What is a Hilbert function?

Seminar day on Algebra, Geometry and Computation at CWI

Leonie Kayser
March 9, 2023

MAX PLANCK INSTITUTE
FOR MATHEMATICS
IN THE SCIENCES

The impossible quiz

The impossible quiz

Figure 1: Which of the following configurations of three points is more $+\uparrow$ special $+\downarrow$?

The impossible quiz 2

The impossible quiz 2

Figure 2: Which of the following configurations of six points is more $+{ }_{+}^{+}$special ${ }_{+}^{+}$?

Polynomials vanishing on points

- Consider a finite set of points $X \subseteq \mathbb{C}^{n}$
\rightsquigarrow Question: How many polynomials of degree $\leq m$ vanish on X ?
- Here "many" means the dimension of the vector space

$$
I_{\leq m}(X)=\{f \mid \operatorname{deg}(f) \leq m \text { and } f(x)=0 \text { for } x \in X\}
$$

- Example of three points in the plane

m	1	2	3	4	5	6	7	8	9	10
$\operatorname{dim} I_{\leq m}(\cdots)$	1	3	7	12	18	25	33	42	52	63
$\operatorname{dim} I_{\leq m}(\because)$	0	3	7	12	18	25	33	42	52	63

Graded vector spaces and their Hilbert functions

- A graded vector space (over \mathbb{C}) is a vector space V with a decomposition into finite vector spaces

$$
V=\bigoplus_{d \geq 0} V_{d}=V_{0} \oplus V_{1} \oplus V_{2} \oplus \ldots
$$

Definition (Hilbert function)

The Hilbert function of a graded vector space is $h_{V}: \mathbb{N} \rightarrow \mathbb{N}, h_{V}(m):=\operatorname{dim}_{\mathbb{C}} V_{m}$.

- Important example: The polynomial ring $S=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$,

$$
S_{d}=\left\{f=\sum_{|\alpha|=d} f_{\alpha} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} \mid f_{\alpha} \in \mathbb{C}\right\}, \quad|\boldsymbol{\alpha}|:=\alpha_{1}+\cdots+\alpha_{n}
$$

- $h_{S}(d)=\#\{$ monomials of degree $d\}=\binom{d+n-1}{n}=\frac{(d+n-1)(d+n-2) \cdots d}{n!}$

From the affine to the projective world

- Compactify \mathbb{C}^{n} into projective space

$$
\mathbb{P}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim, \quad x \sim y \text { iff } y=\lambda x, \quad \lambda \in \mathbb{C}^{\times}
$$

with the inclusion $\mathbb{C}^{n} \ni\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(1: x_{1}: \cdots: x_{n}\right) \in \mathbb{P}^{n}$

- \mathbb{P}^{n} is "nicer" than \mathbb{C}^{n}, e.g. any system of n polynomials has solutions in \mathbb{P}^{n}
- For each $d \geq 0$ we have a bijection $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]_{\leq d} \longleftrightarrow \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]_{d}$

$$
f=\sum_{|\alpha| \leq d} f_{\boldsymbol{\alpha}} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} \mapsto f^{\mathrm{h}}=\sum_{|\boldsymbol{\alpha}| \leq d} f_{\boldsymbol{\alpha}} X_{0}^{d-|\boldsymbol{\alpha}|} X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}
$$

- f vanishes on $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \Longleftrightarrow f^{\text {h }}$ vanishes on $\left(1: x_{1}: \cdots: x_{n}\right) \in \mathbb{P}^{n}$
\rightsquigarrow For $X \subseteq \mathbb{P}^{n}$ investigate the spaces $I(X)_{d}=\left\{f \in S_{d} \mid f(x)=0 \forall x \in X\right\}$!

The Hilbert function of a projective set

Definition

Let $X \subseteq \mathbb{P}^{n}$ be a set, $S=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$.
The homogeneous vanishing ideal of X is the graded vector subspace

$$
I(X)=\bigoplus_{d \geq 0} I(X)_{d} \subseteq S, \quad I(X)_{d}:=\left\{f \in S_{d} \mid f(x)=0 \text { for all } x \in X\right\}
$$

The homogeneous coordinate ring of X is the graded quotient $S_{X}:=S / I(X)$. The Hilbert function of X is $h_{X}(m):=h_{S_{X}}(m)=h_{S}(m)-h_{I(X)}(m)$.

Example: Let $X, X^{\prime} \subseteq \mathbb{P}^{2}$ be six points as in quiz 2; X lying on a conic:

m	0	1	2	3	4	5	6	7
$h_{I(X)}(m)$	0	0	1	4	9	15	22	30
$h_{I\left(X^{\prime}\right)}(m)$	0	0	0	4	9	15	22	30

m	0	1	2	3	4	5	6	7
$h_{X}(m)$	1	3	5	6	6	6	6	6
$h_{X^{\prime}}(m)$	1	3	6	6	6	6	6	6

The Hilbert function of points becomes constant

The Hilbert functions of X and X^{\prime} are distinct, but eventually agree with the number of points... but why?

- Elements of $\left(S_{X}\right)_{d}$ are restrictions of homogeneous polynomials $f \in S_{d}$ to X
- If $\# X=r$, then $\operatorname{dim} \operatorname{Maps}(X, \mathbb{C})=r$
$\rightsquigarrow h_{X}(m) \leq r$ for all $m \geq 0$
- If $d \gg 0$, then all functions can be realised
$\rightsquigarrow h_{X}(m)=r$ for $m \gg 0$

Figure 3: Lagrange polynomials

Conclusion: h_{X} knows the number of points and some geometry of X !

Let's step up the dimension!

- A plane curve is the vanishing locus of a polynomial $f \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]_{d}$,

$$
C=\mathcal{V}(f)=\left\{x \in \mathbb{P}^{2} \mid f(x)=0\right\}
$$

- The degree of C is $\operatorname{deg} C:=\operatorname{deg}(f)=d$
- C is smooth if the partial derivatives $\frac{\partial f}{\partial X_{j}}$ have no common zero in \mathbb{P}^{n}
- A smooth plane curve C is a compact Riemann surface (complex 1-dim'l)
- The number of holes in the (real) surface C is the genus $g(C)$

Figure 4: Compact Riemann surfaces of genus $g=0,1, \ldots$

The Hilbert function of plane curves

- By Hilbert's Nullstellensatz $I(C)=\{f \cdot g \mid g \in S\}$
- In particular $h_{I(C)}(m)=h_{S}(m-d)=\binom{m-d+2}{2}$ and

$$
\begin{aligned}
h_{C}(m) & =h_{S}(m)-h_{I(C)}(m)=\binom{m+2}{2}-\binom{m-d+2}{2} \\
& =\cdots=d m+1-\frac{(d-1)(d-2)}{2}=d m+1-g(C)
\end{aligned}
$$

Theorem

Let $C \subseteq \mathbb{P}^{2}$ be a smooth plane curve of degree d and genus g. Then for m large enough the Hilbert function agrees with the linear function

$$
h_{C}(m)=d \cdot m+(1-g), \quad m \gg 0
$$

Projective varieties and two important invariants

- A projective variety is the vanishing set of a set of homogeneous polynomials

$$
X=\mathcal{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{P}^{n}
$$

- The dimension of X is its dimension as a complex manifold
- If $\operatorname{dim} X=k$, then X intersects any linear subspace $L \subseteq \mathbb{P}^{n}$ of dimension $n-k$
- A general linear space of dimension $n-k$ intersects X in a finite set of $d>0$ points, d is the degree of X

Figure 5: The Goursat surface

The big picture

Theorem (Existence of the Hilbert polynomial)

For a projective variety $X \subseteq \mathbb{P}^{n}$ there exists a polynomial $P_{X}(t) \in \mathbb{Q}[t]$ such that

$$
h_{X}(m)=P_{X}(m), \quad m \gg 0 .
$$

This Hilbert polynomial has the following properties:

1. $\operatorname{deg}\left(P_{X}\right)=\operatorname{dim} X=: k ;$
2. k ! $\cdot P_{X}$ has integer coefficients;
3. the leading term of P_{X} is $\frac{\operatorname{deg} X}{k!} t^{k}$.

- This theorem applies more generally to finitely generated graded S-modules
- The constant term $P_{X}(0)$ is related to the arithmetic genus of X

A surprising connection to combinatorics

Figure 6: An integral polytope Δ and its integral points.
Theorem (The Ehrhart polynomial)
The map $L(\Delta, m):=\#\left(m \Delta \cap \mathbb{Z}^{n}\right)$ is a degree $\operatorname{dim}(\Delta)$ polynomial for $m \geq 0$. Its leading coefficient is $\operatorname{vol}(\Delta)$.

This can be proven by relating $L(\Delta, m)$ to the Hilbert function of a graded module!

Outlook

1. At which $m \in \mathbb{N}$ does $h_{X}(m)$ actually agree with $P_{X}(m)$?
\rightsquigarrow Conditions on regularity of X
2. If $X, Y \subseteq \mathbb{P}^{n}$ share $P_{X}=P_{Y}$, what other properties do they share?
\rightsquigarrow The Hilbert scheme parametrizes such varieties X with fixed P_{X}
3. What happens to h_{X} when you restrict your attention to a subspace of $I(X)$?
\rightsquigarrow Current project with Simon Telen \& Fulvio Gesmundo on non-saturated ideals of general collections of points

Thank you! Questions?

Image credit

- Figure 1, 2: Created using GeoGebra https://www.geogebra.org/
- Figure 3: https://www.researchgate.net/figure/ Lagrange-polynomials-for-5-solution-points-N-5_fig28_ 314236855
- Figure 4: http://www.map.mpim-bonn.mpg.de/File:Surfaces.png
- Figure 5: http://www.grad.hr/geomteh3d/Plohe/plohe2_eng.html
- Figure 6: Based on code from https://arxiv.org/abs/2208.08179

