What is a Hilbert function?

Seminar day on Algebra, Geometry and Computation at CWI

Leonie Kayser March 9, 2023

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES

Figure 1: Which of the following configurations of three points is more 2 special 2?

Figure 1: Which of the following configurations of three points is more $\stackrel{\text{\tiny{thermalise}}}{\to}$ special $\stackrel{\text{\scriptsize{thermalise}}}{\to}$?

Figure 2: Which of the following configurations of six points is more 2 special 2?

Figure 2: Which of the following configurations of six points is more 2 special 2?

Polynomials vanishing on points

- Consider a finite set of points $X \subseteq \mathbb{C}^n$
- \rightsquigarrow **Question:** How many polynomials of degree $\leq m$ vanish on X?
 - Here "many" means the dimension of the vector space

$$I_{\leq m}(X) = \{ f \mid \deg(f) \leq m \text{ and } f(x) = 0 \text{ for } x \in X \}$$

• Example of three points in the plane

m	1	2	3	4	5	6	7	8	9	10
$\dim I_{\leq m}(\cdot \cdot \cdot)$	1	3	7	12	18	25	33	42	52	63
$\dim I_{\leq m}(::)$	0	3	7	12	18	25	33	42	52	63

Graded vector spaces and their Hilbert functions

• A graded vector space (over \mathbb{C}) is a vector space V with a decomposition into finite vector spaces

$$V = \bigoplus_{d \ge 0} V_d = V_0 \oplus V_1 \oplus V_2 \oplus \dots$$

Definition (Hilbert function)

The Hilbert function of a graded vector space is $h_V \colon \mathbb{N} \to \mathbb{N}$, $h_V(m) \coloneqq \dim_{\mathbb{C}} V_m$.

• Important example: The polynomial ring $S = \mathbb{C}[X_1, \ldots, X_n]$,

$$S_d = \left\{ f = \sum_{|\boldsymbol{\alpha}| = d} f_{\boldsymbol{\alpha}} X_1^{\alpha_1} \cdots X_n^{\alpha_n} \, \middle| \, f_{\boldsymbol{\alpha}} \in \mathbb{C} \right\}, \qquad |\boldsymbol{\alpha}| \coloneqq \alpha_1 + \cdots + \alpha_n$$

• $h_S(d) = \# \{ \text{ monomials of degree } d \} = \binom{d+n-1}{n} = \frac{(d+n-1)(d+n-2)\cdots d}{n!}$

From the affine to the projective world

• Compactify \mathbb{C}^n into projective space

$$\mathbb{P}^n \coloneqq (\mathbb{C}^{n+1} \setminus \{0\})/\sim, \qquad x \sim y \text{ iff } y = \lambda x, \quad \lambda \in \mathbb{C}^{\times}$$

with the inclusion $\mathbb{C}^n \ni (x_1, \ldots, x_n) \mapsto (1 : x_1 : \cdots : x_n) \in \mathbb{P}^n$

- \mathbb{P}^n is "nicer" than \mathbb{C}^n , e.g. any system of n polynomials has solutions in \mathbb{P}^n
- For each $d \ge 0$ we have a bijection $\mathbb{C}[X_1, \ldots, X_n]_{\le d} \longleftrightarrow \mathbb{C}[X_0, \ldots, X_n]_d$

$$f = \sum_{|\boldsymbol{\alpha}| \le d} f_{\boldsymbol{\alpha}} X_1^{\alpha_1} \cdots X_n^{\alpha_n} \mapsto f^{\mathbf{h}} = \sum_{|\boldsymbol{\alpha}| \le d} f_{\boldsymbol{\alpha}} X_0^{d-|\boldsymbol{\alpha}|} X_1^{\alpha_1} \cdots X_n^{\alpha_n}$$

• f vanishes on $(x_1, \ldots, x_n) \in \mathbb{C}^n \iff f^h$ vanishes on $(1: x_1: \cdots: x_n) \in \mathbb{P}^n$

 \rightsquigarrow For $X \subseteq \mathbb{P}^n$ investigate the spaces $I(X)_d = \{ f \in S_d \mid f(x) = 0 \ \forall x \in X \}!$

The Hilbert function of a projective set

Definition

Let $X \subseteq \mathbb{P}^n$ be a set, $S = \mathbb{C}[X_0, \ldots, X_n]$.

The homogeneous vanishing ideal of X is the graded vector subspace

$$I(X) = \bigoplus_{d \ge 0} I(X)_d \subseteq S, \qquad I(X)_d \coloneqq \{ f \in S_d \mid f(x) = 0 \text{ for all } x \in X \}.$$

The homogeneous coordinate ring of X is the graded quotient $S_X := S/I(X)$. The Hilbert function of X is $h_X(m) := h_{S_X}(m) = h_S(m) - h_{I(X)}(m)$.

Example: Let $X, X' \subseteq \mathbb{P}^2$ be six points as in quiz 2; X lying on a conic:

m	0	1	2	3	4	5	6	7	m	0	1	2	3	4	5	6	7
$h_{I(X)}(m)$	0	0	1	4	9	15	22	30	$h_X(m)$	1	3	5	6	6	6	6	6
$h_{I(X')}(m)$	0	0	0	4	9	15	22	30	$h_{X'}(m)$	1	3	6	6	6	6	6	6

The Hilbert functions of X and X' are distinct, but eventually agree with the number of points... but why? $\stackrel{(*)}{>}$

- Elements of $(S_X)_d$ are restrictions of homogeneous polynomials $f \in S_d$ to X
- If #X = r, then $\dim \operatorname{Maps}(X, \mathbb{C}) = r$
- $\rightsquigarrow h_X(m) \leq r \text{ for all } m \geq 0$
 - \cdot If $d\gg 0$, then all functions can be realised

 $\rightsquigarrow h_X(m) = r \text{ for } m \gg 0$

Figure 3: Lagrange polynomials

Conclusion: h_X knows the number of points and some geometry of X!

Let's step up the dimension!

• A plane curve is the vanishing locus of a polynomial $f \in \mathbb{C}[X_0, X_1, X_2]_d$,

$$C = \mathcal{V}(f) = \{ x \in \mathbb{P}^2 \mid f(x) = 0 \}$$

- The degree of C is deg $C \coloneqq \deg(f) = d$
- C is smooth if the partial derivatives $rac{\partial f}{\partial X_i}$ have no common zero in \mathbb{P}^n
- A smooth plane curve C is a compact Riemann surface (complex 1-dim'l)
- The number of holes in the (real) surface C is the genus g(C)

Figure 4: Compact Riemann surfaces of genus g = 0, 1, ...

The Hilbert function of plane curves

- By Hilbert's Nullstellensatz $I(C) = \{ f \cdot g \mid g \in S \}$
- In particular $h_{I(C)}(m) = h_S(m-d) = \binom{m-d+2}{2}$ and

$$h_C(m) = h_S(m) - h_{I(C)}(m) = {\binom{m+2}{2}} - {\binom{m-d+2}{2}}$$

= $\dots = dm + 1 - \frac{(d-1)(d-2)}{2} = dm + 1 - g(C)$

Theorem

Let $C \subseteq \mathbb{P}^2$ be a smooth plane curve of degree d and genus g. Then for m large enough the Hilbert function agrees with the linear function

$$h_C(m) = d \cdot m + (1 - g), \qquad m \gg 0$$

Projective varieties and two important invariants

• A *projective variety* is the vanishing set of a set of homogeneous polynomials

 $X = \mathcal{V}(f_1, \ldots, f_s) \subseteq \mathbb{P}^n$

- The *dimension* of *X* is its dimension as a complex manifold
- If dim X = k, then X intersects any linear subspace $L \subseteq \mathbb{P}^n$ of dimension n - k
- A general linear space of dimension n k intersects X in a finite set of d > 0 points, d is the degree of X

Figure 5: The Goursat surface

The big picture

Theorem (Existence of the Hilbert polynomial)

For a projective variety $X \subseteq \mathbb{P}^n$ there exists a polynomial $P_X(t) \in \mathbb{Q}[t]$ such that

 $h_X(m) = P_X(m), \qquad m \gg 0.$

This Hilbert polynomial has the following properties:

- 1. $\deg(P_X) = \dim X =: k;$
- 2. $k! \cdot P_X$ has integer coefficients;
- 3. the leading term of P_X is $\frac{\deg X}{k!}t^k$.
- \cdot This theorem applies more generally to finitely generated graded S-modules
- The constant term $P_X(0)$ is related to the *arithmetic genus* of X

A surprising connection to combinatorics

Figure 6: An integral polytope Δ and its integral points.

Theorem (The Ehrhart polynomial)

The map $L(\Delta, m) := \#(m\Delta \cap \mathbb{Z}^n)$ is a degree dim (Δ) polynomial for $m \ge 0$. Its leading coefficient is vol (Δ) .

This can be proven by relating $L(\Delta, m)$ to the Hilbert function of a graded module! 12

- 1. At which $m \in \mathbb{N}$ does $h_X(m)$ actually agree with $P_X(m)$?
- \rightsquigarrow Conditions on regularity of X
- 2. If $X, Y \subseteq \mathbb{P}^n$ share $P_X = P_Y$, what other properties do they share?
- \rightsquigarrow The Hilbert scheme parametrizes such varieties X with fixed P_X
- 3. What happens to h_X when you restrict your attention to a subspace of I(X)?
- → Current project with Simon Telen & Fulvio Gesmundo on non-saturated ideals of general collections of points

Thank you! Questions?

- Figure 1, 2: Created using GeoGebra https://www.geogebra.org/
- Figure 3: https://www.researchgate.net/figure/ Lagrange-polynomials-for-5-solution-points-N-5_fig28_ 314236855
- Figure 4: http://www.map.mpim-bonn.mpg.de/File:Surfaces.png
- Figure 5: http://www.grad.hr/geomteh3d/Plohe/plohe2_eng.html
- Figure 6: Based on code from https://arxiv.org/abs/2208.08179