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Waring rank and secant varieties




The Waring rank of a homogeneous form

Definition 1: (Waring rank, Waring decomposition)

Let F € C[xo, ..., Xn]q be a form. The Waring rank WR(F) is the least r € Ny
such that there exists a decomposition

F=xML{+ - +)LY, Li,...,L, € Clx]; linear forms, \; € C.

Any such expression is called a Waring decomposition of F.

This notion is

e independent of the number of variables of the ambient space
e invariant under scaling with A € C*, i.e. WR(AF) = WR(F)

e invariant under changes of coordinates, i.e. WR(F o A) = WR(F), A € GL,4+1(C)
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Examples and leading questions

Example 2
o WR(xf +--- +xd) =k
o If F(x) = x"Ax for A € Sym,,;(C), then WR(F) = rank A
e Let d > 3. WR(xox{ ') = d, although

1 1
d— .
xox{ = =5 lim g((fxo +x1)? — x{)

Is WR(F) always finite? Does the set of forms of rank r have a nice structure?
What is the Waring rank of monomials or other basic families of forms?

e What can be said about the maximal rank? Or the rank of a general form?
Are there (efficient) algorithms for the Waring rank?
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Powers of linear forms as a projective variety

Fix n,d €e Ny and N = (”'gd) — 1. Consider the morphism
vg: P(Clxo, - ., xal1) = P(C[xo, - . ., Xn]q) = PV, [L] — [LY],

this is (up to a change of coordinates) the closed embedding associated to Opn(d).

Definition 3: (Veronese embedding, Veronese variety)

The map vy is called the Veronese embedding, its image is the Veronese variety
vdn C PN,

Observation: V9" is a closed subvariety of PV not contained in hyperplane.
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Higher secant varieties parameterize the Waring rank

Definition 4: (Higher secant variety)

Let X C PN be a projective variety. Consider the following subset of PV:

o X = U (P1s---5Ps)p osX =02 X.
P1;--sPs€X

0sX is called the s-th higher secant variety of X.

Consequence: We have
{[F] € P(C[x0, .-, Xn]d) | WR(F) < s} = o2V9".

In particular WR(F) < ("Jgd) for any form F.
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Small detour: Constructible sets

Definition 5: (Constructible set)

A subset of a variety X is constructible if it is a finite union of locally closed sets

m
A= U G no;, C; closed, O; open.
i=1

Important properties:

e If A,B C X are constructible, then so are AUB, ANB, A\ B
o (Chevalley) If X — Y is a morphism of varieties and A C X is constructible, then
f(A) C Y is also constructible
e If AC C" is constructible, then A® = A (Euclidean vs. Zariski topology)
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Waring rank is a constructible property

Lemma 6 If X CPNisa variety, then o X is a constructible irreducible set.

Consequence: The following sets are irreducible and constructible:

Wes = { F € Clxo,. .., %]a | WR(F) < s},
Wi = { F € Clxo, ..., xalg | WR(F) =s}.

Definition 7: (Border rank)

The border Waring rank of F € C[x]q4 is WR(F) = min { r € Ng ‘ Fe W<, }

The closure W< consists of limits of forms of rank < r, e.g. xoxld_1 € Weo.
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Expectation vs. reality

Lemma 8: The expected dimension
Let X C PN be a projective variety not contained in a hyperplane. Then

dimos X < min{s-dim X +s— 1, N} = expdimoX.

Definition 9: (s-defect of secant varieties)

The difference ds .= expdim osX — dim g X is the s-defect of X.
If s > 0 then X is said to be s-defective.

e Curves are never s-defective
e The Veronese surface V22 C P5 is 2-defective
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How to calculate dim o, X

Theorem 10: (Terracini's first lemma)

For a general collection of points p1,...,ps € X and a general point g €

(p1,-..,ps)p we have

TqUS(X) = (TP1X7- ooy TPsX>]P>'

Lemma 11: The tangent space of V9"
The tangent space Tj;q V¥ is the subspace

T V" = { [L77F] ) F € Clxh } € P(Clxla).
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osV9" has (mostly) the expected dimension

Theorem 12: (Alexander-Hirschowitz [BO08])

Let n,d,s > 1, then we have
dimos V9" = expdim os V9" = min {sn +s—1, ("Jgd) — 1}

with the following list of exceptions:

d n s ds dimos V9"

2 >2 2...n (;) sn—i—s—l—(;)
3 4 1 33

4 2 5 1 14

4 3 9 1 33

4 4 14 1 68

9/26



The generic Waring rank

The big Waring problem asks for the rank G(n, d) of a general form, i.e. the rank of a
dense open set of forms F € U C Clxg, . . ., Xn|q-

Corollary 13: (The solution to the big Waring problem)

G(n,d) = {i (”Jgdﬂ with the following list of exceptions

n+1
d n G(n,d)
2V n+1
3 4 8
4 2 6
4 3 10
4 4 15
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The maximum Waring rank

The little Waring problem asks for the largest possible rank g(n, d) of a form
F e (C[Xo, 500 ;Xn]d-

e g(1,d) = d (attained by xox{~1)
e g(n,2) = n+ 1 (attained by x3 + - - + x2)
e Upper bound by Ballico & De Paris [BD17]:

n+d-1 n+d-5 n+d—=6
d) < = _
o (Asymptotically) better bound by Blekherman & Teitler [BT14]:

G(n,d) < g(n,d) <2-G(n,d)
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Apolarity and the rank of monomials




The apolarity pairing

Let T :=Clxo,...,xn], Xi = %, S = C[Xo, ..., Xn] and consider the pairing

_ B B-a
Y TJ — 7}.7’.7 X o 5B — (g,a)!x if a <03,
0 otherwise.
Lemma 14: Properties of the apolarity paring

e T is a S-module with o as scalar multiplication.
e 5S4y x Ty — Cis a perfect pairing for d > 0.
o If L =agxg+ -+ apxy, is a linear form and f € S, then

fold=dlf(ap,...,an).
Hence we can view S as a ring of functions on P(T7) = Proj S.
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From differential operators to forms: Inverse systems

Definition 15: (Inverse system)

For a homogeneous ideal | C S, the inverse system is

7L ={FeT|0oF=0v0cl}.

Lemma 16 Let /,J C S be homogeneous ideals, then
e (IV)g=g)t ={FeTy|00F=0V0€ly}
e /CJ = Jlci?
e (I+N)t=11nut (In)H) =114t
o dimc I, = dimc(S/1)g = dime Sy — dime Iy
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From forms to differential operators: Apolar ideals

Definition 17: (Apolar ideal)

For a form F € Ty, its apolar ideal is the homogeneous ideal

FL={0ecS|doF=0}.

Example 18 Consider F = L9 € T,.

e The apolar ideal / := F is the vanishing ideal of [L] € P(Ty).
e Conversely, one has IJI =C- L9,
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A characterization of the Waring rank

Theorem 19: (Apolarity Lemma)

Let Ly,...,Ls € Ty be linear forms and X = {[L1],...,[Ls]} C P(T1). Then for
a form F € T, the following are equivalent:

(i) F=ML{+ -+ ALY for some \; € C;
(i) I(X) C F+.

Corollary 20

Let 0 # F € T be a form, then

WR(F) = min { reNg ‘ FL contains the ideal of a set of r distinct points } .
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The Waring rank of monomials

Theorem 21: (Carlini, Catalisano & Geramita [CCG12])

Let xg"u-x,‘,’" € C|x] be a monomial. After renaming the variables we may
assume 1 < dp <---<d,. Then

1 n
WR(x® - xh) = ——— [ ] (e +1).
i=0

Example 22 A Waring decomposition of F = xg - - - x,, is given by

X0 -

= Y &b ot Evat o+ 6)"

se{il}"
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The symmetric Strassen conjecture

Conjecture 23 If F; € Clxo,---,Xn;jla, j = 1,...,m, d > 2 are forms in
disjoint sets of variables, then their sum in C[{ x;; | i,/ }]4 has Waring rank

WR(Fy -+ + Fin) = WR(F1) + - - + WR(Fp).

Carlini et al. [Car+15] showed this to be true if each F; is of one of the following:
e f; is a monomial;
F; is a form in < 2 variables;
Fi=x3(xC+-+x)or Fi =x¢(x¢ +xP + -+ xb) with a+1 > b;
o Fi=xlxb + x8) or Fi = xg(cg + xb + xb);
Fi =x3G(x1,...,xn), where G- = (g1,...,8g,) is a complete intersection ideal

and deg(gj) > aforj=1,...,m;

o Fi= det([XJ-k 7 k—0) is @ Vandermonde determinant. 1726



Elementary symmetric polynomials

Recall the elementary symmetric polynomials e, 4 = Zl<i1<m<,-d<d Xpy o Xiy

Theorem 24: (Lee [Leel6])

For d =2k + 1 odd, n > d, we have a Waring decomposition

297 dlepg = Y ( 1"'( _:;:1>'(5(/,1)X1+~~—|—5(/,n)x,,)d,

IC{L 00
|I|<k

d—1
where 6(/,i) = —1if i € I, +1 otherwise. In particular WR(en 4) = 3,2, (7).
A similar decomposition is possible for d even, but this is known to be suboptimal.
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Applications to computer science




Counting simple closed walks

Let G = (V, E) be a directed graph, V = {v1,...,v,}.

Definition 25

(i) A walk of length d in G is a sequence w = (Vj,, ..., vi,) with (vi_,,v;) € E
forj=1,...,d.

(ii) If iy = ip, then w is a closed walk. If, additionally, all nodes in w are pairwise
distinct (apart from vj, = v;,), then w is called a simple cycle.

Problem 26 Describe an algorithm which on input (G, d) calculates the number
of simple cycles in G of length d.
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The graph walk polynomial

Consider the symbolic adjacency matrix and the graph walk polynomial
xi if (vj,vj) € E;

0 otherwise,

Lemma 27: Extracting the number of simple cycles from Fg

(i) The terms of F¢ represent closed walks of length d in G:

Fc = Z Xig *** Xig_y -

closed walks (v,-0 ,...,v,-d)

(i) The number of simple cycles of length d in G is given by

en,d(a%’ 500y 8?<H)FG'
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Apolarity - Reprise

Lemma 28 Let F € C[xy,...,x]d, & € C[X1,..., Xs]d-

(i) We can “switch” the roles of F and g in the apolarity action, i.e. we have
the identity

g(X) o F(x) = F(X) o g(x).
i) If F =MLY+ 4+ ALY, where Lj = ¢j1x1 + - - + G nXn € C[x]1, then
1 s » )

,
goF=d!- ZAig(Ci,la - -7CI','7)'
i=1
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A simple formula

Consequence: If e, 4y = Ele /\,-L;f, Li = cii X1+ -+ ci.n Xy, then for any G we get

S
#{simple cycles of length d in G} = d! Z)\;FG(C;J, 2o G
i=1

Applying Lee's power sum decomposition of e, 4 (in the case d odd) yields the formula

#{simple length d cycles in G} =

()" (n—d/2) = 1] -1
o o (" g ) Pl a0

l<ld/2]
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The best solution?

Corollary 29

This formula yields a (Ld72j) -poly(n) time and poly(n) space algorithm for count-
ing simple cycles.

In some sense this is optimal:

Theorem 30: (Pratt [Pral8, Thm. 6])

Fix g € C[x] and let F € C[x] be given as a black-box.
The minimum number of queries to F needed to compute g(%)F is WR(g).
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The Catalecticant

Definition 31: (Catalecticant matrix)

Let F = Z:-jzo a; (‘f)xéxf*’. be a binary form. Its Catalecticant matrix is

ao al ar
dal an s dr4l
Catr,d_,(F) E= )
dd—r add—r --- ad

It is the matrix representing the linear map

S, — T4_,, g—goF.
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An algorithm for the Waring rank of binary forms

Sylvester’s algorithm

Require: A binary form 0 # F = Z ( )xixd=" € Clxo, x1]a-
Ensure: ¥ = WR(F), F = )} j=1 A Lfl a Warmg decomposition.
1. r« 1.
2: while rank Cat, 4_,(F) is maximal do
3 re—r+1
4: end while
5: Take any nontrivial element 0 # Fy € ker Cat, 4_,(F).
6: Compute the roots (a;, B;) € C2of Fp,i =1,...,r
7: if the roots are not distinct in IP(C?) then
8 gotostep?2 //i.e.increase r further
9: else
10:  Construct the set of linear forms {L; = ajxo + Bix1}.
11:  Solve the linear system of equations F = },/_, /\iLfl.
12:  return the Waring decomposition F = }}7_; AiLfl.
13: end if
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The Waring problem is NP-hard

Consider the formal languages

WARING RANKc g = { (F,r) | r € No, F € Q[xq, ..., Xn]la, WR(F) < r},
fla"'afmeQ[T:l?"‘?T"] }

NULLSTELLENSATZc/q = { (1., fn) have a common root in C”

Theorem 32: (Shitov [Shil6])

The languages WARING RANKc /@ and NULLSTELLENSATZc q are polynomial-time
equivalent under many-one reductions.
In particular, the problem WARING RANKc ,q is NP-hard.
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Thank you! Any questions?
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