What is Tensor Decomposition?

"What is..." mathematics talks at CSB Dresden

MAX PLANCK INSTITUTE
FOR MATHEMATICS
IN THE SCIENCES

Leonie Kayser
leokayser.github.io
March 8, 2024

Warm-up: Matrix decomposition

\triangleright Given: matrix $M \in \mathbb{C}^{m \times n}$ (representing m student's n test results)
\triangleright Goal: Uncover (low-rank) decomposition/explanation "students \rightsquigarrow skill \rightsquigarrow test"
\triangleright Matrix decomposition $M=U V^{\top}$ with $U \in \mathbb{C}^{m \times r}, V \in \mathbb{C}^{n \times r}$
\triangleright Possible if (and only if) rk $M \leq r$

$$
M=S \cdot\left[\begin{array}{ccccc}
1 & 0 & & & 0 \\
0 & \ddots & & & \\
& & 1 & & \\
0 & & & 0 & \\
0
\end{array}\right] \cdot T, \quad S \in \mathrm{GL}(m, \mathbb{C}), T \in \mathrm{GL}(n, \mathbb{C})
$$

\triangleright Similar to SVD: $M=U \Sigma V^{\dagger}$ (U, V unitary, Σ diagonal with singular values)

What is a tensor?

A tensor...
$\triangleright \ldots$ is an object that transforms like a tensor
$\triangleright \ldots$ is an element of a tensor product of vector spaces $\mathbb{U} \otimes \mathbb{V} \otimes \mathbb{W}$
$\triangleright \ldots$ is a bilinear map $\mathbb{U} \times \mathbb{V} \rightarrow \mathbb{W}^{*} /$ a trilinear map $\mathbb{U} \times \mathbb{V} \times \mathbb{W} \rightarrow \mathbb{C} / \ldots$
$\triangleright \ldots$ is a multidimensional array of numbers $A=\left(A_{i j k}\right)_{i, j, k}$

- 1 -tensor $=$ vector
- 2-tensor $=$ matrix
- 3 -tensor $=$ cube of numbers

This is Tensor Decomposition!

\triangleright A tensor of the form $u \otimes v \otimes w \hat{=}\left(u_{i} v_{j} w_{k}\right)_{i, j, k}$ is simple
\triangleright Given a tensor, find a short(est) sum of simple tensors

$$
\begin{equation*}
T=\sum_{i=1}^{r} \lambda_{i} u_{i} \otimes v_{i} \otimes w_{i} \tag{৫}
\end{equation*}
$$

\triangleright The smallest such r is the tensor rank of $T,(\Omega)$ is a tensor decomposition
\triangleright Many names: Canonical Polyadic Decomposition, Parallel Factorization, ...
\triangleright Generalizes matrix rank: $A=S \cdot \operatorname{diag}(\underbrace{1, \ldots, 1}_{\operatorname{rank} A}, 0, \ldots, 0) \cdot T=\sum_{i=1}^{r} u_{i} v_{i}^{\top}$
\triangleright If the simple tensors are unique up to scaling, then A is called identifiable

A small example

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{lll}
2 & 0 & 3 \\
4^{-} & 5
\end{array}\right]^{1} 3\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & -1 \\
0^{-} & -3
\end{array}\right]^{1} 3\right]+\left[\begin{array}{lll}
2 & 0 & 4 \\
4^{-} & 8
\end{array}\right][] \\
& =\left[\begin{array}{l}
1 \\
3
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
{[1]}
\end{array}\right]+\left[\begin{array}{l}
2 \\
4
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 2
\end{array}\right] \otimes[0]^{[1]}
\end{aligned}
$$

The simultaneous decomposition algorithm

\triangleright Notation: Arrange the r vectors each into a matrix:

$$
T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}=: \llbracket U, V, W \rrbracket, \quad U \in \mathbb{C}^{l \times r}, V \in \mathbb{C}^{m \times r}, W \in \mathbb{C}^{n \times r}
$$

\triangleright Assume U, V, W have maximal rank $=r$, then unique up to scaling \& permuting
\triangleright Algorithm:

1. Pick random $c, c^{\prime} \in \mathbb{C}^{n}$
2. $T(\cdot, \cdot, c):=\left(\sum_{k=1}^{n} T_{i j k} c_{k}\right)_{i, j}=U D_{c} V^{\top}, \quad T\left(\cdot, \cdot, c^{\prime}\right):=\left(\sum_{k=1}^{n} T_{i j k} c_{k}^{\prime}\right)_{i, j}=U D_{c^{\prime}} V^{\top}$
3. $A:=T(\cdot, \cdot, c) \cdot T\left(\cdot, \cdot, c^{\prime}\right)^{-1}, \quad B:=T(\cdot, \cdot, c)^{\top} \cdot T\left(\cdot, \cdot, c^{\prime}\right)^{-\boldsymbol{\top}} \quad$ (really: Moore-Penrose inverse)

$$
A=U D_{c} V^{\top}\left(V^{\top}\right)^{-1} D_{c^{\prime}}^{-1} U^{-1}=U D_{A} U^{-1}
$$

4. Diagonalize $A=U D_{A} U^{-1}$ and $B=V D_{B} V^{-1}$

Eigenbasis \tilde{U} of A is U up to scaling \& permutation, eigenbasis \tilde{V} of B is V
5. $D_{A} \hat{=} D_{B} \rightsquigarrow$ Order/pair eigenvectors to get matrices \tilde{U}, \tilde{V}
6. Find \tilde{W} using linear equation $T=\sum_{i=1}^{r} \tilde{u}_{i} \otimes \tilde{v}_{i} \otimes \tilde{w}_{i}$

The example, demystified

$\triangleright A=T(\cdot, \cdot, c) \cdot T\left(\cdot, \cdot, c^{\prime}\right)^{-1}=\frac{1}{3}\left[\begin{array}{cc}7 & -2 \\ 12 & -3\end{array}\right] \rightsquigarrow$ eigenpairs $\left(1,\left[\begin{array}{l}1 \\ 2\end{array}\right]\right),\left(\frac{1}{3},\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)$
$\triangleright B=T(\cdot, \cdot, c)^{\top} \cdot T\left(\cdot, \cdot, c^{\prime}\right)^{-\top}=\frac{1}{3}\left[\begin{array}{ll}3 & 0 \\ 4 & 1\end{array}\right] \rightsquigarrow$ eigenpairs $\left(\frac{1}{3},\left[\begin{array}{l}0 \\ 1\end{array}\right]\right),\left(1,\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)$
\triangleright Actual decomposition: $U=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], V=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right], W=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$

Hidden algebraic geometry: joins and secants

\triangleright Let $X, Y \subseteq \mathbb{C}^{N}$ be affine cones (= zero sets of homogeneous polynomials)
$\triangleright J^{\circ}(X, Y):=\{x+y \mid x \in X, y \in Y\}=\bigcup$ lines through X, Y
\triangleright How large is $J^{\circ}(X, Y)$? In how many ways can one write $p \in J^{\circ}$ as $x+y$?
\triangleright If $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$, then $\operatorname{dim} J^{\circ}(X, Y) \leq \min \{m+n, N\}$

Example

$\triangleright X=Y=$ simple tensors in $\mathbb{C}^{2 \times 2 \times 2}, \operatorname{dim} X=4$
\triangleright Expected dimension of $\sigma_{2}^{\circ} X:=J^{\circ}(X, X)$ is $4+4=8$
\triangleright But actually contained in hypersurface of $\operatorname{dim} 7$
\triangleright A random tensor lies outside this hypersurface and has rank 3

Applications and outlook

\triangleright Plenty of applications: Machine learning, (algebraic) statistics, signal processing, phylogenetic trees, ...
\triangleright Special kinds of tensors: Symmetric tensor decomposition = Waring decomposition

$$
F \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}, \quad F=\sum_{i=1}^{r} L_{i}^{d}, \quad L_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{1}
$$

\triangleright Dimension and identifiability questions still open for many cases $\mathbb{C}^{l \times m \times n}$
\triangleright Often interested in best-approximations with low rank \rightsquigarrow generalized SVD
\triangleright Limits of rank r tensors may have rank $<r$

$$
T=w \otimes v \otimes v+v \otimes w \otimes v+v \otimes v \otimes w=\lim _{n \rightarrow \infty} n\left(v+\frac{1}{n} w\right)^{\otimes 3}-n v \otimes v \otimes v
$$

\triangleright Many other notions of rank: Border rank, subrank, cactus rank, slice rank, ...

Thank you! Questions?

Image credit

\triangleright Slide 4: https://redirect.cs.umbc.edu/2019/06/
talk-tensor-decomposition-of-nd-data-arrays-umbc/

