Symmetric tensor rank, identifiability, . ..



Forms of small rank often have unique decompositions

Let Ty = C[Xo,..., Xn]a = (") be the vector space of degree d forms

> (Alexander—Hirschowitz)

A general form F' € Ty has rank {ﬁ(

> (Ballico, Mella, Chiantini—Ottaviani—-Vannieuwenhoven, ...)
1 (n+d

For r < H—H( d ) a general form of rank r is identifiable except in a few cases

Running example

A general F € C[Xy, X1, Xa]10 has tk F' = %(2210) = 22. The set of such forms of rank
18 has dimension 54 in C%. A random such F' has a unique decomposition

n+d

M )—‘ except in a few cases

F=004...401% 4 eC[Xo, X1, Xo]1.



The catalecticant method

> Fix general F'=>""_ ¢¢ € T, of rank r
> Linear forms as points in projective space [(;] € P(T7) = Pg P(V) = (V \ 0)/C*
> Catalecticant method give polynomials vanishing on Z = {[¢4],..., [¢,]} C P

=

Rank-one Rank-one
tensor tensor

Rank-one
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> In fact: Obtain all homog. equations of degree < d/2 vanishing on Z
~» Hope: Solutions to equations are exactly the [¢;]!



The algorithm

> Equations via kernel of catalecticant maps

Cat;(F'): Clyo, - -, Yn)j = Tu—j, g g(0xy,---,0x, ) F(Xo,...,X5)
> Algorithmic approach:

1. Compute kernel basis F of the linear catalecticant map Cat|q/2(F)
2. Solve polynomial system {F = 0} to get Zeros(F) = {l1], .., [¢:]},
3. Solve linear equations to get \; in F' =7 | \;{¢

> (At least) three common approaches:
e Grobner bases computation (symbolic)
e Homotopy continuation (numerical)

e Eigenvalue/normal form methods (numerical/mixed)

~~ Focus on the eigenvalue method approach here



Eigenvalue methods for polynomial system solving

Task: Given 0-dim'l system {F = 0}, compute finite set Z = {z1,..., 2.} = Zeros(F) C P"
> Consider ideal J := (F)s = D, /1, this is a graded subspace of .S with
Jy = Stfdogﬁ 1 sFeeo g StdegfsfS C S

> For ¢ large enough the Hilbert function hg,;(t) :== dimc(S/J); is constant r
> Multiplication map for g € Se:

My: (S/J)a == (8/T)are
> Under “suitable conditions” M, "Mg: (S/J)4 — (S/J)q has left eigenpairs
{(eva, f(2)) li=1,....r},  eva(f) = flz1)/h(z)

~~ Translate problem into large eigenvalue problem, solve numerically

> For this need hg/;(d +e) = hg/;(d) = r, want d,d + e as small as possible



Non-saturated systems are harder to solve

> Z general set of points, [ = { f € S| f(Z) =0}, then hg/;(t) = min{hs(t), 7}
~ d=min{t|hs(t) >r} and e =1 work.
> In general, larger saturation gap can be encountered
> Saturation gap governs algorithmic complexity of solving J with eigenvalue methods

Bigger example
For a general set Z C IP? of 52 points and J = I;5y(Z) = ({ f € S5 | f(Z) =0})s, we
have the Hilbert function pictured below. Smallest choice: d =5, d + e = 11.

100 + h5/1<5> (d)
| hg/r(d)
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Recap

We are lead to the following setup:

> Given a general form F'=Y""_ ¢4 € C[X1,..., Xy]q of “small” rank r
> Decomposition is unique, want to find Z = {[¢1],...,[¢;]} € P"

> Want to solve Catalecticant polynomial system F using the eigenvalue method
> Is Zeros(F) = Z?7 With(out) multiplicities?

> What is the Hilbert function of the ideal (F)g C S? When =17

Running example

n =2, d =10, r = 18, equations F have degree d/2 = 5.

18
F = Zfllo € (C[X(),Xl,XQ]lo, [fl] (S P(C[Xo,Xl,XQ]l) = P2
=1



Example: Z = 18 points in the plane

t ... 3 4 5 6 7 t 012 3 4 5 6 7
hs(t) 10 15 21 28 36 hs(t) 1 3 6 10 15 21 28 36
hit) ... 0 0 3 10 18 hey() 1 3 6 10 15 18 18 18
hig() ... 0 0 3 9 18 hsjrg, () 1 3 6 10 15 18 19 18

201 :/S’/I(&)\)(t) - == Peeme e e
15 1 st
10 ¢

Figure 1: Three quintics (g1, ¢2,¢3)c = I5 passing through 18 general points.



For which forms is our algorithmic approach even possible?

> For a set of points Z consider the vanishing ideal and chopped ideal

I={feS|f(Z)=0}, TLg={feSslf(Z2)=0})s

> Generally I14y C I, we need Zeros(]? Z Zeros(]<d>) cpr

multiplicities

Let Z C P" be a general set of r points and d € N. Then

n+d

Zeros(I) = Zeros(I(g)) <= 1< < "

> —norr=1or(n,r,d) =(2,4,2).
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The conjectural Hilbert function

Expected syzygy conjecture (ESC)

n+d
n

Z( 1)k <n+t—kd) ((”:d) —7") oy
_1)k. : 0,
hsy14 (£) = § k>0 " K

r t > t07

For a general set of r < ( ) — n points in P™ the ideal Iy has Hilbert function

where % is the first integer > d such that the sum is < r.

> One can extract the saturation gap length from this formula

> This is always a (lexicographic) lower bound due to Fréberg

> If W C Sy is a random vector subspace of dim. ("Zd) — 7, then this sum is the
expected Hilbert function of S/(W)g (until sum < 0)



Main results

Theorem (Gesmundo, Kayser & Telen)

Conjecture (ESC) is true in the following cases:

D Pmax == (”:d) — (n+ 1) for all d in all dimensions n.
> In the plane for ryi, = %(d +1)2 when d is odd.
>r < L((n+ 1)(”:L'd) — (”+Z+1)) and [n <4 ord> 0]

> In a large number of individual cases in low dimension (table below).
The length of the saturation gap is bounded above by
min{(’, >0 ’ (I(d))d+(;; = IdJrﬂ} < (n = 1)d = (n T 1)

n 2 3 4 ) 6 7 8 9 10
ro <1825 <1534 <991 <600 <447 <316 <333 <204 <259
d <58 <18 <9 <6 <4 <3 <3 <2 <2 12




Visualization of the saturation gaps in P?

> ESC predicts exactly how large the difference between I and I is
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Hungry for more?

~+ MS Tensor Decompositions and Algorithms (Thursday & Friday)

Part of MS125 Tensor Decompositions and Algorithms - Part I1I of IIT
A normal form algorithm for tensor rank decomposition

Abstract. We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic
decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem
as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational
algebraic geometry, relying only on basic linear algebra computations and Newton refinement. Numerical experiments show
that our algorithm outperforms state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy,
computation time, and memory consumption.

Authors

® NickV i h , , nick. i h gmail.com
e Simon Telen, , simon.telen@kuleuven.be

Part of MS125 Tensor Decompositions and Algorithms - Part ITT of IIT
Algorithms and Uniq of Tensor D positions

Abstract. In contrast to matrices, tensor rank decompositions are often unique (up to trivialities). Uniqueness is useful in
applications, as it corresponds to a unique interpretation of the information stored in a tensor. I will talk about recent work
on (i) developing algorithms for tensor rank decompositions, and (ii) certifying that a given tensor rank decomposition is
unique.

Authors

® Benjamin Lovitz, Northeastern University, U.S., benjamin.lovitz@ gmail com 14



Thank you! Questions?
arXiv:2307.02560
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Hilbert Functions of Chopped Ideals

Fulvio Gesmundo, Leonie Kayser, Simon Telen

A chopped ideal is obtained from a homogeneous ideal by considering only the generators of a fixed degree. We investigate
cases in which the chopped ideal defines the same finite set of points as the original one-dimensional ideal. The complexity of



https://arxiv.org/abs/2307.02560
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Visualization of the saturation gaps in P?
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