The Waring problem for polynomials

Geometry and applications

Leo Kayser
28.01.2022

Institut für Algebraische Geometrie

Content

Waring rank and secant varieties 1
Apolarity and the rank of monomials 12
Applications to computer science 19

Waring rank and secant varieties

The Waring rank of a homogeneous form

Definition 1: (Waring rank, Waring decomposition)

Let $F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$ be a form. The Waring rank $\operatorname{WR}(F)$ is the least $r \in \mathbb{N}_{0}$ such that there exists a decomposition

$$
F=\lambda_{1} L_{1}^{d}+\cdots+\lambda_{r} L_{r}^{d}, \quad L_{1}, \ldots, L_{r} \in \mathbb{C}[\underline{x}]_{1} \text { linear forms, } \lambda_{i} \in \mathbb{C} .
$$

Any such expression is called a Waring decomposition of F.

This notion is

- independent of the number of variables of the ambient space
- invariant under scaling with $\lambda \in \mathbb{C}^{\times}$, i. e. $\operatorname{WR}(\lambda F)=\mathrm{WR}(F)$
- invariant under changes of coordinates, i. e. $\mathrm{WR}(F \circ A)=\mathrm{WR}(F), A \in \mathrm{GL}_{n+1}(\mathbb{C})$

Examples and leading questions

Example 2

- $\operatorname{WR}\left(x_{1}^{d}+\cdots+x_{k}^{d}\right)=k$
- If $F(x)=x^{\top} A x$ for $A \in \operatorname{Sym}_{n+1}(\mathbb{C})$, then $\mathrm{WR}(F)=\operatorname{rank} A$
- Let $d \geq 3$. $\operatorname{WR}\left(x_{0} x_{1}^{d-1}\right)=d$, although

$$
x_{0} x_{1}^{d-1}=\frac{1}{d} \cdot \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\left(\varepsilon x_{0}+x_{1}\right)^{d}-x_{1}^{d}\right)
$$

- Is $\operatorname{WR}(F)$ always finite? Does the set of forms of rank r have a nice structure?
- What is the Waring rank of monomials or other basic families of forms?
- What can be said about the maximal rank? Or the rank of a general form?
- Are there (efficient) algorithms for the Waring rank?

Powers of linear forms as a projective variety

Fix $n, d \in \mathbb{N}_{+}$and $N:=\binom{n+d}{d}-1$. Consider the morphism

$$
\nu_{d}: \mathbb{P}\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{1}\right) \rightarrow \mathbb{P}\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}\right)=: \mathbb{P}^{N}, \quad[L] \mapsto\left[L^{d}\right]
$$

this is (up to a change of coordinates) the closed embedding associated to $\mathcal{O}_{\mathbb{P}^{n}}(d)$.

Definition 3: (Veronese embedding, Veronese variety)
The map ν_{d} is called the Veronese embedding, its image is the Veronese variety $V^{d, n} \subseteq \mathbb{P}^{N}$.

Observation: $V^{d, n}$ is a closed subvariety of \mathbb{P}^{N} not contained in hyperplane.

Higher secant varieties parameterize the Waring rank

Definition 4: (Higher secant variety)
Let $X \subseteq \mathbb{P}^{N}$ be a projective variety. Consider the following subset of \mathbb{P}^{N} :

$$
\sigma_{s}^{\circ} X:=\bigcup_{p_{1}, \ldots, p_{s} \in X}\left\langle p_{1}, \ldots, p_{s}\right\rangle_{\mathbb{P}}, \quad \sigma_{s} X:=\overline{\sigma_{s}^{\circ} X}
$$

$\sigma_{s} X$ is called the s-th higher secant variety of X.

Consequence: We have

$$
\left\{[F] \in \mathbb{P}\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}\right) \mid \operatorname{WR}(F) \leq s\right\}=\sigma_{s}^{\circ} V^{d, n}
$$

In particular $W R(F) \leq\binom{ n+d}{d}$ for any form F.

Small detour: Constructible sets

Definition 5: (Constructible set)

A subset of a variety X is constructible if it is a finite union of locally closed sets

$$
A=\bigcup_{i=1}^{m} C_{i} \cap O_{i}, \quad C_{i} \text { closed, } O_{i} \text { open. }
$$

Important properties:

- If $A, B \subseteq X$ are constructible, then so are $A \cup B, A \cap B, A \backslash B$
- (Chevalley) If $X \rightarrow Y$ is a morphism of varieties and $A \subseteq X$ is constructible, then $f(A) \subseteq Y$ is also constructible
- If $A \subseteq \mathbb{C}^{n}$ is constructible, then $\bar{A}^{\mathbb{C}}=\bar{A}$ (Euclidean vs. Zariski topology)

Waring rank is a constructible property

Lemma 6 If $X \subseteq \mathbb{P}^{N}$ is a variety, then $\sigma_{s}^{\circ} X$ is a constructible irreducible set.

Consequence: The following sets are irreducible and constructible:

$$
\begin{aligned}
W_{\leq s} & =\left\{F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \mid \operatorname{WR}(F) \leq s\right\}, \\
W_{s} & =\left\{F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \mid \operatorname{WR}(F)=s\right\} .
\end{aligned}
$$

Definition 7: (Border rank)
The border Waring rank of $F \in \mathbb{C}[\underline{x}]_{d}$ is $\underline{\mathrm{WR}}(F)=\min \left\{r \in \mathbb{N}_{0} \mid F \in \overline{W_{\leq r}}\right\}$.

The closure $\overline{W_{\leq s}}$ consists of limits of forms of rank $\leq r$, e. g. $x_{0} x_{1}^{d-1} \in \overline{W_{\leq 2}}$.

Expectation vs. reality

Lemma 8: The expected dimension
Let $X \subseteq \mathbb{P}^{N}$ be a projective variety not contained in a hyperplane. Then

$$
\operatorname{dim} \sigma_{s} X \leq \min \{s \cdot \operatorname{dim} X+s-1, N\}=: \operatorname{expdim} \sigma_{s} X
$$

Definition 9: (s-defect of secant varieties)

The difference $\delta_{s}:=\operatorname{expdim} \sigma_{s} X-\operatorname{dim} \sigma_{s} X$ is the s-defect of X. If $\delta_{s}>0$ then X is said to be s-defective.

- Curves are never s-defective
- The Veronese surface $V^{2,2} \subseteq \mathbb{P}^{5}$ is 2-defective

How to calculate $\operatorname{dim} \sigma_{s} X$

Theorem 10: (Terracini's first lemma)
For a general collection of points $p_{1}, \ldots, p_{s} \in X$ and a general point $q \in$ $\left\langle p_{1}, \ldots, p_{s}\right\rangle_{\mathbb{P}}$ we have

$$
T_{q} \sigma_{s}(X)=\left\langle T_{p_{1}} X, \ldots, T_{p_{s}} X\right\rangle_{\mathbb{P}}
$$

Lemma 11: The tangent space of $V^{d, n}$
The tangent space $T_{\left[L^{d}\right]} V^{d, n}$ is the subspace

$$
T_{\left[L^{d}\right]} V^{d, n}=\left\{\left[L^{d-1} F\right] \mid F \in \mathbb{C}[\underline{x}]_{1}\right\} \subseteq \mathbb{P}\left(\mathbb{C}[\underline{x}]_{d}\right) .
$$

Theorem 12: (Alexander-Hirschowitz [BO08])
Let $n, d, s \geq 1$, then we have

$$
\operatorname{dim} \sigma_{s} V^{d, n}=\operatorname{expdim} \sigma_{s} V^{d, n}=\min \left\{s n+s-1,\binom{n+d}{d}-1\right\}
$$

with the following list of exceptions:

d	n	s	δ_{s}	$\operatorname{dim} \sigma_{s} V^{d, n}$
2	≥ 2	$2 \ldots n$	$\binom{s}{2}$	$s n+s-1-\binom{s}{2}$
3	4	7	1	33
4	2	5	1	14
4	3	9	1	33
4	4	14	1	68

The generic Waring rank

The big Waring problem asks for the rank $G(n, d)$ of a general form, i. e. the rank of a dense open set of forms $F \in U \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$.

Corollary 13: (The solution to the big Waring problem)
$G(n, d)=\left\lceil\frac{1}{n+1}\binom{n+d}{d}\right\rceil$ with the following list of exceptions

d	n	$G(n, d)$
2	\forall	$n+1$
3	4	8
4	2	6
4	3	10
4	4	15

The maximum Waring rank

The little Waring problem asks for the largest possible rank $g(n, d)$ of a form $F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$.

- $g(1, d)=d$ (attained by $x_{0} x_{1}^{d-1}$)
- $g(n, 2)=n+1$ (attained by $\left.x_{0}^{2}+\cdots+x_{n}^{2}\right)$
- Upper bound by Ballico \& De Paris [BD17]:

$$
g(n, d) \leq\binom{ n+d-1}{n}-\binom{n+d-5}{n-2}-\binom{n+d-6}{n-2}
$$

- (Asymptotically) better bound by Blekherman \& Teitler [BT14]:

$$
G(n, d) \leq g(n, d) \leq 2 \cdot G(n, d)
$$

Apolarity and the rank of monomials

The apolarity pairing

Let $T:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right], X_{i}:=\frac{\partial}{\partial x_{i}}, S:=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ and consider the pairing

$$
S_{i} \times T_{j} \rightarrow T_{j-i}, \quad X^{\alpha} \circ x^{\boldsymbol{\beta}}:= \begin{cases}\frac{\beta!}{(\boldsymbol{\beta}-\alpha)!} x^{\boldsymbol{\beta}-\boldsymbol{\alpha}} & \text { if } \boldsymbol{\alpha} \leq \boldsymbol{\beta} \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 14: Properties of the apolarity paring

- T is a S-module with \circ as scalar multiplication.
- $S_{d} \times T_{d} \rightarrow \mathbb{C}$ is a perfect pairing for $d \geq 0$.
- If $L=a_{0} x_{0}+\cdots+a_{n} x_{n}$ is a linear form and $f \in S_{d}$, then

$$
f \circ L^{d}=d!\cdot f\left(a_{0}, \ldots, a_{n}\right)
$$

Hence we can view S as a ring of functions on $\mathbb{P}\left(T_{1}\right) \cong \operatorname{Proj} S$.

From differential operators to forms: Inverse systems

Definition 15: (Inverse system)
For a homogeneous ideal $I \subseteq S$, the inverse system is

$$
I^{-1}:=\{F \in T \mid \partial \circ F=0 \forall \partial \in I\} .
$$

Lemma 16 Let $I, J \subseteq S$ be homogeneous ideals, then

- $\left(I^{-1}\right)_{d}=\left(I_{d}\right)^{\perp}:=\left\{F \in T_{d} \mid \partial \circ F=0 \forall \partial \in I_{d}\right\}$
- $I \subseteq J \Longrightarrow J^{-1} \subseteq I^{-1}$
- $(I+J)^{-1}=I^{-1} \cap J^{-1},(I \cap J)^{-1}=I^{-1}+J^{-1}$
- $\operatorname{dim}_{\mathbb{C}} I_{d}^{-1}=\operatorname{dim}_{\mathbb{C}}(S / I)_{d}=\operatorname{dim}_{\mathbb{C}} S_{d}-\operatorname{dim}_{\mathbb{C}} I_{d}$

From forms to differential operators: Apolar ideals

Definition 17: (Apolar ideal)

For a form $F \in T_{d}$, its apolar ideal is the homogeneous ideal

$$
F^{\perp}:=\{\partial \in S \mid \partial \circ F=0\}
$$

Example 18 Consider $F=L^{d} \in T_{d}$.

- The apolar ideal $I:=F^{\perp}$ is the vanishing ideal of $[L] \in \mathbb{P}\left(T_{1}\right)$.
- Conversely, one has $I_{d}^{-1}=\mathbb{C} \cdot L^{d}$.

A characterization of the Waring rank

Theorem 19: (Apolarity Lemma)
Let $L_{1}, \ldots, L_{s} \in T_{1}$ be linear forms and $\mathbb{X}=\left\{\left[L_{1}\right], \ldots,\left[L_{s}\right]\right\} \subseteq \mathbb{P}\left(T_{1}\right)$. Then for a form $F \in T_{d}$ the following are equivalent:
(i) $F=\lambda_{1} L_{1}^{d}+\cdots+\lambda_{s} L_{s}^{d}$ for some $\lambda_{i} \in \mathbb{C}$;
(ii) $I(\mathbb{X}) \subseteq F^{\perp}$.

Corollary 20
Let $0 \neq F \in T$ be a form, then
$\operatorname{WR}(F)=\min \left\{r \in \mathbb{N}_{+} \mid F^{\perp}\right.$ contains the ideal of a set of r distinct points $\}$.

The Waring rank of monomials

Theorem 21: (Carlini, Catalisano \& Geramita [CCG12])
Let $x_{0}^{d_{0}} \cdots x_{n}^{d_{n}} \in \mathbb{C}[\underline{x}]$ be a monomial. After renaming the variables we may assume $1 \leq d_{0} \leq \cdots \leq d_{n}$. Then

$$
\mathrm{WR}\left(x_{0}^{d_{0}} \cdots x_{n}^{d_{n}}\right)=\frac{1}{d_{0}+1} \prod_{i=0}^{n}\left(d_{i}+1\right)
$$

Example 22 A Waring decomposition of $F=x_{0} \cdots x_{n}$ is given by

$$
x_{0} \cdots x_{n}=\frac{1}{2^{n} n!} \sum_{\xi \in\{ \pm 1\}^{n}} \xi_{1} \cdots \xi_{n} \cdot\left(x_{0}+\xi_{1} x_{1}+\cdots+\xi_{n} x_{n}\right)^{n} .
$$

The symmetric Strassen conjecture

Conjecture 23 If $F_{j} \in \mathbb{C}\left[x_{0, j}, \ldots, x_{n_{j}, j}\right]_{d}, j=1, \ldots, m, d \geq 2$ are forms in disjoint sets of variables, then their sum in $\mathbb{C}\left[\left\{x_{i, j} \mid i, j\right\}\right]_{d}$ has Waring rank

$$
\mathrm{WR}\left(F_{1}+\cdots+F_{m}\right)=\mathrm{WR}\left(F_{1}\right)+\cdots+\mathrm{WR}\left(F_{m}\right)
$$

Carlini et al. [Car+15] showed this to be true if each F_{i} is of one of the following:

- F_{i} is a monomial;
- F_{i} is a form in ≤ 2 variables;
- $F_{i}=x_{0}^{a}\left(x_{1}^{b}+\cdots+x_{n}^{b}\right)$ or $F_{i}=x_{0}^{a}\left(x_{0}^{b}+x_{1}^{b}+\cdots+x_{n}^{b}\right)$ with $a+1 \geq b$;
- $F_{i}=x_{0}^{a}\left(x_{1}^{b}+x_{2}^{b}\right)$ or $F_{i}=x_{0}^{a}\left(x_{0}^{b}+x_{1}^{b}+x_{2}^{b}\right)$;
- $F_{i}=x_{0}^{a} G\left(x_{1}, \ldots, x_{n}\right)$, where $G^{\perp}=\left(g_{1}, \ldots, g_{n}\right)$ is a complete intersection ideal and $\operatorname{deg}\left(g_{j}\right)>a$ for $j=1, \ldots, n$;
- $F_{i}=\operatorname{det}\left(\left[x_{j}^{k}\right]_{j, k=0}^{n}\right)$ is a Vandermonde determinant.

Elementary symmetric polynomials

Recall the elementary symmetric polynomials $e_{n, d}=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq d} x_{i_{1}} \cdots x_{i_{d}}$.
Theorem 24: (Lee [Lee16])
For $d=2 k+1$ odd, $n \geq d$, we have a Waring decomposition

$$
2^{d-1} d!e_{n, d}=\sum_{\substack{I \subseteq\{1, \ldots, n\} \\|I| \leq k}}(-1)^{|I|}\binom{n-k-|I|-1}{k-|I|} \cdot\left(\delta(I, 1) x_{1}+\cdots+\delta(I, n) x_{n}\right)^{d},
$$

where $\delta(I, i)=-1$ if $i \in I,+1$ otherwise. In particular $\operatorname{WR}\left(e_{n, d}\right)=\sum_{i=0}^{\frac{d-1}{2}}\binom{n}{i}$. A similar decomposition is possible for d even, but this is known to be suboptimal.

Applications to computer science

Counting simple closed walks

Let $G=(V, E)$ be a directed graph, $V=\left\{v_{1}, \ldots, v_{n}\right\}$.

Definition 25

(i) A walk of length d in G is a sequence $w=\left(v_{i_{0}}, \ldots, v_{i_{d}}\right)$ with $\left(v_{i_{j-1}}, v_{i_{j}}\right) \in E$ for $j=1, \ldots, d$.
(ii) If $i_{d}=i_{0}$, then w is a closed walk. If, additionally, all nodes in w are pairwise distinct (apart from $v_{i_{0}}=v_{i_{d}}$), then w is called a simple cycle.

Problem 26 Describe an algorithm which on input $\langle G, d\rangle$ calculates the number of simple cycles in G of length d.

The graph walk polynomial

Consider the symbolic adjacency matrix and the graph walk polynomial

$$
A_{G}:=\left[a_{i j}\right] \in \operatorname{Mat}_{n}\left(\mathbb{C}\left[\underline{x_{1}}\right), \quad a_{i j}= \begin{cases}x_{i} & \text { if }\left(v_{i}, v_{j}\right) \in E ; \quad F_{G}:=\operatorname{tr}\left(A_{G}^{d}\right) \in \mathbb{C}[x]_{d} . \\ 0 & \text { otherwise },\end{cases}\right.
$$

Lemma 27: Extracting the number of simple cycles from F_{G}
(i) The terms of F_{G} represent closed walks of length d in G :

$$
F_{G}=\sum_{\text {closed walks }\left(v_{i_{0}}, \ldots, v_{i_{d}}\right)} x_{i_{0}} \cdots x_{i_{d-1}} .
$$

(ii) The number of simple cycles of length d in G is given by

$$
e_{n, d}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) F_{G} .
$$

Apolarity - Reprise

Lemma 28 Let $F \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}, g \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]_{d}$.
(i) We can "switch" the roles of F and g in the apolarity action, i.e. we have the identity

$$
g(\underline{X}) \circ F(\underline{x})=F(\underline{X}) \circ g(\underline{x}) .
$$

(ii) If $F=\lambda_{1} L_{1}^{d}+\cdots+\lambda_{s} L_{s}^{d}$, where $L_{i}=c_{i, 1} x_{1}+\cdots+c_{i, n} x_{n} \in \mathbb{C}[\underline{x}]_{1}$, then

$$
g \circ F=d!\cdot \sum_{i=1}^{r} \lambda_{i} g\left(c_{i, 1}, \ldots, c_{i, n}\right)
$$

A simple formula

Consequence: If $e_{n, d}=\sum_{i=1}^{s} \lambda_{i} L_{i}^{d}, L_{i}=c_{i, 1} X_{1}+\cdots+c_{i, n} X_{n}$, then for any G we get

$$
\#\{\text { simple cycles of length } d \text { in } G\}=d!\sum_{i=1}^{s} \lambda_{i} F_{G}\left(c_{i, 1}, \ldots, c_{i, n}\right)
$$

Applying Lee's power sum decomposition of $e_{n, d}$ (in the case d odd) yields the formula $\#\{$ simple length d cycles in $G\}=$

$$
\sum_{\substack{I \subseteq\{1, \ldots, n\} \\|I| \leq\lfloor d / 2\rfloor}} \frac{(-1)^{|I|}}{2^{d-1}}\binom{n-\lfloor d / 2\rfloor-|I|-1}{\lfloor d / 2\rfloor-|I|} \cdot F_{G}(\delta(I, 1), \ldots, \delta(I, n)) .
$$

The best solution?

Corollary 29

This formula yields a $\binom{n}{\lfloor d / 2\rfloor} \cdot \operatorname{poly}(n)$ time and poly (n) space algorithm for counting simple cycles.

In some sense this is optimal:

Theorem 30: (Pratt [Pra18, Thm. 6])
Fix $g \in \mathbb{C}[\underline{x}]$ and let $F \in \mathbb{C}[\underline{x}]$ be given as a black-box.
The minimum number of queries to F needed to compute $g\left(\frac{\partial}{\partial x}\right) F$ is $\operatorname{WR}(g)$.

The Catalecticant

Definition 31: (Catalecticant matrix)

Let $F=\sum_{i=0}^{d} a_{i}\binom{d}{i} x_{0}^{i} x_{1}^{d-i}$ be a binary form. Its Catalecticant matrix is

$$
\operatorname{Cat}_{r, d-r}(F):=\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{r} \\
a_{1} & a_{2} & \ldots & a_{r+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{d-r} & a_{d-r} & \ldots & a_{d}
\end{array}\right]
$$

It is the matrix representing the linear map

$$
S_{r} \rightarrow T_{d-r}, \quad g \mapsto g \circ F .
$$

An algorithm for the Waring rank of binary forms

Sylvester's algorithm
Require: A binary form $0 \neq F=\sum_{i=0}^{d} a_{i}\binom{d}{i} x_{0}^{i} x_{1}^{d-i} \in \mathbb{C}\left[x_{0}, x_{1}\right]_{d}$.
Ensure: $r=\mathrm{WR}(F), F=\sum_{j=1}^{r} \lambda_{i} L_{i}^{d}$ a Waring decomposition.
1: $r \leftarrow 1$.
while $\operatorname{rank}^{\mathrm{Cat}_{r, d-r}(F) \text { is maximal do }}$ $r \leftarrow r+1$
end while
Take any nontrivial element $0 \neq F_{0} \in \operatorname{ker}^{\operatorname{Cat}_{r, d-r}}(F)$.
Compute the roots $\left(\alpha_{i}, \beta_{i}\right) \in \mathbb{C}^{2}$ of $F_{0}, i=1, \ldots, r$.
if the roots are not distinct in $\mathbb{P}\left(\mathbb{C}^{2}\right)$ then go to step $2 \quad / /$ i. e. increase r further
else
Construct the set of linear forms $\left\{L_{i}=\alpha_{i} x_{0}+\beta_{i} x_{1}\right\}$.
Solve the linear system of equations $F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$. return the Waring decomposition $F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$.
end if

The Waring problem is NP-hard

Consider the formal languages

$$
\begin{aligned}
& \text { WARING_RANK }_{\mathbb{C} / \mathbb{Q}}=\left\{\langle F, r\rangle \mid r \in \mathbb{N}_{0}, F \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]_{d}, \operatorname{WR}(F) \leq r\right\}, \\
& \operatorname{NULLSTELLENSATZ~}_{\mathbb{C} / \mathbb{Q}}=\left\{\begin{array}{l|l}
\left\langle f_{1}, \ldots, f_{m}\right\rangle & \left.\begin{array}{l}
f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[T_{1}, \ldots, T_{n}\right] \\
\text { have a common root in } \mathbb{C}^{n}
\end{array}\right\} . ~
\end{array}\right\} .
\end{aligned}
$$

Theorem 32: (Shitov [Shi16])
The languages WARING_RANK $\mathbb{C}_{\mathbb{Q}}$ and NULLSTELLENSATZ $\mathbb{C}_{\mathbb{Q} / \mathbb{Q}}$ are polynomial-time equivalent under many-one reductions.
In particular, the problem WARING_RANK $\mathbb{C}_{\mathbb{Q}}$ is NP-hard.

Thank you! Any questions?

Bibliography i

[BD17] Edoardo Ballico and Alessandro De Paris. "Generic Power Sum Decompositions and Bounds for the Waring Rank". In: Discrete \& Computational Geometry 57.4 (Mar. 2017), pp. 896-914. ISSN: 1432-0444. DOI: 10.1007/s00454-017-9886-7.
[Ber+18] Alessandra Bernardi et al. "The Hitchhiker Guide to: Secant Varieties and Tensor Decomposition". In: Mathematics 6.12 (Dec. 2018), p. 314. DoI: 10.3390/math6120314.
[BO08] Maria Chiara Brambilla and Giorgio Ottaviani. "On the
Alexander-Hirschowitz theorem". In: Journal of Pure and Applied Algebra 212.5 (2008), pp. 1229-1251. ISSN: 0022-4049. Doi:
https://doi.org/10.1016/j.jpaa.2007.09.014.

Bibliography it

[BT14] Greg Blekherman and Zach Teitler. "On maximum, typical and generic ranks". In: Mathematische Annalen 362 (2014), pp. 1021-1031.
[Car+15] E. Carlini et al. Symmetric tensors: rank, Strassen's conjecture and e-computability. 2015. arXiv: 1506.03176 [math.AC].
[CCG12] Enrico Carlini, Maria Virginia Catalisano, and Anthony V. Geramita. "The solution to the Waring problem for monomials and the sum of coprime monomials". In: Journal of Algebra 370 (2012), pp. 5-14. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2012.07.028.
[Lee16] Hwangrae Lee. "Power sum decompositions of elementary symmetric polynomials". In: Linear Algebra and its Applications 492 (2016), pp. 89-97. ISSN: 0024-3795. DOI:
https://doi.org/10.1016/j.laa.2015.11.018.

Bibliography ifi

[Pra18] Kevin Pratt. "Waring Rank, Parameterized and Exact Algorithms". In: IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) (July 2018). arXiv: 1807.06194v4 [cs.DS]
[Shi16] Yaroslav Shitov. How hard is the tensor rank? 2016. arXiv: 1611.01559 [math.CO].

