The Waring problem for polynomials

Geometry and applications

Leo Kayser

28.01.2022

Institut für Algebraische Geometrie

Waring rank and secant varieties

Apolarity and the rank of monomials

Applications to computer science

19

1

Waring rank and secant varieties

Definition 1: (Waring rank, Waring decomposition)

Let $F \in \mathbb{C}[x_0, \ldots, x_n]_d$ be a form. The *Waring rank* WR(F) is the least $r \in \mathbb{N}_0$ such that there exists a decomposition

 $F = \lambda_1 L_1^d + \dots + \lambda_r L_r^d, \qquad L_1, \dots, L_r \in \mathbb{C}[\underline{x}]_1 \text{ linear forms, } \lambda_i \in \mathbb{C}.$

Any such expression is called a Waring decomposition of F.

This notion is

- independent of the number of variables of the ambient space
- invariant under scaling with $\lambda \in \mathbb{C}^{\times}$, i. e. $\mathsf{WR}(\lambda F) = \mathsf{WR}(F)$
- invariant under changes of coordinates, i. e. $WR(F \circ A) = WR(F)$, $A \in GL_{n+1}(\mathbb{C})$

Examples and leading questions

Example 2

• WR
$$(x_1^d + \dots + x_k^d) = k$$

• If $F(x) = x^T A x$ for $A \in \text{Sym}_{n+1}(\mathbb{C})$, then WR $(F) = \text{rank } A$
• Let $d \ge 3$. WR $(x_0 x_1^{d-1}) = d$, although
 $x_0 x_1^{d-1} = \frac{1}{d} \cdot \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} ((\varepsilon x_0 + x_1)^d - x_1^d)$

- Is WR(F) always finite? Does the set of forms of rank r have a nice structure?
- What is the Waring rank of monomials or other basic families of forms?
- What can be said about the maximal rank? Or the rank of a general form?
- Are there (efficient) algorithms for the Waring rank?

Fix $n, d \in \mathbb{N}_+$ and $N \coloneqq \binom{n+d}{d} - 1$. Consider the morphism

$$\nu_d \colon \mathbb{P}(\mathbb{C}[x_0,\ldots,x_n]_1) \to \mathbb{P}(\mathbb{C}[x_0,\ldots,x_n]_d) \eqqcolon \mathbb{P}^N, \qquad [L] \mapsto [L^d],$$

this is (up to a change of coordinates) the closed embedding associated to $\mathcal{O}_{\mathbb{P}^n}(d)$.

Definition 3: (Veronese embedding, Veronese variety)

The map ν_d is called the *Veronese embedding*, its image is the *Veronese variety* $V^{d,n} \subseteq \mathbb{P}^N$.

Observation: $V^{d,n}$ is a closed subvariety of \mathbb{P}^N not contained in hyperplane.

Definition 4: (Higher secant variety)

Let $X \subseteq \mathbb{P}^N$ be a projective variety. Consider the following subset of \mathbb{P}^N :

$$\sigma_s^{\circ} X \coloneqq \bigcup_{p_1, \dots, p_s \in X} \langle p_1, \dots, p_s \rangle_{\mathbb{P}}, \qquad \sigma_s X \coloneqq \overline{\sigma_s^{\circ} X}.$$

 $\sigma_s X$ is called the *s*-th higher secant variety of X.

Consequence: We have

$$\{ [F] \in \mathbb{P}(\mathbb{C}[x_0,\ldots,x_n]_d) \mid \mathsf{WR}(F) \leq s \} = \sigma_s^{\circ} V^{d,n}.$$

In particular WR(F) $\leq \binom{n+d}{d}$ for any form F.

Definition 5: (Constructible set)

A subset of a variety X is *constructible* if it is a finite union of locally closed sets

$$A = \bigcup_{i=1}^m C_i \cap O_i, \qquad C_i ext{ closed, } O_i ext{ open.}$$

Important properties:

- If $A, B \subseteq X$ are constructible, then so are $A \cup B$, $A \cap B$, $A \setminus B$
- (Chevalley) If $X \to Y$ is a morphism of varieties and $A \subseteq X$ is constructible, then $f(A) \subseteq Y$ is also constructible
- If $A \subseteq \mathbb{C}^n$ is constructible, then $\overline{A}^{\mathbb{C}} = \overline{A}$ (Euclidean vs. Zariski topology)

Lemma 6 If $X \subseteq \mathbb{P}^N$ is a variety, then $\sigma_s^{\circ} X$ is a constructible irreducible set.

Consequence: The following sets are irreducible and constructible:

$$W_{\leq s} = \{ F \in \mathbb{C}[x_0, \dots, x_n]_d \mid \mathsf{WR}(F) \leq s \}, \\ W_s = \{ F \in \mathbb{C}[x_0, \dots, x_n]_d \mid \mathsf{WR}(F) = s \}.$$

Definition 7: (Border rank)

The border Waring rank of $F \in \mathbb{C}[\underline{x}]_d$ is $\underline{WR}(F) = \min \{ r \in \mathbb{N}_0 \mid F \in \overline{W_{\leq r}} \}.$

The closure $\overline{W_{\leq s}}$ consists of limits of forms of rank $\leq r$, e.g. $x_0 x_1^{d-1} \in \overline{W_{\leq 2}}$.

Lemma 8: The expected dimension

Let $X \subseteq \mathbb{P}^N$ be a projective variety not contained in a hyperplane. Then

$$\dim \sigma_s X \leq \min\{s \cdot \dim X + s - 1, N\} =: \operatorname{expdim} \sigma_s X.$$

Definition 9: (*s*-defect of secant varieties)

The difference $\delta_s := \operatorname{expdim} \sigma_s X - \operatorname{dim} \sigma_s X$ is the *s*-defect of *X*. If $\delta_s > 0$ then *X* is said to be *s*-defective.

- Curves are never *s*-defective
- The Veronese surface $V^{2,2} \subseteq \mathbb{P}^5$ is 2-defective

Theorem 10: (Terracini's first lemma)

For a general collection of points $p_1,\ldots,p_s\in X$ and a general point $q\in\langle p_1,\ldots,p_s
angle_{\mathbb P}$ we have

$$T_q\sigma_s(X)=\langle T_{p_1}X,\ldots,T_{p_s}X\rangle_{\mathbb{P}}.$$

Lemma 11: The tangent space of $V^{d,n}$ The tangent space $T_{[L^d]}V^{d,n}$ is the subspace

$$T_{[L^d]}V^{d,n} = \left\{ \left[L^{d-1}F \right] \mid F \in \mathbb{C}[\underline{x}]_1 \right\} \subseteq \mathbb{P}(\mathbb{C}[\underline{x}]_d).$$

$\sigma_s V^{d,n}$ has (mostly) the expected dimension

Theorem 12: (Alexander-Hirschowitz [BO08])

Let $n, d, s \ge 1$, then we have

$$\dim \sigma_{s} V^{d,n} = \operatorname{expdim} \sigma_{s} V^{d,n} = \min \left\{ sn + s - 1, \binom{n+d}{d} - 1 \right\}$$

with the following list of exceptions:

d	п	S	δ_s	dim $\sigma_s V^{d,n}$
2	≥2	2 <i>n</i>	$\binom{s}{2}$	$sn+s-1-{s\choose 2}$
3	4	7	1	33
4	2	5	1	14
4	3	9	1	33
4	4	14	1	68

The generic Waring rank

The big Waring problem asks for the rank G(n, d) of a general form, i.e. the rank of a dense open set of forms $F \in U \subseteq \mathbb{C}[x_0, \ldots, x_n]_d$.

Corollary 13: (The solution to the big Waring problem)								
$G(n,d) = ig \lceil rac{1}{n+1} inom{n+d}{d} ig ceil$ with the following list of exceptions								
	d	n	G(n, d)					
	2	\forall	n+1					
	3	4	8 6					
	4	2	6					
	4	3	10					
	4	4	15					

The *little Waring problem* asks for the largest possible rank g(n, d) of a form $F \in \mathbb{C}[x_0, \ldots, x_n]_d$.

- g(1,d) = d (attained by $x_0 x_1^{d-1}$)
- g(n,2) = n+1 (attained by $x_0^2 + \cdots + x_n^2$)
- Upper bound by Ballico & De Paris [BD17]:

$$g(n,d) \leq \binom{n+d-1}{n} - \binom{n+d-5}{n-2} - \binom{n+d-6}{n-2}$$

• (Asymptotically) better bound by Blekherman & Teitler [BT14]:

$$G(n,d) \leq g(n,d) \leq 2 \cdot G(n,d)$$

Apolarity and the rank of monomials

The apolarity pairing

Let
$$T := \mathbb{C}[x_0, \dots, x_n], X_i := \frac{\partial}{\partial x_i}, S := \mathbb{C}[X_0, \dots, X_n]$$
 and consider the pairing
 $S_i \times T_j \to T_{j-i}, \qquad X^{\alpha} \circ x^{\beta} := \begin{cases} \frac{\beta!}{(\beta-\alpha)!} x^{\beta-\alpha} & \text{if } \alpha \leq \beta, \\ 0 & \text{otherwise.} \end{cases}$

Lemma 14: Properties of the apolarity paring

- T is a S-module with \circ as scalar multiplication.
- $S_d \times T_d \to \mathbb{C}$ is a perfect pairing for $d \ge 0$.
- If $L = a_0 x_0 + \cdots + a_n x_n$ is a linear form and $f \in S_d$, then

$$f \circ L^d = d! \cdot f(a_0, \ldots, a_n).$$

Hence we can view S as a ring of functions on $\mathbb{P}(T_1) \cong \operatorname{Proj} S$.

Definition 15: (Inverse system)

For a homogeneous ideal $I \subseteq S$, the *inverse system* is

 $I^{-1} := \{ F \in T \mid \partial \circ F = 0 \forall \partial \in I \}.$

Lemma 16 Let $I, J \subseteq S$ be homogeneous ideals, then

•
$$(I^{-1})_d = (I_d)^{\perp} \coloneqq \{ F \in T_d \mid \partial \circ F = 0 \; \forall \partial \in I_d \}$$

•
$$I \subseteq J \implies J^{-1} \subseteq I^{-1}$$

•
$$(I + J)^{-1} = I^{-1} \cap J^{-1}, \ (I \cap J)^{-1} = I^{-1} + J^{-1}$$

• dim_C
$$I_d^{-1}$$
 = dim_C $(S/I)_d$ = dim_C S_d - dim_C I_d

Definition 17: (Apolar ideal)

For a form $F \in T_d$, its *apolar ideal* is the homogeneous ideal

$$F^{\perp} \coloneqq \{ \ \partial \in S \mid \partial \circ F = 0 \}.$$

Example 18 Consider $F = L^d \in T_d$.

- The apolar ideal $I \coloneqq F^{\perp}$ is the vanishing ideal of $[L] \in \mathbb{P}(T_1)$.
- Conversely, one has $I_d^{-1} = \mathbb{C} \cdot L^d$.

A characterization of the Waring rank

Theorem 19: (Apolarity Lemma)

Let $L_1, \ldots, L_s \in T_1$ be linear forms and $\mathbb{X} = \{[L_1], \ldots, [L_s]\} \subseteq \mathbb{P}(T_1)$. Then for a form $F \in T_d$ the following are equivalent: (i) $F = \lambda_1 L_1^d + \cdots + \lambda_s L_s^d$ for some $\lambda_i \in \mathbb{C}$; (ii) $I(\mathbb{X}) \subseteq F^{\perp}$.

Corollary 20

Let $0 \neq F \in T$ be a form, then $WR(F) = \min \left\{ r \in \mathbb{N}_+ \mid F^{\perp} \text{ contains the ideal of a set of } r \text{ distinct points} \right\}.$ Theorem 21: (Carlini, Catalisano & Geramita [CCG12])

Let $x_0^{d_0} \cdots x_n^{d_n} \in \mathbb{C}[\underline{x}]$ be a monomial. After renaming the variables we may assume $1 \leq d_0 \leq \cdots \leq d_n$. Then

$$\mathsf{WR}(x_0^{d_0}\cdots x_n^{d_n}) = rac{1}{d_0+1}\prod_{i=0}^n (d_i+1).$$

Example 22 A Waring decomposition of $F = x_0 \cdots x_n$ is given by

$$x_0 \cdots x_n = \frac{1}{2^n n!} \sum_{\xi \in \{\pm 1\}^n} \xi_1 \cdots \xi_n \cdot (x_0 + \xi_1 x_1 + \cdots + \xi_n x_n)^n.$$

Conjecture 23 If $F_j \in \mathbb{C}[x_{0,j}, \ldots, x_{n_j,j}]_d$, $j = 1, \ldots, m$, $d \ge 2$ are forms in disjoint sets of variables, then their sum in $\mathbb{C}[\{x_{i,j} \mid i, j\}]_d$ has Waring rank

$$WR(F_1 + \cdots + F_m) = WR(F_1) + \cdots + WR(F_m).$$

Carlini et al. [Car+15] showed this to be true if each F_i is of one of the following:

- *F_i* is a monomial;
- F_i is a form in ≤ 2 variables;
- $F_i = x_0^a(x_1^b + \dots + x_n^b)$ or $F_i = x_0^a(x_0^b + x_1^b + \dots + x_n^b)$ with $a + 1 \ge b$;
- $F_i = x_0^a (x_1^b + x_2^b)$ or $F_i = x_0^a (x_0^b + x_1^b + x_2^b)$;
- F_i = x₀^aG(x₁,...,x_n), where G[⊥] = (g₁,...,g_n) is a complete intersection ideal and deg(g_j) > a for j = 1,...,n;
- $F_i = det([x_j^k]_{j,k=0}^n)$ is a Vandermonde determinant.

Elementary symmetric polynomials

Recall the elementary symmetric polynomials $e_{n,d} = \sum_{1 \le i_1 < \cdots < i_d \le d} x_{i_1} \cdots x_{i_d}$.

Theorem 24: (Lee [Lee16])

For d = 2k + 1 odd, $n \ge d$, we have a Waring decomposition

$$2^{d-1}d!e_{n,d} = \sum_{\substack{I \subseteq \{1,...,n\} \\ |I| \le k}} (-1)^{|I|} \binom{n-k-|I|-1}{k-|I|} \cdot (\delta(I,1)x_1 + \cdots + \delta(I,n)x_n)^d,$$

where $\delta(I, i) = -1$ if $i \in I$, +1 otherwise. In particular WR $(e_{n,d}) = \sum_{i=0}^{\frac{d-1}{2}} {n \choose i}$. A similar decomposition is possible for d even, but this is known to be suboptimal. **Applications to computer science**

Counting simple closed walks

Let G = (V, E) be a directed graph, $V = \{v_1, \ldots, v_n\}$.

Definition 25

(i) A walk of length d in G is a sequence $w = (v_{i_0}, \ldots, v_{i_d})$ with $(v_{i_{j-1}}, v_{i_j}) \in E$ for $j = 1, \ldots, d$.

(ii) If $i_d = i_0$, then w is a *closed walk*. If, additionally, all nodes in w are pairwise distinct (apart from $v_{i_0} = v_{i_d}$), then w is called a *simple cycle*.

Problem 26 Describe an algorithm which on input $\langle G, d \rangle$ calculates the number of simple cycles in *G* of length *d*.

The graph walk polynomial

Consider the symbolic adjacency matrix and the graph walk polynomial

$$A_G \coloneqq [a_{ij}] \in \mathsf{Mat}_n(\mathbb{C}[\underline{x}]_1), \quad a_{ij} = \begin{cases} x_i & \text{if } (v_i, v_j) \in E; \\ 0 & \text{otherwise,} \end{cases} \qquad F_G \coloneqq \mathsf{tr}(A_G^d) \in \mathbb{C}[\underline{x}]_d.$$

Lemma 27: Extracting the number of simple cycles from F_G (i) The terms of F_G represent closed walks of length d in G:

$$F_G = \sum_{ ext{closed walks } (v_{i_0}, ..., v_{i_d})} x_{i_0} \cdots x_{i_{d-1}}.$$

(ii) The number of simple cycles of length d in G is given by

$$e_{n,d}\left(\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\right)F_G.$$

Lemma 28 Let $F \in \mathbb{C}[x_1, \ldots, x_n]_d$, $g \in \mathbb{C}[X_1, \ldots, X_n]_d$.

(i) We can "switch" the roles of F and g in the apolarity action, i.e. we have the identity

$$g(\underline{X}) \circ F(\underline{x}) = F(\underline{X}) \circ g(\underline{x}).$$

(ii) If $F = \lambda_1 L_1^d + \cdots + \lambda_s L_s^d$, where $L_i = c_{i,1}x_1 + \cdots + c_{i,n}x_n \in \mathbb{C}[\underline{x}]_1$, then

$$g \circ F = d! \cdot \sum_{i=1}^r \lambda_i g(c_{i,1}, \ldots, c_{i,n}).$$

Consequence: If $e_{n,d} = \sum_{i=1}^{s} \lambda_i L_i^d$, $L_i = c_{i,1}X_1 + \cdots + c_{i,n}X_n$, then for any G we get

#{simple cycles of length
$$d$$
 in G } = $d! \sum_{i=1}^{s} \lambda_i F_G(c_{i,1}, \dots, c_{i,n})$.

Applying Lee's power sum decomposition of $e_{n,d}$ (in the case d odd) yields the formula

 $\#\{\text{simple length } d \text{ cycles in } G\} =$

$$\sum_{\substack{I \subseteq \{1,\ldots,n\}\\|I| \leq \lfloor d/2 \rfloor}} \frac{(-1)^{|I|}}{2^{d-1}} \binom{n - \lfloor d/2 \rfloor - |I| - 1}{\lfloor d/2 \rfloor - |I|} \cdot F_G(\delta(I,1),\ldots,\delta(I,n)).$$

Corollary 29

This formula yields a $\binom{n}{\lfloor d/2 \rfloor}$ · poly(*n*) time and poly(*n*) space algorithm for counting simple cycles.

In some sense this is optimal:

Theorem 30: (Pratt [Pra18, Thm. 6])

Fix $g \in \mathbb{C}[\underline{x}]$ and let $F \in \mathbb{C}[\underline{x}]$ be given as a black-box. The minimum number of queries to F needed to compute $g(\frac{\partial}{\partial x})F$ is WR(g). **Definition 31:** (Catalecticant matrix)

Let $F = \sum_{i=0}^{d} a_i {d \choose i} x_0^i x_1^{d-i}$ be a binary form. Its *Catalecticant matrix* is $Cat_{r,d-r}(F) \coloneqq \begin{bmatrix} a_0 & a_1 & \dots & a_r \\ a_1 & a_2 & \dots & a_{r+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d-r} & a_{d-r} & \dots & a_d \end{bmatrix}.$

It is the matrix representing the linear map

$$S_r \to T_{d-r}, \qquad g \mapsto g \circ F.$$

An algorithm for the Waring rank of binary forms

Sylvester's algorithm

Require: A binary form $0 \neq F = \sum_{i=0}^{d} a_i {d \choose i} x_0^i x_1^{d-i} \in \mathbb{C}[x_0, x_1]_d$. **Ensure:** $r = WR(F), F = \sum_{j=1}^{r} \lambda_i L_i^d$ a Waring decomposition. 1: $r \leftarrow 1$.

2: while rank $\operatorname{Cat}_{r,d-r}(F)$ is maximal **do**

3:
$$r \leftarrow r + 1$$

4: end while

- 5: Take any nontrivial element $0 \neq F_0 \in \ker \operatorname{Cat}_{r,d-r}(F)$.
- 6: Compute the roots $(\alpha_i, \beta_i) \in \mathbb{C}^2$ of $F_0, i = 1, ..., r$.
- 7: if the roots are not distinct in $\mathbb{P}(\mathbb{C}^2)$ then
- 8: go to step 2 //i. e. increase r further
- 9: **else**
- 10: Construct the set of linear forms $\{L_i = \alpha_i x_0 + \beta_i x_1\}$.
- 11: Solve the linear system of equations $F = \sum_{i=1}^{r} \lambda_i L_i^d$.
- 12: **return** the Waring decomposition $F = \sum_{i=1}^{r} \lambda_i L_i^d$.
- 13: end if

The Waring problem is NP-hard

Consider the formal languages

$$\begin{split} & \texttt{WARING_RANK}_{\mathbb{C}/\mathbb{Q}} = \{ \ \langle F, r \rangle \mid r \in \mathbb{N}_0, \ F \in \mathbb{Q}[x_1, \dots, x_n]_d, \ \mathsf{WR}(F) \leq r \ \}, \\ & \texttt{NULLSTELLENSATZ}_{\mathbb{C}/\mathbb{Q}} = \left\{ \ \langle f_1, \dots, f_m \rangle \ \left| \begin{array}{c} f_1, \dots, f_m \in \mathbb{Q}[T_1, \dots, T_n] \\ & \texttt{have a common root in } \mathbb{C}^n \end{array} \right\}. \end{split}$$

Theorem 32: (Shitov [Shi16])

The languages WARING_RANK_{C/Q} and NULLSTELLENSATZ_{C/Q} are polynomial-time equivalent under many-one reductions.

In particular, the problem $\mathtt{WARING_RANK}_{\mathbb{C}/\mathbb{Q}}$ is $\mathrm{NP}\text{-hard}.$

Thank you! Any questions?

Bibliography i

- [BD17] Edoardo Ballico and Alessandro De Paris. "Generic Power Sum Decompositions and Bounds for the Waring Rank". In: Discrete & Computational Geometry 57.4 (Mar. 2017), pp. 896–914. ISSN: 1432-0444. DOI: 10.1007/s00454-017-9886-7.
- [Ber+18] Alessandra Bernardi et al. "The Hitchhiker Guide to: Secant Varieties and Tensor Decomposition". In: Mathematics 6.12 (Dec. 2018), p. 314. DOI: 10.3390/math6120314.
- [BO08] Maria Chiara Brambilla and Giorgio Ottaviani. "On the Alexander-Hirschowitz theorem". In: Journal of Pure and Applied Algebra 212.5 (2008), pp. 1229–1251. ISSN: 0022-4049. DOI: https://doi.org/10.1016/j.jpaa.2007.09.014.

Bibliography ii

- [BT14] Greg Blekherman and Zach Teitler. "On maximum, typical and generic ranks". In: *Mathematische Annalen* 362 (2014), pp. 1021–1031.
- [Car+15] E. Carlini et al. Symmetric tensors: rank, Strassen's conjecture and e-computability. 2015. arXiv: 1506.03176 [math.AC].
- [CCG12] Enrico Carlini, Maria Virginia Catalisano, and Anthony V. Geramita. "The solution to the Waring problem for monomials and the sum of coprime monomials". In: Journal of Algebra 370 (2012), pp. 5–14. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2012.07.028.
- [Lee16] Hwangrae Lee. "Power sum decompositions of elementary symmetric polynomials". In: Linear Algebra and its Applications 492 (2016), pp. 89–97. ISSN: 0024-3795. DOI: https://doi.org/10.1016/j.laa.2015.11.018.

- [Pra18] Kevin Pratt. "Waring Rank, Parameterized and Exact Algorithms". In: IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) (July 2018). arXiv: 1807.06194v4 [cs.DS].
- [Shi16] Yaroslav Shitov. How hard is the tensor rank? 2016. arXiv: 1611.01559 [math.CO].