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Waring rank and secant varieties



The Waring rank of a homogeneous form

Definition 1: (Waring rank, Waring decomposition)

Let F ∈ C[x0, . . . , xn]d be a form. The Waring rank WR(F ) is the least r ∈ N0

such that there exists a decomposition

F = λ1L
d
1 + · · ·+ λrL

d
r , L1, . . . , Lr ∈ C[x ]1 linear forms, λi ∈ C.

Any such expression is called a Waring decomposition of F .

This notion is

• independent of the number of variables of the ambient space

• invariant under scaling with λ ∈ C×, i. e. WR(λF ) = WR(F )

• invariant under changes of coordinates, i. e. WR(F ◦ A) = WR(F ), A ∈ GLn+1(C)
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Examples and leading questions

Example 2

• WR(xd1 + · · ·+ xdk ) = k

• If F (x) = x
ᵀ
Ax for A ∈ Symn+1(C), then WR(F ) = rankA

• Let d ≥ 3. WR(x0x
d−1
1 ) = d , although

x0x
d−1
1 =

1

d
· lim
ε→0

1

ε

(
(εx0 + x1)d − xd1

)
• Is WR(F ) always finite? Does the set of forms of rank r have a nice structure?

• What is the Waring rank of monomials or other basic families of forms?

• What can be said about the maximal rank? Or the rank of a general form?

• Are there (efficient) algorithms for the Waring rank?
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Powers of linear forms as a projective variety

Fix n, d ∈ N+ and N :=
(n+d

d

)
− 1. Consider the morphism

νd : P(C[x0, . . . , xn]1)→ P(C[x0, . . . , xn]d) =: PN , [L] 7→ [Ld ],

this is (up to a change of coordinates) the closed embedding associated to OPn(d).

Definition 3: (Veronese embedding, Veronese variety)

The map νd is called the Veronese embedding, its image is the Veronese variety

V d ,n ⊆ PN .

Observation: V d ,n is a closed subvariety of PN not contained in hyperplane.
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Higher secant varieties parameterize the Waring rank

Definition 4: (Higher secant variety)

Let X ⊆ PN be a projective variety. Consider the following subset of PN :

σ◦sX :=
⋃

p1,...,ps∈X
〈p1, . . . , ps〉P , σsX := σ◦sX .

σsX is called the s-th higher secant variety of X .

Consequence: We have

{ [F ] ∈ P(C[x0, . . . , xn]d) |WR(F ) ≤ s } = σ◦sV
d ,n.

In particular WR(F ) ≤
(n+d

d

)
for any form F .
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Small detour: Constructible sets

Definition 5: (Constructible set)

A subset of a variety X is constructible if it is a finite union of locally closed sets

A =
m⋃
i=1

Ci ∩ Oi , Ci closed, Oi open.

Important properties:

• If A,B ⊆ X are constructible, then so are A ∪ B, A ∩ B, A \ B
• (Chevalley) If X → Y is a morphism of varieties and A ⊆ X is constructible, then

f (A) ⊆ Y is also constructible

• If A ⊆ Cn is constructible, then AC = A (Euclidean vs. Zariski topology)
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Waring rank is a constructible property

Lemma 6 If X ⊆ PN is a variety, then σ◦sX is a constructible irreducible set.

Consequence: The following sets are irreducible and constructible:

W≤s = { F ∈ C[x0, . . . , xn]d |WR(F ) ≤ s } ,
Ws = { F ∈ C[x0, . . . , xn]d |WR(F ) = s } .

Definition 7: (Border rank)

The border Waring rank of F ∈ C[x ]d is WR(F ) = min
{
r ∈ N0

∣∣ F ∈W≤r
}

.

The closure W≤s consists of limits of forms of rank ≤ r , e. g. x0x
d−1
1 ∈W≤2.
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Expectation vs. reality

Lemma 8: The expected dimension

Let X ⊆ PN be a projective variety not contained in a hyperplane. Then

dimσsX ≤ min{s · dimX + s − 1,N} =: expdimσsX .

Definition 9: (s-defect of secant varieties)

The difference δs := expdimσsX − dimσsX is the s-defect of X .

If δs > 0 then X is said to be s-defective.

• Curves are never s-defective

• The Veronese surface V 2,2 ⊆ P5 is 2-defective

7 / 26



How to calculate dimσsX

Theorem 10: (Terracini’s first lemma)

For a general collection of points p1, . . . , ps ∈ X and a general point q ∈
〈p1, . . . , ps〉P we have

Tqσs(X ) = 〈Tp1X , . . . ,TpsX 〉P .

Lemma 11: The tangent space of V d ,n

The tangent space T[Ld ]V
d ,n is the subspace

T[Ld ]V
d ,n =

{
[Ld−1F ]

∣∣∣ F ∈ C[x ]1
}
⊆ P(C[x ]d).
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σsV
d ,n has (mostly) the expected dimension

Theorem 12: (Alexander-Hirschowitz [BO08])

Let n, d , s ≥ 1, then we have

dimσsV
d ,n = expdimσsV

d ,n = min
{
sn + s − 1,

(n+d
d

)
− 1
}

with the following list of exceptions:

d n s δs dimσsV
d ,n

2 ≥2 2 . . . n
(s
2

)
sn + s − 1−

(s
2

)
3 4 7 1 33

4 2 5 1 14

4 3 9 1 33

4 4 14 1 68

9 / 26



The generic Waring rank

The big Waring problem asks for the rank G (n, d) of a general form, i. e. the rank of a

dense open set of forms F ∈ U ⊆ C[x0, . . . , xn]d .

Corollary 13: (The solution to the big Waring problem)

G (n, d) =
⌈

1
n+1

(n+d
d

)⌉
with the following list of exceptions

d n G (n, d)

2 ∀ n + 1

3 4 8

4 2 6

4 3 10

4 4 15
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The maximum Waring rank

The little Waring problem asks for the largest possible rank g(n, d) of a form

F ∈ C[x0, . . . , xn]d .

• g(1, d) = d (attained by x0x
d−1
1 )

• g(n, 2) = n + 1 (attained by x20 + · · ·+ x2n )

• Upper bound by Ballico & De Paris [BD17]:

g(n, d) ≤
(
n + d − 1

n

)
−
(
n + d − 5

n − 2

)
−
(
n + d − 6

n − 2

)
• (Asymptotically) better bound by Blekherman & Teitler [BT14]:

G (n, d) ≤ g(n, d) ≤ 2 · G (n, d)
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Apolarity and the rank of monomials



The apolarity pairing

Let T := C[x0, . . . , xn], Xi := ∂
∂xi

, S := C[X0, . . . ,Xn] and consider the pairing

Si × Tj → Tj−i , Xα ◦ xβ :=


β!

(β−α)!x
β−α if α ≤ β,

0 otherwise.

Lemma 14: Properties of the apolarity paring

• T is a S-module with ◦ as scalar multiplication.

• Sd × Td → C is a perfect pairing for d ≥ 0.

• If L = a0x0 + · · ·+ anxn is a linear form and f ∈ Sd , then

f ◦ Ld = d! · f (a0, . . . , an).

Hence we can view S as a ring of functions on P(T1) ∼= ProjS .
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From differential operators to forms: Inverse systems

Definition 15: (Inverse system)

For a homogeneous ideal I ⊆ S , the inverse system is

I−1 := { F ∈ T | ∂ ◦ F = 0 ∀∂ ∈ I } .

Lemma 16 Let I , J ⊆ S be homogeneous ideals, then

• (I−1)d = (Id)⊥ := { F ∈ Td | ∂ ◦ F = 0 ∀∂ ∈ Id }
• I ⊆ J =⇒ J−1 ⊆ I−1

• (I + J)−1 = I−1 ∩ J−1, (I ∩ J)−1 = I−1 + J−1

• dimC I−1d = dimC(S/I )d = dimC Sd − dimC Id
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From forms to differential operators: Apolar ideals

Definition 17: (Apolar ideal)

For a form F ∈ Td , its apolar ideal is the homogeneous ideal

F⊥ := { ∂ ∈ S | ∂ ◦ F = 0 } .

Example 18 Consider F = Ld ∈ Td .

• The apolar ideal I := F⊥ is the vanishing ideal of [L] ∈ P(T1).

• Conversely, one has I−1d = C · Ld .
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A characterization of the Waring rank

Theorem 19: (Apolarity Lemma)

Let L1, . . . , Ls ∈ T1 be linear forms and X = {[L1], . . . , [Ls ]} ⊆ P(T1). Then for

a form F ∈ Td the following are equivalent:

(i) F = λ1L
d
1 + · · ·+ λsL

d
s for some λi ∈ C;

(ii) I (X) ⊆ F⊥.

Corollary 20

Let 0 6= F ∈ T be a form, then

WR(F ) = min
{
r ∈ N+

∣∣∣ F⊥ contains the ideal of a set of r distinct points
}
.
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The Waring rank of monomials

Theorem 21: (Carlini, Catalisano & Geramita [CCG12])

Let xd00 · · · xdnn ∈ C[x ] be a monomial. After renaming the variables we may

assume 1 ≤ d0 ≤ · · · ≤ dn. Then

WR(xd00 · · · x
dn
n ) =

1

d0 + 1

n∏
i=0

(di + 1).

Example 22 A Waring decomposition of F = x0 · · · xn is given by

x0 · · · xn =
1

2nn!

∑
ξ∈{±1}n

ξ1 · · · ξn · (x0 + ξ1x1 + · · ·+ ξnxn)n.
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The symmetric Strassen conjecture

Conjecture 23 If Fj ∈ C[x0,j , . . . , xnj ,j ]d , j = 1, . . . ,m, d ≥ 2 are forms in

disjoint sets of variables, then their sum in C[{ xi ,j | i , j }]d has Waring rank

WR(F1 + · · ·+ Fm) = WR(F1) + · · ·+ WR(Fm).

Carlini et al. [Car+15] showed this to be true if each Fi is of one of the following:

• Fi is a monomial;

• Fi is a form in ≤ 2 variables;

• Fi = xa0 (xb1 + · · ·+ xbn ) or Fi = xa0 (xb0 + xb1 + · · ·+ xbn ) with a + 1 ≥ b;

• Fi = xa0 (xb1 + xb2 ) or Fi = xa0 (xb0 + xb1 + xb2 );

• Fi = xa0G (x1, . . . , xn), where G⊥ = (g1, . . . , gn) is a complete intersection ideal

and deg(gj) > a for j = 1, . . . , n;

• Fi = det([xkj ]nj ,k=0) is a Vandermonde determinant.
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Elementary symmetric polynomials

Recall the elementary symmetric polynomials en,d =
∑

1≤i1<···<id≤d xi1 · · · xid .

Theorem 24: (Lee [Lee16])

For d = 2k + 1 odd, n ≥ d , we have a Waring decomposition

2d−1d!en,d =
∑

I⊆{1,...,n}
|I |≤k

(−1)|I |
(
n − k − |I | − 1

k − |I |

)
·
(
δ(I , 1)x1 + · · ·+ δ(I , n)xn

)d
,

where δ(I , i) = −1 if i ∈ I , +1 otherwise. In particular WR(en,d) =
∑ d−1

2
i=0

(n
i

)
.

A similar decomposition is possible for d even, but this is known to be suboptimal.
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Applications to computer science



Counting simple closed walks

Let G = (V ,E ) be a directed graph, V = {v1, . . . , vn}.

Definition 25

(i) A walk of length d in G is a sequence w = (vi0 , . . . , vid ) with (vij−1
, vij ) ∈ E

for j = 1, . . . , d .

(ii) If id = i0, then w is a closed walk. If, additionally, all nodes in w are pairwise

distinct (apart from vi0 = vid ), then w is called a simple cycle.

Problem 26 Describe an algorithm which on input 〈G , d〉 calculates the number

of simple cycles in G of length d .
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The graph walk polynomial

Consider the symbolic adjacency matrix and the graph walk polynomial

AG := [aij ] ∈ Matn(C[x ]1), aij =

xi if (vi , vj) ∈ E ;

0 otherwise,
FG := tr(Ad

G ) ∈ C[x ]d .

Lemma 27: Extracting the number of simple cycles from FG

(i) The terms of FG represent closed walks of length d in G :

FG =
∑

closed walks (vi0 ,...,vid )

xi0 · · · xid−1
.

(ii) The number of simple cycles of length d in G is given by

en,d
(
∂
∂x1
, . . . , ∂

∂xn

)
FG .
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Apolarity - Reprise

Lemma 28 Let F ∈ C[x1, . . . , xn]d , g ∈ C[X1, . . . ,Xn]d .

(i) We can “switch” the roles of F and g in the apolarity action, i. e. we have

the identity

g(X ) ◦ F (x) = F (X ) ◦ g(x).

(ii) If F = λ1L
d
1 + · · ·+ λsL

d
s , where Li = ci ,1x1 + · · ·+ ci ,nxn ∈ C[x ]1, then

g ◦ F = d! ·
r∑

i=1

λig(ci ,1, . . . , ci ,n).
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A simple formula

Consequence: If en,d =
∑s

i=1 λiL
d
i , Li = ci ,1X1 + · · ·+ ci ,nXn, then for any G we get

#{simple cycles of length d in G} = d!
s∑

i=1

λiFG (ci ,1, . . . , ci ,n).

Applying Lee’s power sum decomposition of en,d (in the case d odd) yields the formula

#{simple length d cycles in G} =∑
I⊆{1,...,n}
|I |≤bd/2c

(−1)|I |

2d−1

(
n − bd/2c − |I | − 1

bd/2c − |I |

)
· FG

(
δ(I , 1), . . . , δ(I , n)

)
.
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The best solution?

Corollary 29

This formula yields a
( n
bd/2c

)
·poly(n) time and poly(n) space algorithm for count-

ing simple cycles.

In some sense this is optimal:

Theorem 30: (Pratt [Pra18, Thm. 6])

Fix g ∈ C[x ] and let F ∈ C[x ] be given as a black-box.

The minimum number of queries to F needed to compute g( ∂
∂x )F is WR(g).
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The Catalecticant

Definition 31: (Catalecticant matrix)

Let F =
∑d

i=0 ai
(d
i

)
x i0x

d−i
1 be a binary form. Its Catalecticant matrix is

Catr ,d−r (F ) :=


a0 a1 . . . ar

a1 a2 . . . ar+1
...

...
. . .

...

ad−r ad−r . . . ad

 .

It is the matrix representing the linear map

Sr → Td−r , g 7→ g ◦ F .
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An algorithm for the Waring rank of binary forms
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The Waring problem is NP-hard

Consider the formal languages

WARING RANKC/Q = { 〈F , r〉 | r ∈ N0, F ∈ Q[x1, . . . , xn]d , WR(F ) ≤ r } ,

NULLSTELLENSATZC/Q =

{
〈f1, . . . , fm〉

∣∣∣∣∣ f1, . . . , fm ∈ Q[T1, . . . ,Tn]

have a common root in Cn

}
.

Theorem 32: (Shitov [Shi16])

The languages WARING RANKC/Q and NULLSTELLENSATZC/Q are polynomial-time

equivalent under many-one reductions.

In particular, the problem WARING RANKC/Q is NP-hard.
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Thank you! Any questions?
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